MAE 105 Introduction to Mathematical Physics HOMEWORK 1. Due on Thursday October 1st 2015

Size: px
Start display at page:

Download "MAE 105 Introduction to Mathematical Physics HOMEWORK 1. Due on Thursday October 1st 2015"

Transcription

1 MAE 5 Introduction to Mathematical Physics HOMEWORK Due on Thursday October st 25 PROBEM : Evaluate the following integrals (where n =, 2, 3,... is an integer) and show all your steps: (a) x nπx We use integration by parts. Note that d nπx x = x nπx nπ x nπx = nπx x nπ = ( )n+ 2. nπ nπ + nπ nπx, nπx, Notice that because n is an integer, the second integral is zero, ce nπ =, and that nπ = ( ) n. (b) e x nπx For this we use Euler s identity, which asserts that This implies that nπx/ can be written e x nπx e iθ = θ + i θ. nπx = imag e inπx/, = imag Exponentials aren t hard to integrate. We get exp {x + inπ/} = = { } exp x( + inπ/). { } + inπ/ exp x( + inπ/) + inπ/ e nπ, = inπ/ + (nπ/) 2 ( ) n e.,

2 In the last step, we multiplied by ( inπ/)/( inπ/), allowing us to clearly separate the real and imaginary parts of the expression. We also used the fact that nπ = ( ) n. We conclude at last that e x nπx { } = imag exp x( + inπ/)., nπ/ = + (nπ/) 2 ( ) n e. (c) First, we note the product-to-sum trigonometric identity θ φ = 2 (φ + θ) + 2 (φ θ), which can be derived by converting both θ and φ to complex exponential form ug Euler s identity, doing some algebra, and converting back to s. This identity implies that (d) 2 nπx which implies that Putting this into the integral yields PROBEM 2: = 6πx 2, = 2π =. 6πx, This integral can be tackled by noting another product-to-sum identity, θ φ = 2 (θ φ) 2 (θ + φ), 2 nπx = 2 2 2nπx. 2 nπx = x 2 2nπx, 4nπ = 2. Solve the following ordinary differential equations and show all your work: (a) dh dt = λkh with h() = h. The most efficient way to solve this differnetial equation is to realize that this is a constant coefficient equation with a gle solution of the form h = Ae rt, where r is a constant determined by the equation, and A is a constant determined by the initial condition. Our guess is thus that h = Ae rt, and 2 dh dt = raert.

3 Plugging these into the differential equation yields rae rt = λkae rt. A little squinting (or alternatively, rearranging terms in the equation) reveals that we must have r = λk for our guess to be a valid solution. Thus h(t) = Ae λkt. The initial condition then requires h = h() = A, which means that our solution is h(t) = h e λkt. A small amount of extra effort verifying that this h does indeed satisfy the differential equation and initial condition confirms its correctness. (b) d2 φ dφ = 9 φ with φ() = and () =. 2 This is another constant coefficient equation with solutions of the form φ = Ae rx. Because this is a second-order differential equation, we should find two independent solutions. Differentiating our guess for φ twice and plugging it into the equation yields r 2 Ae rx = 9Ae rx, which implies we must have r ± 3. The general solution is therefore The first initial condition implies that φ = Ae 3x + Be 3x. φ() = A + B =, or that A = B. The second initial condition implies that dφ () = 3A 3B =. Ug A = B this implies that 6A = or that A = /6 and B = /6. The solution is therefore (c) d2 f 2 + λ2 f = x with λ >, f() = f, parts, φ = 6 e3x 6 e 3x. df () =. This is an inhomogeneous differential equation. To tackle it we split our solution into two where f h is the homogeneous solution satisfying f = f h + f p, d 2 f h 2 + λ2 f h =, and f p is the particular solution for which d 2 f p / 2 + λ 2 f p equals x. It is good practice to find the homogeneous solution first (the reason for this will become apparent in (d)). Again the solution consists of exponentials of the form f h = Ae rx. Plugging in we find Ae rx r 2 + λ 2 =. 3

4 This implies that and that r = ±iλ, f h = Ae iλx + Be iλx. Now, notice that Euler s identity (given in the solution to (b)) implies that we can also write f h as f h = C λx + D λx, where C = A + B and D = i (B A). Since A, B, C, and D are arbitrary constants at this point, we can choose whichever representation we like. And because the solution is real (not imaginary), es and coes make the most sense to me right now. The particular solution can be found in a number of ways. By far the fastest way is to recognize that when the inhomogeneous forcing (the term x on the right hand side) is a polynomial, the particular solution is also a polynomial. It is clear in this case that if we guess the particular polynomial f p = Ex, where E is a constant, we find that d 2 f p / 2 =, so that the differential equation becomes d 2 f p 2 + λ2 f p = λ 2 Ex. For this to equal x, we choose E = /λ 2. Bringing it all together, the general solution is f = C λx + D λx + x λ 2. The initial condition f() = f implies that C = f. The initial condition df()/ = implies or that D = λ 3. Our final answer is therefore = Dλ + λ 2, f = f λx λ 3 λx + x λ 2. (d) d2 y dt 2 + dy t dt 4 t 2 y = This differential equation is solved by first recognizing that it is an equidimensional equation. Equidimensional equations have the form t n y (n) + t n y (n ) + + ty + y = f(t), where y (n) denotes the n th derivative of y(t) and y denotes the first derivative of y. Our differential equation can be brought into this form by multiplying by t 2. Equidimensional equations are special they become constant coefficient equations after making the substitution x = ln t, and can be solved by a similar easy method. The solution to equidimensional equation takes the form y = At r. Note that in terms of x = ln t, this becomes y = Ae rx, which is the solution form for constant coefficient equations. This simply confirms that the universe makes sense and we have (so far) retained our sanity. To solve our inhomogeneous, equidimensional differential equation, we split the problem into a homogeneous and inhomogeneous part, such that y = y h + y p, 4

5 where y h contains the two solutions to the homogeneous problem, d 2 y h dt 2 + t dy h dt 4 t 2 y h =, and y p, again, is the particular solution that satisfies the differential equation with the on the right hand side. With the guess y h = At r we have dy h dt = ratr, Plugging these into the differential equation yields and At r 2 r(r ) + r 4 d 2 y h dt 2 = r(r )Atr 2. =. This implies that r = ±2, and that the homogeneous solution is y h = At 2 + Bt 2. ike the constant coefficient problem in 2(c), the particular solution can be found by a number of methods. The fastest method is to recognize that the forcing term is a polynomial as good as any other, and that the particular solution to an equidimensional equation forced by a polynomial is, indeed, itself a polynomial. We can see by inspection (for example, multiple the differential equation by t 2 ) that the correct polynomial is simply proportional to t 2, and thus our first guess is y p = Ct 2. Unfortunately, this won t work. The reason is that Ct 2 is one of the homoegeneous solutions, which means that no matter what C is, this solution will always yield = when it is plugged into the differential equation. Since, Ct 2 cannot possibly be the correct particular solution. The problem is that the forcing term is resonant with the differential equation on the left side it is going to produce an interestingly large response in y. If the differential equation were constant coefficient (which it becomes when cast in terms of x = ln t), then the solution is to propose a new particular solution of the form y p2 (x) = x y p (x), where y p is our first guess for the particular solution. Note that if y p2 is also one of the homogeneous solutions, we must try again and multiply by x again. For the equidimensional problem, the analagous approach is to multiply by ln t; in other words, our new guess is y p2 (t) = (ln t) y p (t). In this particular case, where our first guess is y p = Ct 2, we propose y p = C (ln t) t 2. We thus have dy p dt = C (t + 2t ln t), and d 2 y p = C (3 + 2 ln t). dt2 Putting these into the differential equation yields C ln t ln t 4 ln t =, which implies that C = /4. Our general solution is therefore y(t) = At 2 + Bt t2 ln t. 5

Linear algebra and differential equations (Math 54): Lecture 20

Linear algebra and differential equations (Math 54): Lecture 20 Linear algebra and differential equations (Math 54): Lecture 20 Vivek Shende April 7, 2016 Hello and welcome to class! Last time We started discussing differential equations. We found a complete set of

More information

Euler-Cauchy Using Undetermined Coefficients

Euler-Cauchy Using Undetermined Coefficients Euler-Cauchy Using Undetermined Coefficients Department of Mathematics California State University, Fresno doreendl@csufresno.edu Joint Mathematics Meetings January 14, 2010 Outline 1 2 3 Second Order

More information

The Method of Undetermined Coefficients.

The Method of Undetermined Coefficients. The Method of Undetermined Coefficients. James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 24, 2017 Outline 1 Annihilators 2 Finding The

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

Section 4.7: Variable-Coefficient Equations

Section 4.7: Variable-Coefficient Equations Cauchy-Euler Equations Section 4.7: Variable-Coefficient Equations Before concluding our study of second-order linear DE s, let us summarize what we ve done. In Sections 4.2 and 4.3 we showed how to find

More information

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5 Math 24 Final Exam Solution 17 December 1999 1. Find the general solution to the differential equation ty 0 +2y = sin t. Solution: Rewriting the equation in the form (for t 6= 0),we find that y 0 + 2 t

More information

Selected Solutions: 3.5 (Undetermined Coefficients)

Selected Solutions: 3.5 (Undetermined Coefficients) Selected Solutions: 3.5 (Undetermined Coefficients) In Exercises 1-10, we want to apply the ideas from the table to specific DEs, and solve for the coefficients as well. If you prefer, you might start

More information

Math K (24564) - Homework Solutions 02

Math K (24564) - Homework Solutions 02 Math 39100 K (24564) - Homework Solutions 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Reduction of Order, B & D Chapter 3, p. 174 Constant Coefficient

More information

Nonhomogeneous Equations and Variation of Parameters

Nonhomogeneous Equations and Variation of Parameters Nonhomogeneous Equations Variation of Parameters June 17, 2016 1 Nonhomogeneous Equations 1.1 Review of First Order Equations If we look at a first order homogeneous constant coefficient ordinary differential

More information

1 Some general theory for 2nd order linear nonhomogeneous

1 Some general theory for 2nd order linear nonhomogeneous Math 175 Honors ODE I Spring, 013 Notes 5 1 Some general theory for nd order linear nonhomogeneous equations 1.1 General form of the solution Suppose that p; q; and g are continuous on an interval I; and

More information

Linear Second Order ODEs

Linear Second Order ODEs Chapter 3 Linear Second Order ODEs In this chapter we study ODEs of the form (3.1) y + p(t)y + q(t)y = f(t), where p, q, and f are given functions. Since there are two derivatives, we might expect that

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

1 Differential Equations

1 Differential Equations Reading [Simon], Chapter 24, p. 633-657. 1 Differential Equations 1.1 Definition and Examples A differential equation is an equation involving an unknown function (say y = y(t)) and one or more of its

More information

Math Assignment 6

Math Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Fall 2013 Section 3.7-1, 5, 10, 17, 19 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.7 - Electrical Circuits 3.7.1 This

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t.

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t. Calculus IV - HW 3 Due 7/13 Section 3.1 1. Give the general solution to the following differential equations: a y 25y = 0 Solution: The characteristic equation is r 2 25 = r 5r + 5. It follows that the

More information

Second-Order Homogeneous Linear Equations with Constant Coefficients

Second-Order Homogeneous Linear Equations with Constant Coefficients 15 Second-Order Homogeneous Linear Equations with Constant Coefficients A very important class of second-order homogeneous linear equations consists of those with constant coefficients; that is, those

More information

Higher-order differential equations

Higher-order differential equations Higher-order differential equations Peyam Tabrizian Wednesday, November 16th, 2011 This handout is meant to give you a couple more example of all the techniques discussed in chapter 6, to counterbalance

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Questions Example (3.5.3) Find a general solution of the differential equation y 2y 3y = 3te

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

How to Solve Linear Differential Equations

How to Solve Linear Differential Equations How to Solve Linear Differential Equations Definition: Euler Base Atom, Euler Solution Atom Independence of Atoms Construction of the General Solution from a List of Distinct Atoms Euler s Theorems Euler

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

ES.1803 Topic 7 Notes Jeremy Orloff. 7 Solving linear DEs; Method of undetermined coefficients

ES.1803 Topic 7 Notes Jeremy Orloff. 7 Solving linear DEs; Method of undetermined coefficients ES.1803 Topic 7 Notes Jeremy Orloff 7 Solving linear DEs; Method of undetermined coefficients 7.1 Goals 1. Be able to solve a linear differential equation by superpositioning a particular solution with

More information

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity 1 Second Order Ordinary Differential Equations 1.1 The harmonic oscillator Consider an ideal pendulum as shown below. θ l Fr mg l θ is the angular acceleration θ is the angular velocity A point mass m

More information

First Order Linear Ordinary Differential Equations

First Order Linear Ordinary Differential Equations First Order Linear Ordinary Differential Equations The most general first order linear ODE is an equation of the form p t dy dt q t y t f t. 1 Herepqarecalledcoefficients f is referred to as the forcing

More information

This Week. Professor Christopher Hoffman Math 124

This Week. Professor Christopher Hoffman Math 124 This Week Sections 2.1-2.3,2.5,2.6 First homework due Tuesday night at 11:30 p.m. Average and instantaneous velocity worksheet Tuesday available at http://www.math.washington.edu/ m124/ (under week 2)

More information

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always October 5 Relevant reading: Section 2.1, 2.2, 2.3 and 2.4 Our goal is to solve a general constant coecient linear second order ODE a d2 y dt + bdy + cy = g (t) 2 dt where a, b, c are constants and a 0.

More information

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner:

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner: M ath 0 1 E S 1 W inter 0 1 0 Last Updated: January, 01 0 Solving Second Order Linear ODEs Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections 4. 4. 7 and

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS Definitions and a general fact If A is an n n matrix and f(t) is some given vector function, then the system of differential equations () x (t) Ax(t)

More information

ODEs Cathal Ormond 1

ODEs Cathal Ormond 1 ODEs Cathal Ormond 2 1. Separable ODEs Contents 2. First Order ODEs 3. Linear ODEs 4. 5. 6. Chapter 1 Separable ODEs 1.1 Definition: An ODE An Ordinary Differential Equation (an ODE) is an equation whose

More information

Section 2.4 Linear Equations

Section 2.4 Linear Equations Section 2.4 Linear Equations Key Terms: Linear equation Homogeneous linear equation Nonhomogeneous (inhomogeneous) linear equation Integrating factor General solution Variation of parameters A first-order

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

MATHEMATICS FOR ENGINEERS & SCIENTISTS 23

MATHEMATICS FOR ENGINEERS & SCIENTISTS 23 MATHEMATICS FOR ENGINEERS & SCIENTISTS 3.5. Second order linear O.D.E.s: non-homogeneous case.. We ll now consider non-homogeneous second order linear O.D.E.s. These are of the form a + by + c rx) for

More information

B Ordinary Differential Equations Review

B Ordinary Differential Equations Review B Ordinary Differential Equations Review The profound study of nature is the most fertile source of mathematical discoveries. - Joseph Fourier (1768-1830) B.1 First Order Differential Equations Before

More information

Higher Order Linear Equations

Higher Order Linear Equations C H A P T E R 4 Higher Order Linear Equations 4.1 1. The differential equation is in standard form. Its coefficients, as well as the function g(t) = t, are continuous everywhere. Hence solutions are valid

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Shawn D. Ryan Spring 2012 Last Time: We finished Chapter 9: Nonlinear Differential Equations and Stability. Now

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π Fourier transforms We can imagine our periodic function having periodicity taken to the limits ± In this case, the function f (x) is not necessarily periodic, but we can still use Fourier transforms (related

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS. David Levermore Department of Mathematics University of Maryland.

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS. David Levermore Department of Mathematics University of Maryland. HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS David Levermore Department of Mathematics University of Maryland 28 March 2008 The following is a review of some of the material that we covered on higher-order

More information

MATH 320 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

MATH 320 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS MATH 2 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS W To find a particular solution for a linear inhomogeneous system of differential equations x Ax = ft) or of a mechanical system with external

More information

CHAPTER 10 NOTES DAVID SEAL

CHAPTER 10 NOTES DAVID SEAL CHAPTER 1 NOTES DAVID SEA 1. Two Point Boundary Value Problems All of the problems listed in 14 2 ask you to find eigenfunctions for the problem (1 y + λy = with some prescribed data on the boundary. To

More information

Examples: Solving nth Order Equations

Examples: Solving nth Order Equations Atoms L. Euler s Theorem The Atom List First Order. Solve 2y + 5y = 0. Examples: Solving nth Order Equations Second Order. Solve y + 2y + y = 0, y + 3y + 2y = 0 and y + 2y + 5y = 0. Third Order. Solve

More information

Chapter 3: Second Order Equations

Chapter 3: Second Order Equations Exam 2 Review This review sheet contains this cover page (a checklist of topics from Chapters 3). Following by all the review material posted pertaining to chapter 3 (all combined into one file). Chapter

More information

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS MATTHIAS GERDTS A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS Universität der Bundeswehr München Addresse des Autors: Matthias Gerdts Institut für Mathematik und Rechneranwendung Universität

More information

Chapter 7. Homogeneous equations with constant coefficients

Chapter 7. Homogeneous equations with constant coefficients Chapter 7. Homogeneous equations with constant coefficients It has already been remarked that we can write down a formula for the general solution of any linear second differential equation y + a(t)y +

More information

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland First-Order Ordinary Differntial Equations: Classification and Linear Equations David Levermore Department of Mathematics University of Maryland 1 February 2009 These notes cover some of the material that

More information

Introduction and preliminaries

Introduction and preliminaries Chapter Introduction and preliminaries Partial differential equations What is a partial differential equation? ODEs Ordinary Differential Equations) have one variable x). PDEs Partial Differential Equations)

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

APPM 2360: Midterm 3 July 12, 2013.

APPM 2360: Midterm 3 July 12, 2013. APPM 2360: Midterm 3 July 12, 2013. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor s name, (3) your recitation section number and (4) a grading table. Text books, class notes,

More information

Homework #6 Solutions

Homework #6 Solutions Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Today. The geometry of homogeneous and nonhomogeneous matrix equations. Solving nonhomogeneous equations. Method of undetermined coefficients

Today. The geometry of homogeneous and nonhomogeneous matrix equations. Solving nonhomogeneous equations. Method of undetermined coefficients Today The geometry of homogeneous and nonhomogeneous matrix equations Solving nonhomogeneous equations Method of undetermined coefficients 1 Second order, linear, constant coeff, nonhomogeneous (3.5) Our

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Chapter 12 Solving Nonhomogeneous PDEs (Eigenfunction Expansions) 12.1 Goal We know how to solve diffusion problems for which both the PDE and the s are homogeneous using the separation of variables method.

More information

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik AMATH 351 Mar 15, 013 FINAL REVIEW Instructor: Jiri Najemni ABOUT GRADES Scores I have so far will be posted on the website today sorted by the student number HW4 & Exam will be added early next wee Let

More information

Math 260: Solving the heat equation

Math 260: Solving the heat equation Math 260: Solving the heat equation D. DeTurck University of Pennsylvania April 25, 2013 D. DeTurck Math 260 001 2013A: Solving the heat equation 1 / 1 1D heat equation with Dirichlet boundary conditions

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS)

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS) Name: November 8, 011 Worksheet # : Higher Order Linear ODEs (SOLUTIONS) 1. A set of n-functions f 1, f,..., f n are linearly independent on an interval I if the only way that c 1 f 1 (t) + c f (t) +...

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

UC Berkeley Math 10B, Spring 2015: Midterm 2 Prof. Sturmfels, April 9, SOLUTIONS

UC Berkeley Math 10B, Spring 2015: Midterm 2 Prof. Sturmfels, April 9, SOLUTIONS UC Berkeley Math 10B, Spring 2015: Midterm 2 Prof. Sturmfels, April 9, SOLUTIONS 1. (5 points) You are a pollster for the 2016 presidential elections. You ask 0 random people whether they would vote for

More information

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,...,

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., where a and c represent real numbers and c 0. Details and Remarks The definition

More information

IV Higher Order Linear ODEs

IV Higher Order Linear ODEs IV Higher Order Linear ODEs Boyce & DiPrima, Chapter 4 H.J.Eberl - MATH*2170 0 IV Higher Order Linear ODEs IV.1 General remarks Boyce & DiPrima, Section 4.1 H.J.Eberl - MATH*2170 1 Problem formulation

More information

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases.

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Lecture 11 Andrei Antonenko February 6, 003 1 Examples of bases Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Example 1.1. Consider the vector space P the

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Spring 2017 Second Order Linear Homogeneous Differential Equation DE: A(x) d 2 y dx 2 + B(x)dy dx + C(x)y = 0 This equation is called second order because it includes the second derivative of y; it is

More information

Linear Algebra and ODEs review

Linear Algebra and ODEs review Linear Algebra and ODEs review Ania A Baetica September 9, 015 1 Linear Algebra 11 Eigenvalues and eigenvectors Consider the square matrix A R n n (v, λ are an (eigenvector, eigenvalue pair of matrix A

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

Math221: HW# 7 solutions

Math221: HW# 7 solutions Math22: HW# 7 solutions Andy Royston November 7, 25.3.3 let x = e u. Then ln x = u, x2 = e 2u, and dx = e 2u du. Furthermore, when x =, u, and when x =, u =. Hence x 2 ln x) 3 dx = e 2u u 3 e u du) = e

More information

Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 2011

Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 2011 Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 211 (1) [6] Give the interval of definition for the solution of the initial-value problem d 4 y dt 4 + 7 1 t 2 dy dt

More information

( ) ( ). ( ) " d#. ( ) " cos (%) " d%

( ) ( ). ( )  d#. ( )  cos (%)  d% Math 22 Fall 2008 Solutions to Homework #6 Problems from Pages 404-407 (Section 76) 6 We will use the technique of Separation of Variables to solve the differential equation: dy d" = ey # sin 2 (") y #

More information

FINAL EXAM, MATH 353 SUMMER I 2015

FINAL EXAM, MATH 353 SUMMER I 2015 FINAL EXAM, MATH 353 SUMMER I 25 9:am-2:pm, Thursday, June 25 I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the Duke Community

More information

Lecture 2. Classification of Differential Equations and Method of Integrating Factors

Lecture 2. Classification of Differential Equations and Method of Integrating Factors Math 245 - Mathematics of Physics and Engineering I Lecture 2. Classification of Differential Equations and Method of Integrating Factors January 11, 2012 Konstantin Zuev (USC) Math 245, Lecture 2 January

More information

Find all of the real numbers x that satisfy the algebraic equation:

Find all of the real numbers x that satisfy the algebraic equation: Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

Homework 3 Solutions Math 309, Fall 2015

Homework 3 Solutions Math 309, Fall 2015 Homework 3 Solutions Math 39, Fall 25 782 One easily checks that the only eigenvalue of the coefficient matrix is λ To find the associated eigenvector, we have 4 2 v v 8 4 (up to scalar multiplication)

More information

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order October 2 6, 2017 Second Order ODEs (cont.) Consider where a, b, and c are real numbers ay +by +cy = 0, (1) Let

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS MIDTERM 1 PRACTICE PROBLEM SOLUTIONS Problem 1. Give an example of: (a) an ODE of the form y (t) = f(y) such that all solutions with y(0) > 0 satisfy y(t) = +. lim t + (b) an ODE of the form y (t) = f(y)

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

Separation of Variables

Separation of Variables Separation of Variables A typical starting point to study differential equations is to guess solutions of a certain form. Since we will deal with linear PDEs, the superposition principle will allow us

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Solve the following differential equations. ME 9 Mechanical Engineering Analysis Eam # Practice Problems Solutions. e u 5sin() with u(=)= We may rearrange this equation to e u 5sin() and note that it is

More information

Part: Frequency and Time Domain

Part: Frequency and Time Domain Numerical Methods Fourier Transform Pair Part: Frequency and Time Domain For more details on this topic Go to Clic on eyword Clic on Fourier Transform Pair You are free to Share to copy, distribute, display

More information