Nancy Reid SS 6002A Office Hours by appointment

Size: px
Start display at page:

Download "Nancy Reid SS 6002A Office Hours by appointment"

Transcription

1

2 Nancy Reid SS 6002A Office Hours by appointment Problems assigned weekly, due the following week

3 Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. quasi-likelihood, composite likelihood 3. semi-parametric likelihood, partial likelihood 4. empirical likelihood, penalized likelihood 5. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local likelihood, sieve likelihood 6. simulated likelihood, indirect inference, inference for p > n STA 4508: Topics in Likelihood Inference January 12, /48

4 Why so many? Principle: The probability model and the choice of [parameter] serve to translate a subject-matter question into a mathematical and statistical one Cox, 2006, p.3 likelihood function is proportional to the probability model inference based on the likelihood function is widely accepted provides more than point estimate or test of point hypothesis models needed for applications are more and more complex need some analogues to the likelihood function for these complex settings STA 4508: Topics in Likelihood Inference January 12, /48

5 The likelihood function Parametric model: f (y; θ), Likelihood function y Y, θ Θ R d L(θ; y) = f (y; θ), or L(θ; y) = c(y)f (y; θ), or L(θ; y) f (y; θ) typically, y = (y 1,..., y n ) x 1,..., x n i = 1,..., n f (y; θ) or f (y x; θ) is joint density under independence L(θ; y) f (y i x i ; θ) log-likelihood l(θ; y) = log L(θ; y) = log f (y i x i ; θ) θ could have dimension d > n (e.g. genetics), or d n, or θ could have infinite dimension e.g. regular model d < n and d fixed as n increases STA 4508: Topics in Likelihood Inference January 12, /48

6 Examples y i N(µ, σ 2 ): E(y i ) = x T i β: L(θ; y) = L(θ; y) = n i=1 n i=1 σ n exp{ 1 2σ 2 (y i µ) 2 } σ n exp{ 1 2σ 2 (y i x T i β) 2 } E(y i ) = m(x i ), m(x) = Σ J j=1 φ jb j (x): L(θ; y) = n i=1 σ n exp{ 1 2σ 2 (y i Σ J j=1 φ jb j (x i )) 2 } STA 4508: Topics in Likelihood Inference January 12, /48

7 ... examples y i = µ + ρ(y i 1 µ) + ɛ i, ɛ i N(0, σ 2 ): n L(θ; y) = f (y i y i 1 ; θ)f 0 (y 0 ; θ) i=1 y 1,..., y n i.i.d. observations from a U(0, θ) distribution: n L(θ; y) = θ n, i=1 0 < y (1) < < y (n) < θ STA 4508: Topics in Likelihood Inference January 12, /48

8 ... examples y 1,..., y n are the times of jumps of a non-homogeneous Poisson process with rate function λ( ): l{λ( ); y} = n i=1 τ log{λ(y i )} λ(u)du, 0 0 < y 1 < < y n < τ Davison, 6.5 multinomial: y i = (y i1,..., y ik ), l(θ; y) = n i=1 c=1 y ic = 1, y ic = 0, c c k y ic log(p ic ) negative cross-entropy Hastie et al., Ch. 7 p ic = p(x ic, θ), as above STA 4508: Topics in Likelihood Inference January 12, /48

9

10 Data: times of failure of a spring under stress 225, 171, 198, 189, 189, 135, 162, 135, 117, 162

11 Complicated likelihoods example: clustered binary data latent variable: z ir = x ir i + ɛ ir, b i N(0, σb 2), ɛ ir N(0, 1) r = 1,..., n i : observations in a cluster/family/school... i = 1,..., n clusters random effect b i introduces correlation between observations in a cluster observations: y ir = 1 if z ir > 0, else 0 Pr(y ir = 1 b i ) = Φ(x ir β + b i) = p i Φ(z) = z 1 2π e x 2 /2 dx likelihood θ = (β, σ b ) L(θ; y) = n i=1 ni r=1 p i y ir (1 p i ) 1 y ir φ(b i, σ 2 b )db i more general: z ir = x ir β + w ir b i + ɛ ir Renard et al. (2004) STA 4508: Topics in Likelihood Inference January 12, /48

12 ... complicated likelihoods generalized linear geostatistical models E{Y (s) u(s)} = g{x(s) T β + u(s)}, s S R d, d 2 Diggle & Ribeiro, 2007 random intercept u is a realization of a stationary GRF, mean 0, covariance cov{u(s), u(s )} = σ 2 ρ(s s ; α) n observed locations y = (y 1,..., y n ) with y i = y(s i ) likelihood function n L(θ; y) = f (y i u i ; θ) f (u; θ) du R n }{{} 1... du n i=1 MVN(0,Σ) no factorization into lower dimensional integrals, as with independent observations from the usual GLMMs STA 4508: Topics in Likelihood Inference January 12, /48

13 Non-computable likelihoods Ising model: f (y; θ) = exp( (i,j) E 1 θ ij y i y j ) Z (θ) y i = ±1; binary property of a node i in a graph with n nodes θ ij measures strength of interaction between nodes i and j E is the set of edges between nodes partition function Z (θ) = y exp( (i,j) E θ ijy i y j ) Davison 6.2 Ravikumar et al. (2010). High-dimensional Ising model selection... Ann. Statist. p.1287 STA 4508: Topics in Likelihood Inference January 12, /48

14 ... non-computable likelihoods f (v, h; η) 1 Z (η) exp(αt v + β T h + v T Ωh); η = (α, β, Ω) Mu Zhu, U Waterloo STA 4508: Topics in Likelihood Inference January 12, /48

15 ... restricted Boltzmann machine f (v, h; η) 1 Z (η) exp(αt v + β T h + v T Ωh); η = (α, β, Ω) with a single binary top node h model for h, given v, is logistic regression: log{p(h = 1 v)/p(h = 0 v)} = α + v T ω with several binary top nodes, model for h t, given h t and v is also logistic regression with odds ratio depending only on v stack these in layers, with top nodes for one layer becoming bottom nodes for the next STA 4508: Topics in Likelihood Inference January 12, /48

16 History STA 4508: Topics in Likelihood Inference January 12, /48

17 History STA 4508: Topics in Likelihood Inference January 12, /48

18 History STA 4508: Topics in Likelihood Inference January 12, /48

19 Why likelihood? makes probability modelling central emphasizes the inverse problem of reasoning from y 0 to θ or f ( ) suggested by Fisher as a measure of plausibility Royall, 1994 L(ˆθ)/L(θ) (1, 3) very plausible; L(ˆθ)/L(θ) (3, 10) implausible; L(ˆθ)/L(θ) (10, ) very implausible converts a prior probability π(θ) to a posterior π(θ y) via Bayes formula provides a conventional set of summary quantities for inference based on properties of the postulated model STA 4508: Topics in Likelihood Inference January 12, /48

20 ... why likelihood? likelihood function depends on data only through sufficient statistics likelihood map is sufficient Fraser & Naderi, 2006 gives exact inference in transformation models likelihood function as pivotal Hinkley, 1980 provides summary statistics with known limiting distribution leading to approximate pivotal functions, based on normal distribution likelihood function + sample space derivative gives better approximate inference STA 4508: Topics in Likelihood Inference January 12, /48

21 Likelihood inference direct use of likelihood function note that only relative values are well-defined define relative likelihood RL(θ) = L(θ) sup θ L(θ ) = L(θ) L(ˆθ) STA 4508: Topics in Likelihood Inference January 12, /48

22 ... likelihood inference combine with a probability density for θ π(θ y) = f (y; θ)π(θ) f (y; θ)π(θ)dθ inference for θ via probability statements from π(θ y) e.g., Probability (θ > 0 y) = 0.23, etc. any other use of likelihood function for inference relies on derived quantities and their distribution under the model the Likelihood Principle states two experiments with proportional likelihood functions lead to the same inference about the same parameter C& H, 1974, p.39 (strong likelihood) STA 4508: Topics in Likelihood Inference January 12, /48

23 Derived quantities; f (y; θ) observed likelihood L(θ; y) = c(y)f (y; θ) log-likelihood l(θ; y) = log L(θ; y) = log f (y; θ) + a(y) score U(θ) = l(θ; y)/ θ observed information j(θ) = 2 l(θ; y)/ θ θ T expected information i(θ) = E θ U(θ)U(θ) T called i 1 (θ) in CH STA 4508: Topics in Likelihood Inference January 12, /48

24 ... derived quantities; f (y; θ) observed likelihood L(θ; y) n i=1 f (y i; θ) log-likelihood l(θ; y) = n i=1 log f (y; θ)+a(y) score U(θ) = l(θ; y)/ θ = O p ( ) maximum likelihood estimate ˆθ = ˆθ(y) = arg sup θ l(θ; y) Fisher information j(ˆθ) = 2 l(ˆθ; y)/ θ θ T expected information i(θ) = E θ U(θ)U(θ) T = O( ) STA 4508: Topics in Likelihood Inference January 12, /48

25 Bartlett identities STA 4508: Topics in Likelihood Inference January 12, /48

26 Limiting distributions U(θ) = n i=1 U i(θ) E{U(θ)} = var{u(θ)} = U(θ)/ n L N{0, i 1 (θ)} STA 4508: Topics in Likelihood Inference January 12, /48

27 ... limiting distributions U(θ)/ n L N{0, i 1 (θ)} U(ˆθ) = 0 = U(θ) + (ˆθ θ)u (θ) + R n (ˆθ θ) = {U(θ)/i(θ)}{1 + o p (1)} n(ˆθ θ) L N{0, i 1 1 (θ)} STA 4508: Topics in Likelihood Inference January 12, /48

28 ... limiting distributions n(ˆθ θ) L N{0, i 1 1 (θ)} l(θ) = l(ˆθ) + (θ ˆθ)l (ˆθ) (θ ˆθ) 2 l (ˆθ) + R n 2{l(ˆθ) l(θ)} = (ˆθ θ) 2 i(θ){1 + o p (1)} 2{l(ˆθ) l(θ)} L χ 2 d STA 4508: Topics in Likelihood Inference January 12, /48

29 Inference from limiting distributions ˆθ. N d {θ, j 1 (ˆθ)} j(ˆθ) = l (ˆθ; y) θ is estimated to be 21.5 (95% CI ) ˆθ ± 2ˆσ w(θ) = 2{l(ˆθ) l(θ)}. χ 2 d likelihood based CI for θ with confidence level 95% is (18.6, 23.0) log likelihood function log likelihood w θ θ θ θ STA 4508: Topics in Likelihood Inference January 12, /48

30 ... inference from limiting distributions pivotal quantities and p-value functions; θ scalar r u (θ) = U(θ)j 1/2 (ˆθ). N(0, 1) Pr{U(θ)j 1/2 (ˆθ) u(θ)j 1/2 (ˆθ)}. = Φ{u(θ)j 1/2 (ˆθ)} under sampling from the model f (y; θ) = f (y 1,..., y n ; θ) p u (θ) = Φ{u(θ)j 1/2 (ˆθ)} p-value function (of θ, for fixed data) shorthand = Φ{r u (θ)}, and = Φ{r e (θ)}, = Φ{r(θ)} are all p-value functions for θ, based on limiting dist ns STA 4508: Topics in Likelihood Inference January 12, /48

31

32 Example f (y i ; θ) = θe y i θ, i = 1,..., n l(θ) = l (θ) = l (θ) = r u (θ) = n( 1 θȳ 1) r e (θ) = n(1 ȳθ) r(θ) = STA 4508: Topics in Likelihood Inference January 12, /48

33 Example f (y i ; θ) = θ y i e θ /y i! l(θ) = l (θ) = l (θ) = r e (θ) = (s nθ)/ s Pr(S s) 1 Pr(S s) upper and lower p-value functions: Pr(S < s), Pr(S s) mid p-value function: Pr(S < sr) + 0.5Pr(S = s) STA 4508: Topics in Likelihood Inference January 12, /48

34

35 Aside for inference re θ, given y, plot p(θ) vs θ for p-value for H 0 : θ = θ 0, compute p(θ 0 ) for checking whether, e.g. Φ{r e (θ)} is a good approximation, compare p(θ) = Φ{r e (θ)} to p exact (θ), as a function of θ, fixed y or compare p(θ 0 ) to p exact (θ 0 ) as a function of y if p exact (θ) not available, simulate STA 4508: Topics in Likelihood Inference January 12, /48

36 Nuisance parameters θ = (ψ, λ) = (ψ 1,..., ψ q, λ 1,..., λ d q ) ( ) Uψ (θ) U(θ) =, U U λ (θ) λ (ψ, ˆλ ψ ) = 0 ( ) ( ) iψψ i i(θ) = ψλ jψψ j j(θ) = ψλ i λψ i λλ ( i i 1 (θ) = ψψ i ψλ ) i λψ i λλ j λψ j λλ ( j j 1 (θ) = ψψ j ψλ ). j λψ i ψψ (θ) = {i ψψ (θ) i ψλ (θ)i 1 λλ (θ)i λψ(θ)} 1, l P (ψ) = l(ψ, ˆλ ψ ), j P (ψ) = l P (ψ) j λλ STA 4508: Topics in Likelihood Inference January 12, /48

37 Inference from limiting distributions, nuisance parameters w u (ψ) = U ψ (ψ, ˆλ ψ ) T {i ψψ (ψ, ˆλ ψ )}U ψ (ψ, ˆλ ψ ) w e (ψ) = ( ˆψ ψ){i ψψ ( ˆψ, ˆλ)} 1 ( ˆψ ψ) w(ψ) = 2{l( ˆψ, ˆλ) l(ψ, ˆλ ψ )} = 2{l P ( ˆψ) l P (ψ)}.. χ 2 q χ 2 q. χ 2 q; Approximate Pivots r u (ψ) = l P (ψ)j P( ˆψ) 1/2. N(0, 1), r e (ψ) = ( ˆψ ψ)j P ( ˆψ) 1/2. N(0, 1), r(ψ) = sign( ˆψ ψ)2{l P ( ˆψ) l P (ψ)}. N(0, 1) STA 4508: Topics in Likelihood Inference January 12, /48

38

39 Properties of likelihood functions and likelihood inference the likelihood depends only on the minimal sufficient statistic recall: L(θ; y) = m 1 (s; θ)m 2 (y) s is minimal sufficient equivalently L(θ; y) depends only on s L(θ 0 ; y) the likelihood map is sufficient Fraser & Naderi, 2006; Barndorff-Nielsen, et al, 1976 i.e y L 0 ( ; y), or y L( ; y) normed STA 4508: Topics in Likelihood Inference January 12, /48

40 ... properties maximum likelihood estimates are equivariant: ĥ(θ) = h(ˆθ) for one-to-one h( ) question: which of w e, w u, w are invariant under reparametrization of the full parameter: ϕ(θ)? question: which of r e, r u, r are invariant under interest-respecting reparameterizations (ψ, λ) {ψ, η(ψ, λ)}? consistency of maximum likelihood estimate? equivalence of maximum likelihood estimate and root of score equation? observed vs. expected information STA 4508: Topics in Likelihood Inference January 12, /48

41 Asymptotics for Bayesian inference exp{l(θ; y)}π(θ) π(θ y) = exp{l(θ; y)}π(θ)dθ expand numerator and denominator about ˆθ, assuming l (ˆθ) = 0 π(θ y). = N{ˆθ, j 1 (ˆθ)} expand denominator only about ˆθ result π(θ y). = 1 (2π) d/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) STA 4508: Topics in Likelihood Inference January 12, /48

42 Posterior is asymptotically normal π(θ y). N{ˆθ, j 1 (ˆθ)} θ R, y = (y 1,..., y n ) careful statement STA 4508: Topics in Likelihood Inference January 12, /48

43 ... posterior is asymptotically normal π(θ y). N{ˆθ, j 1 (ˆθ)} θ R, y = (y 1,..., y n ) equivalently l π (θ) = STA 4508: Topics in Likelihood Inference January 12, /48

44 ... posterior is asymptotically normal In fact, If π(θ) > 0 and π (θ) is continuous in a neighbourhood of θ 0, there exist constants D and n y s.t. F n (ξ) Φ(ξ) < Dn 1/2, for all n > n y, on an almost-sure set with respect to f (y; θ 0 ), where y = (y 1,..., y n ) is a sample from f (y; θ 0 ), and θ 0 is an observation from the prior density π(θ). F n (ξ) = Pr{(θ ˆθ)j 1/2 (ˆθ) ξ y} Johnson (1970); Datta & Mukerjee (2004) STA 4508: Topics in Likelihood Inference January 12, /48

45 Laplace approximation π(θ y). = 1 (2π) 1/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) π(θ y) = π(θ y) = 1 (2π) 1/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) {1+O p(n 1 )} y = (y 1,..., y n ), θ R 1 1 (2π) 1/2 j π(ˆθ π ) +1/2 exp{l π (θ; y) l π (ˆθ π ; y)}{1+o p (n 1 )} STA 4508: Topics in Likelihood Inference January 12, /48

46 Posterior cdf θ π(ϑ y)dϑ. = θ 1 (2π) 1/2 el(ϑ;y) l( ˆϑ;y) 1/2 π(ϑ) j( ˆϑ) π( ˆϑ) dϑ STA 4508: Topics in Likelihood Inference January 12, /48

47 Posterior cdf θ π(ϑ y)dϑ. = θ 1 (2π) 1/2 el(ϑ;y) l( ˆϑ;y) 1/2 π(ϑ) j( ˆϑ) π( ˆϑ) dϑ SM, 11.3 STA 4508: Topics in Likelihood Inference January 12, /48

48 BDR, Ch.3, Cauchy with flat prior

Nancy Reid SS 6002A Office Hours by appointment

Nancy Reid SS 6002A Office Hours by appointment Nancy Reid SS 6002A reid@utstat.utoronto.ca Office Hours by appointment Light touch assessment One or two problems assigned weekly graded during Reading Week http://www.utstat.toronto.edu/reid/4508s14.html

More information

Likelihood and Asymptotic Theory for Statistical Inference

Likelihood and Asymptotic Theory for Statistical Inference Likelihood and Asymptotic Theory for Statistical Inference Nancy Reid 020 7679 1863 reid@utstat.utoronto.ca n.reid@ucl.ac.uk http://www.utstat.toronto.edu/reid/ltccf12.html LTCC Likelihood Theory Week

More information

Likelihood and Asymptotic Theory for Statistical Inference

Likelihood and Asymptotic Theory for Statistical Inference Likelihood and Asymptotic Theory for Statistical Inference Nancy Reid 020 7679 1863 reid@utstat.utoronto.ca n.reid@ucl.ac.uk http://www.utstat.toronto.edu/reid/ltccf12.html LTCC Likelihood Theory Week

More information

Likelihood inference in the presence of nuisance parameters

Likelihood inference in the presence of nuisance parameters Likelihood inference in the presence of nuisance parameters Nancy Reid, University of Toronto www.utstat.utoronto.ca/reid/research 1. Notation, Fisher information, orthogonal parameters 2. Likelihood inference

More information

Bayesian and frequentist inference

Bayesian and frequentist inference Bayesian and frequentist inference Nancy Reid March 26, 2007 Don Fraser, Ana-Maria Staicu Overview Methods of inference Asymptotic theory Approximate posteriors matching priors Examples Logistic regression

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters PHYSTAT2003, SLAC, September 8-11, 2003 1 Likelihood Inference in the Presence of Nuance Parameters N. Reid, D.A.S. Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe

More information

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36 Last week Nuisance parameters f (y; ψ, λ), l(ψ, λ) posterior marginal density π m (ψ) =. c (2π) q el P(ψ) l P ( ˆψ) j P ( ˆψ) 1/2 π(ψ, ˆλ ψ ) j λλ ( ˆψ, ˆλ) 1/2 π( ˆψ, ˆλ) j λλ (ψ, ˆλ ψ ) 1/2 l p (ψ) =

More information

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. semi-parametric likelihood, partial likelihood 3. empirical likelihood,

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters Likelihood Inference in the Presence of Nuance Parameters N Reid, DAS Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe some recent approaches to likelihood based

More information

Applied Asymptotics Case studies in higher order inference

Applied Asymptotics Case studies in higher order inference Applied Asymptotics Case studies in higher order inference Nancy Reid May 18, 2006 A.C. Davison, A. R. Brazzale, A. M. Staicu Introduction likelihood-based inference in parametric models higher order approximations

More information

Default priors and model parametrization

Default priors and model parametrization 1 / 16 Default priors and model parametrization Nancy Reid O-Bayes09, June 6, 2009 Don Fraser, Elisabeta Marras, Grace Yun-Yi 2 / 16 Well-calibrated priors model f (y; θ), F(y; θ); log-likelihood l(θ)

More information

ASYMPTOTICS AND THE THEORY OF INFERENCE

ASYMPTOTICS AND THE THEORY OF INFERENCE ASYMPTOTICS AND THE THEORY OF INFERENCE N. Reid University of Toronto Abstract Asymptotic analysis has always been very useful for deriving distributions in statistics in cases where the exact distribution

More information

Bayesian Asymptotics

Bayesian Asymptotics BS2 Statistical Inference, Lecture 8, Hilary Term 2008 May 7, 2008 The univariate case The multivariate case For large λ we have the approximation I = b a e λg(y) h(y) dy = e λg(y ) h(y ) 2π λg (y ) {

More information

Composite Likelihood

Composite Likelihood Composite Likelihood Nancy Reid January 30, 2012 with Cristiano Varin and thanks to Don Fraser, Grace Yi, Ximing Xu Background parametric model f (y; θ), y R m ; θ R d likelihood function L(θ; y) f (y;

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors.

Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors. Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors. Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-document University

More information

Recap. Vector observation: Y f (y; θ), Y Y R m, θ R d. sample of independent vectors y 1,..., y n. pairwise log-likelihood n m. weights are often 1

Recap. Vector observation: Y f (y; θ), Y Y R m, θ R d. sample of independent vectors y 1,..., y n. pairwise log-likelihood n m. weights are often 1 Recap Vector observation: Y f (y; θ), Y Y R m, θ R d sample of independent vectors y 1,..., y n pairwise log-likelihood n m i=1 r=1 s>r w rs log f 2 (y ir, y is ; θ) weights are often 1 more generally,

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid October 28, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Parametric models and likelihood model f (y; θ), θ R p data y = (y 1,...,

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid February 26, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Nancy Reid Accurate directional inference for vector parameters York University

More information

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona Likelihood based Statistical Inference Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona L. Pace, A. Salvan, N. Sartori Udine, April 2008 Likelihood: observed quantities,

More information

Aspects of Likelihood Inference

Aspects of Likelihood Inference Submitted to the Bernoulli Aspects of Likelihood Inference NANCY REID 1 1 Department of Statistics University of Toronto 100 St. George St. Toronto, Canada M5S 3G3 E-mail: reid@utstat.utoronto.ca, url:

More information

ANCILLARY STATISTICS: A REVIEW

ANCILLARY STATISTICS: A REVIEW 1 ANCILLARY STATISTICS: A REVIEW M. Ghosh, N. Reid and D.A.S. Fraser University of Florida and University of Toronto Abstract: In a parametric statistical model, a function of the data is said to be ancillary

More information

DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY

DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY Journal of Statistical Research 200x, Vol. xx, No. xx, pp. xx-xx ISSN 0256-422 X DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY D. A. S. FRASER Department of Statistical Sciences,

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

ANCILLARY STATISTICS: A REVIEW

ANCILLARY STATISTICS: A REVIEW Statistica Sinica 20 (2010), 1309-1332 ANCILLARY STATISTICS: A REVIEW M. Ghosh 1, N. Reid 2 and D. A. S. Fraser 2 1 University of Florida and 2 University of Toronto Abstract: In a parametric statistical

More information

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6.

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6. Approximating models Nancy Reid, University of Toronto Oxford, February 6 www.utstat.utoronto.reid/research 1 1. Context Likelihood based inference model f(y; θ), log likelihood function l(θ; y) y = (y

More information

Default priors for Bayesian and frequentist inference

Default priors for Bayesian and frequentist inference Default priors for Bayesian and frequentist inference D.A.S. Fraser and N. Reid University of Toronto, Canada E. Marras Centre for Advanced Studies and Development, Sardinia University of Rome La Sapienza,

More information

Approximate Inference for the Multinomial Logit Model

Approximate Inference for the Multinomial Logit Model Approximate Inference for the Multinomial Logit Model M.Rekkas Abstract Higher order asymptotic theory is used to derive p-values that achieve superior accuracy compared to the p-values obtained from traditional

More information

ASSESSING A VECTOR PARAMETER

ASSESSING A VECTOR PARAMETER SUMMARY ASSESSING A VECTOR PARAMETER By D.A.S. Fraser and N. Reid Department of Statistics, University of Toronto St. George Street, Toronto, Canada M5S 3G3 dfraser@utstat.toronto.edu Some key words. Ancillary;

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Marginal Posterior Simulation via Higher-order Tail Area Approximations

Marginal Posterior Simulation via Higher-order Tail Area Approximations Bayesian Analysis (2014) 9, Number 1, pp. 129 146 Marginal Posterior Simulation via Higher-order Tail Area Approximations Erlis Ruli, Nicola Sartori and Laura Ventura Abstract. A new method for posterior

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

Likelihood and p-value functions in the composite likelihood context

Likelihood and p-value functions in the composite likelihood context Likelihood and p-value functions in the composite likelihood context D.A.S. Fraser and N. Reid Department of Statistical Sciences University of Toronto November 19, 2016 Abstract The need for combining

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Modern likelihood inference for the parameter of skewness: An application to monozygotic

Modern likelihood inference for the parameter of skewness: An application to monozygotic Working Paper Series, N. 10, December 2013 Modern likelihood inference for the parameter of skewness: An application to monozygotic twin studies Mameli Valentina Department of Mathematics and Computer

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

Bootstrap and Parametric Inference: Successes and Challenges

Bootstrap and Parametric Inference: Successes and Challenges Bootstrap and Parametric Inference: Successes and Challenges G. Alastair Young Department of Mathematics Imperial College London Newton Institute, January 2008 Overview Overview Review key aspects of frequentist

More information

Measuring nuisance parameter effects in Bayesian inference

Measuring nuisance parameter effects in Bayesian inference Measuring nuisance parameter effects in Bayesian inference Alastair Young Imperial College London WHOA-PSI-2017 1 / 31 Acknowledgements: Tom DiCiccio, Cornell University; Daniel Garcia Rasines, Imperial

More information

Composite likelihood methods

Composite likelihood methods 1 / 20 Composite likelihood methods Nancy Reid University of Warwick, April 15, 2008 Cristiano Varin Grace Yun Yi, Zi Jin, Jean-François Plante 2 / 20 Some questions (and answers) Is there a drinks table

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

An Extended BIC for Model Selection

An Extended BIC for Model Selection An Extended BIC for Model Selection at the JSM meeting 2007 - Salt Lake City Surajit Ray Boston University (Dept of Mathematics and Statistics) Joint work with James Berger, Duke University; Susie Bayarri,

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

INTRODUCTION TO BAYESIAN STATISTICS

INTRODUCTION TO BAYESIAN STATISTICS INTRODUCTION TO BAYESIAN STATISTICS Sarat C. Dass Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University TOPICS The Bayesian Framework Different Types

More information

Approximate Likelihoods

Approximate Likelihoods Approximate Likelihoods Nancy Reid July 28, 2015 Why likelihood? makes probability modelling central l(θ; y) = log f (y; θ) emphasizes the inverse problem of reasoning y θ converts a prior probability

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Lecture 1: Introduction

Lecture 1: Introduction Principles of Statistics Part II - Michaelmas 208 Lecturer: Quentin Berthet Lecture : Introduction This course is concerned with presenting some of the mathematical principles of statistical theory. One

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Third-order inference for autocorrelation in nonlinear regression models

Third-order inference for autocorrelation in nonlinear regression models Third-order inference for autocorrelation in nonlinear regression models P. E. Nguimkeu M. Rekkas Abstract We propose third-order likelihood-based methods to derive highly accurate p-value approximations

More information

Bayesian Model Comparison

Bayesian Model Comparison BS2 Statistical Inference, Lecture 11, Hilary Term 2009 February 26, 2009 Basic result An accurate approximation Asymptotic posterior distribution An integral of form I = b a e λg(y) h(y) dy where h(y)

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a) :

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

Composite Likelihood Estimation

Composite Likelihood Estimation Composite Likelihood Estimation With application to spatial clustered data Cristiano Varin Wirtschaftsuniversität Wien April 29, 2016 Credits CV, Nancy M Reid and David Firth (2011). An overview of composite

More information

Principles of Statistics

Principles of Statistics Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 81 Paper 4, Section II 28K Let g : R R be an unknown function, twice continuously differentiable with g (x) M for

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions Communications for Statistical Applications and Methods 03, Vol. 0, No. 5, 387 394 DOI: http://dx.doi.org/0.535/csam.03.0.5.387 Noninformative Priors for the Ratio of the Scale Parameters in the Inverted

More information

Empirical Likelihood Based Deviance Information Criterion

Empirical Likelihood Based Deviance Information Criterion Empirical Likelihood Based Deviance Information Criterion Yin Teng Smart and Safe City Center of Excellence NCS Pte Ltd June 22, 2016 Outline Bayesian empirical likelihood Definition Problems Empirical

More information

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood 1 / 29 Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood Yuan Liao Wenxin Jiang Northwestern University Presented at: Department of Statistics and Biostatistics Rutgers University

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

Integrated likelihoods in models with stratum nuisance parameters

Integrated likelihoods in models with stratum nuisance parameters Riccardo De Bin, Nicola Sartori, Thomas A. Severini Integrated likelihoods in models with stratum nuisance parameters Technical Report Number 157, 2014 Department of Statistics University of Munich http://www.stat.uni-muenchen.de

More information

Aspects of Composite Likelihood Inference. Zi Jin

Aspects of Composite Likelihood Inference. Zi Jin Aspects of Composite Likelihood Inference Zi Jin A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Statistics University of Toronto c

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Integrated likelihoods in survival models for highlystratified

Integrated likelihoods in survival models for highlystratified Working Paper Series, N. 1, January 2014 Integrated likelihoods in survival models for highlystratified censored data Giuliana Cortese Department of Statistical Sciences University of Padua Italy Nicola

More information

hoa: An R Package Bundle for Higher Order Likelihood Inference

hoa: An R Package Bundle for Higher Order Likelihood Inference hoa: An R Package Bundle for Higher Order Likelihood Inference by Alessandra R. Brazzale Rnews, 5/1 May 2005, pp. 20 27 Introduction The likelihood function represents the basic ingredient of many commonly

More information

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003 Statistical Approaches to Learning and Discovery Week 4: Decision Theory and Risk Minimization February 3, 2003 Recall From Last Time Bayesian expected loss is ρ(π, a) = E π [L(θ, a)] = L(θ, a) df π (θ)

More information

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. semi-parametric likelihood, partial likelihood 3. empirical likelihood,

More information

Sample size determination for logistic regression: A simulation study

Sample size determination for logistic regression: A simulation study Sample size determination for logistic regression: A simulation study Stephen Bush School of Mathematical Sciences, University of Technology Sydney, PO Box 123 Broadway NSW 2007, Australia Abstract This

More information

Marginal posterior simulation via higher-order tail area approximations

Marginal posterior simulation via higher-order tail area approximations Bayesian Analysis (2004) 1, Number 1, pp. 1 13 Marginal posterior simulation via higher-order tail area approximations Erlis Ruli, Nicola Sartori and Laura Ventura Abstract. A new method for posterior

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

The formal relationship between analytic and bootstrap approaches to parametric inference

The formal relationship between analytic and bootstrap approaches to parametric inference The formal relationship between analytic and bootstrap approaches to parametric inference T.J. DiCiccio Cornell University, Ithaca, NY 14853, U.S.A. T.A. Kuffner Washington University in St. Louis, St.

More information

STAT 830 Bayesian Estimation

STAT 830 Bayesian Estimation STAT 830 Bayesian Estimation Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Bayesian Estimation STAT 830 Fall 2011 1 / 23 Purposes of These

More information

Bayesian estimation of the discrepancy with misspecified parametric models

Bayesian estimation of the discrepancy with misspecified parametric models Bayesian estimation of the discrepancy with misspecified parametric models Pierpaolo De Blasi University of Torino & Collegio Carlo Alberto Bayesian Nonparametrics workshop ICERM, 17-21 September 2012

More information

Lecture 7 October 13

Lecture 7 October 13 STATS 300A: Theory of Statistics Fall 2015 Lecture 7 October 13 Lecturer: Lester Mackey Scribe: Jing Miao and Xiuyuan Lu 7.1 Recap So far, we have investigated various criteria for optimal inference. We

More information

ECE 275A Homework 7 Solutions

ECE 275A Homework 7 Solutions ECE 275A Homework 7 Solutions Solutions 1. For the same specification as in Homework Problem 6.11 we want to determine an estimator for θ using the Method of Moments (MOM). In general, the MOM estimator

More information

Minimax lower bounds I

Minimax lower bounds I Minimax lower bounds I Kyoung Hee Kim Sungshin University 1 Preliminaries 2 General strategy 3 Le Cam, 1973 4 Assouad, 1983 5 Appendix Setting Family of probability measures {P θ : θ Θ} on a sigma field

More information

Advanced Quantitative Methods: maximum likelihood

Advanced Quantitative Methods: maximum likelihood Advanced Quantitative Methods: Maximum Likelihood University College Dublin 4 March 2014 1 2 3 4 5 6 Outline 1 2 3 4 5 6 of straight lines y = 1 2 x + 2 dy dx = 1 2 of curves y = x 2 4x + 5 of curves y

More information

Semiparametric posterior limits

Semiparametric posterior limits Statistics Department, Seoul National University, Korea, 2012 Semiparametric posterior limits for regular and some irregular problems Bas Kleijn, KdV Institute, University of Amsterdam Based on collaborations

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part : Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Bayesian Inference in Astronomy & Astrophysics A Short Course

Bayesian Inference in Astronomy & Astrophysics A Short Course Bayesian Inference in Astronomy & Astrophysics A Short Course Tom Loredo Dept. of Astronomy, Cornell University p.1/37 Five Lectures Overview of Bayesian Inference From Gaussians to Periodograms Learning

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 8 Maximum Likelihood Estimation 8. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling Min-ge Xie Department of Statistics, Rutgers University Workshop on Higher-Order Asymptotics

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Parameter Estimation December 14, 2015 Overview 1 Motivation 2 3 4 What did we have so far? 1 Representations: how do we model the problem? (directed/undirected). 2 Inference: given a model and partially

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

1 One-way analysis of variance

1 One-way analysis of variance LIST OF FORMULAS (Version from 21. November 2014) STK2120 1 One-way analysis of variance Assume X ij = µ+α i +ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; where ɛ ij -s are independent and N(0, σ 2 ) distributed.

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods Pattern Recognition and Machine Learning Chapter 6: Kernel Methods Vasil Khalidov Alex Kläser December 13, 2007 Training Data: Keep or Discard? Parametric methods (linear/nonlinear) so far: learn parameter

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology 30 Januari 2012 SI-2012 K. Pelckmans

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information