Approximating models. Nancy Reid, University of Toronto. Oxford, February 6.

Size: px
Start display at page:

Download "Approximating models. Nancy Reid, University of Toronto. Oxford, February 6."

Transcription

1 Approximating models Nancy Reid, University of Toronto Oxford, February 6 1

2 1. Context Likelihood based inference model f(y; θ), log likelihood function l(θ; y) y = (y 1,..., y n ), l(θ; y) = log f(y i ; θ) assume l(θ; y) = O(n), θ ˆθ = O(n 1/2 ) goal to improve the approximation given by the limiting distribution e.g. r = ±[2{l(ˆθ) l(θ)}] 1/2 d N(0, 1) E(r) = an 1/2 + O(n 3/2 ) var(r) = 1 + bn 1 + O(n 3/2 ) implies r an 1/2. (1 + bn 1 ) 1/2 N(0, 1) is better than r. N(0, 1) 2

3 2. Local exponential family models f(x; ϕ) = exp{ϕx c(ϕ) d(x)} l ;x = l ϕ;x = Start with arbitrary f(y; θ), y, θ scalar Expand l(θ; y) about (θ 0 ; y 0 ) θ 0 = Represent coefficients l(θ 0 ; y 0 ), l ;y (θ 0 ; y 0 ), etc. by a ij a 00 a 01 a 02 a 03 a 04 0 a 11 a 12 a 13 a 20 a 21 a 22 a 30 a 31 a 40 3

4 1. Standardize θ (θ θ 0 )ĵ 1/2 y (y y 0 )a 11 ĵ 1/2 a 20 1, a 11 1, a ij ã ij 2. Reparametrize θ θ + ã 21 θ 2 /2 + ã 31 θ 3 /6 ã 21 0, ã New variable ỹ ỹ + ã 12 ỹ 2 /2 + ã 13 ỹ 3 /6 ã 12 0, ã Notation a 30 = α 3 n 1/2, a 40 = a 22 = a 00 a 01 a 02 a 03 a γ/n α 3 /n 1/2 0 α 4 /n 4

5 5. Density must integrate to 1 3α 4 5α γ 24n α 3 2 n 1 + α 4 2α 2 3 5γ 2n α 3 n α 4 3α 2 3 n γ/n α 3 /n 1/2 0 α 4 /n α 3 = α 4 = γ =

6 First row is log(2π) + (3α 4 5α γ)/24n, α 3/2n 1/2, 1 + (α 4 2α 2 3 5γ)/2n, α 3/n 1/2, (α 4 3α 2 3 6γ)/n 4-1

7 ...2 Local exponential family models New density looks like with cdf f(x, ϕ). = φ(x ϕ) exp{...}. = φ(x ϕ){1 +...} F (x, ϕ) = Φ(x ϕ) + [ α3 φ(x ϕ) 6 n {...} + α 4 24n {...} + α2 3 72n + γ { 2x + ϕx 2 + x 3}] 4n {...} Free of γ at x = 0 (y = y 0 ) p-value does not depend on γ Andrews, Fraser, Wong,

8 3. Tangent exponential model p T EM (x; θ) = c j(ˆϕ) 1/2 exp[l(θ; y 0 ) l(ˆθ 0 ; y 0 ) +, {ϕ(θ) ϕ(ˆθ 0 )}x] ϕ = l(θ, y) y y=y 0 x = l(θ; y) θ θ=ˆθ 0 j(ˆϕ) = 2 l(ϕ) ϕ 2 ˆϕ 6

9 l(θ; y 0 ) is first column (ignoring (0,0) entry) ϕ(θ) is second column (ignoring (0,1) entry) These 2 columns determine the rest of the array, except the γ/n term Easy to use p T EM to get a p-value (saddlepoint type approximation) 6-1

10 ...3 Tangent exponential model How to get a scalar variable y? Condition on an (approximate) ancillary, so l ;y is taken for fixed ancillary a(y). This can be computed by finding a vector V = (V 1,..., V n ) T tangent to the ancillary at y 0 : ϕ(θ) = l ;V (θ; y) y 0 = l ;yi (θ; y 0 i )V i Example y i f(y i µ) a i = y i ˆµ, say, V i = 1 ϕ(θ) = log f(y i µ) y i y 0 = l θ (θ; y 0 ) 7

11 Example f(y 1, y 2 ; θ) = e y θ {1 + e (y θ) } 2 exp[γ(θ)(y θ) c{γ(θ)}], 1 θ 1 γ(θ) = 0.5 tanh(θ) c(θ) = log{(πθ)/ sin(πθ)} y density y y2 y1 8

12 ...3 Tangent exponential model Vector θ? Use the same approach, now V = (V 1, V 2,..., V n ) T V i is 1 d, l ;V (θ) is also 1 d Example Example y i = x T i β + σe i V i = (x T i ê i ) y i = µ i (β) + σe i V i = {µ i (ˆβ) ê i } Inference re nuisance parameters uses p T EM twice to get a marginal distribution Example House price data (Srivastava and Sen); 4 covariates, 26 observations, model y i = x T i β + σe i, e i t 5 9

13 marginal inference for β 4 and for log σ, (conditional on usual ancillary), uses Alessandra Brazzale s Splus library HOA Lugannani-Rice tail approximations 95 % Confidence Intervals MLE normal approximation cond. MLE normal approximation marg. MLE normal approximation directed deviance modified directed deviance conditional marginal approximate marginal deviance Coefficient of front Coefficient of front 10

14 Profile and modified profile log-liks profile log-likelihood modified profile log-likelihood approximate marginal log-likelihood Coefficient of front

15 Lugannani-Rice tail approximations 95 % Confidence Intervals MLE normal approximation cond. MLE normal approximation marg. MLE normal approximation directed deviance modified directed deviance conditional marginal approximate marginal deviance log(scale) scale

16 Profile and modified profile log-liks profile log-likelihood modified profile log-likelihood approximate marginal log-likelihood log(scale)

17 > houses.marg.front <- cond.rsm(mod.obj=houses.rsm,offset=fron > summary(houses.marg.front) FORMULA: FAMILY : OFFSET : price ~ bdroom + floor + rooms + front student front COEFFICIENTS Value Std. Error uncond cond marg CONFIDENCE INTERVALS level = 95 % lower two-sided MLE normal approx Cond. MLE normal approx Marg. MLE normal approx Directed deviance Modified directed deviance Marginal directed deviance

18 4. Local location models f(x; β) = f(x β) l β = l ;x l ββ = l βx = l ;xx 4.1 If y f(y; θ) then x = y F y (y; θ 0 ) F θ (y; θ 0 ) dy has a density which is a location model near θ 0, g(x ), say. Satisfies l = l ;x, but not higher order. This model has an exact ancillary This ancillary can be used for the original model, for computing p-values. (This is where V above came from.) 11

19 ...4. Local location models 4.2 As with exponential model we can carry this further to get an array of coefficients for the double expansion about (y 0, ˆθ 0 ) of the form: a a 3 /n 1/2 a 4 /n 0 1 a 3 /n 1/2 a 4 /n 1 a 3 /n 1/2 a 4 /n+ a 3 /n 1/2 a 4 /n a 4 /n Andrews, Fraser, Wong, 2003 A more compact notation f{x β(θ)}, β(θ) = θ l θ (θ) ϕ(θ) dθ Existence (algorithm) for vector θ Fraser, Yi,

20 a + 3α 4 5α γ 24n γ 2n α 3 n 1/2 α 4 6γ n 0 1 α 3 /n 1/2 α 4 /n 1 α 3 /n 1/2 α 4+γ n α 4 /n x = y F y(y; 0) dy, G(x; θ) = F {y(x); θ} F ;θ (y; 0) G x (x; 0) = F y {y(x); 0} = F ;θ (y; 0) = G ;θ (x; 0) { F ;θ(y; 0) F y (y; 0) } 12-1

21 ...4 Local location model Bayesian analysis of location model uses flat prior for location parameter, in our case π(θ) dβ(θ) and this will give posterior p-values equal to those from tangent exponential model to O(n 3/2 ) if non-location term γ = 0, to O(n 1 ) if γ 0 With nuisance parameters, can only obtain strong matching priors for a single parameter of interest, using π(ψ, ˆλ ψ ) ψ β 1 (ψ,ˆλ ψ ) j λλ(ˆθ ψ ) ϕ λ (ˆθ ψ ) Fraser & Reid,

22 Example Location model with curved parameter of interest Y 1 N(θ 1, 1), Y 2 N(θ 2, 1) independent ψ 2 = (R + θ 1 ) 2 + θ 2 2 ; R known r 2 = {(R + y 1 ) 2 + y 2 2 } Bayesian posterior under usual flat prior (θ 1, θ 2 y) N(y 1, y 2 ) frequentist p-value (marginal) Pr{r r 0 ; ψ 0 ) Bayesian p-value Pr{ψ ψ 0 y) Will be quite different: matching prior using information adjustment gives π(θ) r ψ 14

23 frequentist = Pr{χ 2 2 (ψ0 ) 2 (y 1 + R) 2 + y 2 2 } Bayesian = Pr{χ 2 2 ((y 1 + R) 2 + y 2 2 ) ψ02 } Bayesian frequentist = Pr{X 1 X 2 = 0} X 1 P o((y 1 + R) 2 + y 2 2 ), X 2 P o(ψ 02 ) 14-1

24 R=1 R= p-value 0.4 p-value psi psi R=3 R= p-value 0.4 p-value psi psi 15

25 16

26 References Andrews, D.A., Fraser, D.A.S., Wong, A. Computation of distribution functions from likelihood information near observed data. Brazzale, A. brazzale Fraser, D.A.S., Reid, N. Strong matching of frequentist and Bayesian parametric inference. Fraser, D.A.S., Yi, G. Location reparametrization and default priors for statistical analyses. Reid, N. Asymptotics and the theory of inference. 17

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36 Last week Nuisance parameters f (y; ψ, λ), l(ψ, λ) posterior marginal density π m (ψ) =. c (2π) q el P(ψ) l P ( ˆψ) j P ( ˆψ) 1/2 π(ψ, ˆλ ψ ) j λλ ( ˆψ, ˆλ) 1/2 π( ˆψ, ˆλ) j λλ (ψ, ˆλ ψ ) 1/2 l p (ψ) =

More information

ASSESSING A VECTOR PARAMETER

ASSESSING A VECTOR PARAMETER SUMMARY ASSESSING A VECTOR PARAMETER By D.A.S. Fraser and N. Reid Department of Statistics, University of Toronto St. George Street, Toronto, Canada M5S 3G3 dfraser@utstat.toronto.edu Some key words. Ancillary;

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid February 26, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Nancy Reid Accurate directional inference for vector parameters York University

More information

Bayesian and frequentist inference

Bayesian and frequentist inference Bayesian and frequentist inference Nancy Reid March 26, 2007 Don Fraser, Ana-Maria Staicu Overview Methods of inference Asymptotic theory Approximate posteriors matching priors Examples Logistic regression

More information

Default priors and model parametrization

Default priors and model parametrization 1 / 16 Default priors and model parametrization Nancy Reid O-Bayes09, June 6, 2009 Don Fraser, Elisabeta Marras, Grace Yun-Yi 2 / 16 Well-calibrated priors model f (y; θ), F(y; θ); log-likelihood l(θ)

More information

DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY

DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY Journal of Statistical Research 200x, Vol. xx, No. xx, pp. xx-xx ISSN 0256-422 X DEFNITIVE TESTING OF AN INTEREST PARAMETER: USING PARAMETER CONTINUITY D. A. S. FRASER Department of Statistical Sciences,

More information

Likelihood inference in the presence of nuisance parameters

Likelihood inference in the presence of nuisance parameters Likelihood inference in the presence of nuisance parameters Nancy Reid, University of Toronto www.utstat.utoronto.ca/reid/research 1. Notation, Fisher information, orthogonal parameters 2. Likelihood inference

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid October 28, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Parametric models and likelihood model f (y; θ), θ R p data y = (y 1,...,

More information

PARAMETER CURVATURE REVISITED AND THE BAYES-FREQUENTIST DIVERGENCE.

PARAMETER CURVATURE REVISITED AND THE BAYES-FREQUENTIST DIVERGENCE. Journal of Statistical Research 200x, Vol. xx, No. xx, pp. xx-xx Bangladesh ISSN 0256-422 X PARAMETER CURVATURE REVISITED AND THE BAYES-FREQUENTIST DIVERGENCE. A.M. FRASER Department of Mathematics, University

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters PHYSTAT2003, SLAC, September 8-11, 2003 1 Likelihood Inference in the Presence of Nuance Parameters N. Reid, D.A.S. Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters Likelihood Inference in the Presence of Nuance Parameters N Reid, DAS Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe some recent approaches to likelihood based

More information

COMBINING p-values: A DEFINITIVE PROCESS. Galley

COMBINING p-values: A DEFINITIVE PROCESS. Galley 0 Journal of Statistical Research ISSN 0 - X 00, Vol., No., pp. - Bangladesh COMBINING p-values: A DEFINITIVE PROCESS D.A.S. Fraser Department of Statistics, University of Toronto, Toronto, Canada MS G

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Approximate Inference for the Multinomial Logit Model

Approximate Inference for the Multinomial Logit Model Approximate Inference for the Multinomial Logit Model M.Rekkas Abstract Higher order asymptotic theory is used to derive p-values that achieve superior accuracy compared to the p-values obtained from traditional

More information

Applied Asymptotics Case studies in higher order inference

Applied Asymptotics Case studies in higher order inference Applied Asymptotics Case studies in higher order inference Nancy Reid May 18, 2006 A.C. Davison, A. R. Brazzale, A. M. Staicu Introduction likelihood-based inference in parametric models higher order approximations

More information

ASYMPTOTICS AND THE THEORY OF INFERENCE

ASYMPTOTICS AND THE THEORY OF INFERENCE ASYMPTOTICS AND THE THEORY OF INFERENCE N. Reid University of Toronto Abstract Asymptotic analysis has always been very useful for deriving distributions in statistics in cases where the exact distribution

More information

Bayesian Asymptotics

Bayesian Asymptotics BS2 Statistical Inference, Lecture 8, Hilary Term 2008 May 7, 2008 The univariate case The multivariate case For large λ we have the approximation I = b a e λg(y) h(y) dy = e λg(y ) h(y ) 2π λg (y ) {

More information

Default priors for Bayesian and frequentist inference

Default priors for Bayesian and frequentist inference Default priors for Bayesian and frequentist inference D.A.S. Fraser and N. Reid University of Toronto, Canada E. Marras Centre for Advanced Studies and Development, Sardinia University of Rome La Sapienza,

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Exponential Models: Approximations for Probabilities

Exponential Models: Approximations for Probabilities JIRSS (2011) Vol. 10, No. 2, pp 95-107 Exponential Models: Approximations for Probabilities D. A. S. Fraser 1,2,A.Naderi 3, Kexin Ji 1,WeiLin 1, Jie Su 1 1 Department of Statistics, University of Toronto,

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Nancy Reid SS 6002A Office Hours by appointment

Nancy Reid SS 6002A Office Hours by appointment Nancy Reid SS 6002A reid@utstat.utoronto.ca Office Hours by appointment Light touch assessment One or two problems assigned weekly graded during Reading Week http://www.utstat.toronto.edu/reid/4508s14.html

More information

Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors.

Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors. Staicu, A-M., & Reid, N. (2007). On the uniqueness of probability matching priors. Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-document University

More information

Third-order inference for autocorrelation in nonlinear regression models

Third-order inference for autocorrelation in nonlinear regression models Third-order inference for autocorrelation in nonlinear regression models P. E. Nguimkeu M. Rekkas Abstract We propose third-order likelihood-based methods to derive highly accurate p-value approximations

More information

The formal relationship between analytic and bootstrap approaches to parametric inference

The formal relationship between analytic and bootstrap approaches to parametric inference The formal relationship between analytic and bootstrap approaches to parametric inference T.J. DiCiccio Cornell University, Ithaca, NY 14853, U.S.A. T.A. Kuffner Washington University in St. Louis, St.

More information

Bayesian Model Comparison

Bayesian Model Comparison BS2 Statistical Inference, Lecture 11, Hilary Term 2009 February 26, 2009 Basic result An accurate approximation Asymptotic posterior distribution An integral of form I = b a e λg(y) h(y) dy where h(y)

More information

Improved Inference for First Order Autocorrelation using Likelihood Analysis

Improved Inference for First Order Autocorrelation using Likelihood Analysis Improved Inference for First Order Autocorrelation using Likelihood Analysis M. Rekkas Y. Sun A. Wong Abstract Testing for first-order autocorrelation in small samples using the standard asymptotic test

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES. D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3

CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES. D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3 CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3 N. Reid Department of Statistics University of Toronto Toronto,

More information

hoa: An R Package Bundle for Higher Order Likelihood Inference

hoa: An R Package Bundle for Higher Order Likelihood Inference hoa: An R Package Bundle for Higher Order Likelihood Inference by Alessandra R. Brazzale Rnews, 5/1 May 2005, pp. 20 27 Introduction The likelihood function represents the basic ingredient of many commonly

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

Nancy Reid SS 6002A Office Hours by appointment

Nancy Reid SS 6002A Office Hours by appointment Nancy Reid SS 6002A reid@utstat.utoronto.ca Office Hours by appointment Problems assigned weekly, due the following week http://www.utstat.toronto.edu/reid/4508s16.html Various types of likelihood 1. likelihood,

More information

Nuisance parameters and their treatment

Nuisance parameters and their treatment BS2 Statistical Inference, Lecture 2, Hilary Term 2008 April 2, 2008 Ancillarity Inference principles Completeness A statistic A = a(x ) is said to be ancillary if (i) The distribution of A does not depend

More information

Principles of Statistics

Principles of Statistics Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 81 Paper 4, Section II 28K Let g : R R be an unknown function, twice continuously differentiable with g (x) M for

More information

Stats 579 Intermediate Bayesian Modeling. Assignment # 2 Solutions

Stats 579 Intermediate Bayesian Modeling. Assignment # 2 Solutions Stats 579 Intermediate Bayesian Modeling Assignment # 2 Solutions 1. Let w Gy) with y a vector having density fy θ) and G having a differentiable inverse function. Find the density of w in general and

More information

Modern likelihood inference for the parameter of skewness: An application to monozygotic

Modern likelihood inference for the parameter of skewness: An application to monozygotic Working Paper Series, N. 10, December 2013 Modern likelihood inference for the parameter of skewness: An application to monozygotic twin studies Mameli Valentina Department of Mathematics and Computer

More information

ANCILLARY STATISTICS: A REVIEW

ANCILLARY STATISTICS: A REVIEW 1 ANCILLARY STATISTICS: A REVIEW M. Ghosh, N. Reid and D.A.S. Fraser University of Florida and University of Toronto Abstract: In a parametric statistical model, a function of the data is said to be ancillary

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

Measuring nuisance parameter effects in Bayesian inference

Measuring nuisance parameter effects in Bayesian inference Measuring nuisance parameter effects in Bayesian inference Alastair Young Imperial College London WHOA-PSI-2017 1 / 31 Acknowledgements: Tom DiCiccio, Cornell University; Daniel Garcia Rasines, Imperial

More information

Likelihood and p-value functions in the composite likelihood context

Likelihood and p-value functions in the composite likelihood context Likelihood and p-value functions in the composite likelihood context D.A.S. Fraser and N. Reid Department of Statistical Sciences University of Toronto November 19, 2016 Abstract The need for combining

More information

2018 2019 1 9 sei@mistiu-tokyoacjp http://wwwstattu-tokyoacjp/~sei/lec-jhtml 11 552 3 0 1 2 3 4 5 6 7 13 14 33 4 1 4 4 2 1 1 2 2 1 1 12 13 R?boxplot boxplotstats which does the computation?boxplotstats

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

ANCILLARY STATISTICS: A REVIEW

ANCILLARY STATISTICS: A REVIEW Statistica Sinica 20 (2010), 1309-1332 ANCILLARY STATISTICS: A REVIEW M. Ghosh 1, N. Reid 2 and D. A. S. Fraser 2 1 University of Florida and 2 University of Toronto Abstract: In a parametric statistical

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Lecture 1: Introduction

Lecture 1: Introduction Principles of Statistics Part II - Michaelmas 208 Lecturer: Quentin Berthet Lecture : Introduction This course is concerned with presenting some of the mathematical principles of statistical theory. One

More information

STAT215: Solutions for Homework 2

STAT215: Solutions for Homework 2 STAT25: Solutions for Homework 2 Due: Wednesday, Feb 4. (0 pt) Suppose we take one observation, X, from the discrete distribution, x 2 0 2 Pr(X x θ) ( θ)/4 θ/2 /2 (3 θ)/2 θ/4, 0 θ Find an unbiased estimator

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Likelihood and Asymptotic Theory for Statistical Inference

Likelihood and Asymptotic Theory for Statistical Inference Likelihood and Asymptotic Theory for Statistical Inference Nancy Reid 020 7679 1863 reid@utstat.utoronto.ca n.reid@ucl.ac.uk http://www.utstat.toronto.edu/reid/ltccf12.html LTCC Likelihood Theory Week

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Statistics 135 Fall 2008 Final Exam

Statistics 135 Fall 2008 Final Exam Name: SID: Statistics 135 Fall 2008 Final Exam Show your work. The number of points each question is worth is shown at the beginning of the question. There are 10 problems. 1. [2] The normal equations

More information

Second order ancillary: A differential view from continuity

Second order ancillary: A differential view from continuity Second order ancillary: A differential view from continuity BY AILANA M. FRASER Department of Mathematics, University of British Columbia, Vancouver, Canada V6T 1Z2 afraser@math.ubc.ca DONALD A.S. FRASER*

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Likelihood and Asymptotic Theory for Statistical Inference

Likelihood and Asymptotic Theory for Statistical Inference Likelihood and Asymptotic Theory for Statistical Inference Nancy Reid 020 7679 1863 reid@utstat.utoronto.ca n.reid@ucl.ac.uk http://www.utstat.toronto.edu/reid/ltccf12.html LTCC Likelihood Theory Week

More information

Research Article Inference for the Sharpe Ratio Using a Likelihood-Based Approach

Research Article Inference for the Sharpe Ratio Using a Likelihood-Based Approach Journal of Probability and Statistics Volume 202 Article ID 87856 24 pages doi:0.55/202/87856 Research Article Inference for the Sharpe Ratio Using a Likelihood-Based Approach Ying Liu Marie Rekkas 2 and

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

MAS3301 Bayesian Statistics Problems 5 and Solutions

MAS3301 Bayesian Statistics Problems 5 and Solutions MAS3301 Bayesian Statistics Problems 5 and Solutions Semester 008-9 Problems 5 1. (Some of this question is also in Problems 4). I recorded the attendance of students at tutorials for a module. Suppose

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Stat 451 Lecture Notes Numerical Integration

Stat 451 Lecture Notes Numerical Integration Stat 451 Lecture Notes 03 12 Numerical Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 5 in Givens & Hoeting, and Chapters 4 & 18 of Lange 2 Updated: February 11, 2016 1 / 29

More information

Bootstrap and Parametric Inference: Successes and Challenges

Bootstrap and Parametric Inference: Successes and Challenges Bootstrap and Parametric Inference: Successes and Challenges G. Alastair Young Department of Mathematics Imperial College London Newton Institute, January 2008 Overview Overview Review key aspects of frequentist

More information

FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE

FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE Donald A. Pierce Oregon State Univ (Emeritus), RERF Hiroshima (Retired), Oregon Health Sciences Univ (Adjunct) Ruggero Bellio Univ of Udine For Perugia

More information

Accurate directional inference for vector parameters in linear exponential families

Accurate directional inference for vector parameters in linear exponential families Accurate directional inference for vector parameters in linear exponential families A. C. Davison, D. A. S. Fraser, N. Reid and N. Sartori August 27, 2013 Abstract We consider inference on a vector-valued

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

Marginal Posterior Simulation via Higher-order Tail Area Approximations

Marginal Posterior Simulation via Higher-order Tail Area Approximations Bayesian Analysis (2014) 9, Number 1, pp. 129 146 Marginal Posterior Simulation via Higher-order Tail Area Approximations Erlis Ruli, Nicola Sartori and Laura Ventura Abstract. A new method for posterior

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

Improved Inference for Moving Average Disturbances in Nonlinear Regression Models

Improved Inference for Moving Average Disturbances in Nonlinear Regression Models Improved Inference for Moving Average Disturbances in Nonlinear Regression Models Pierre Nguimkeu Georgia State University November 22, 2013 Abstract This paper proposes an improved likelihood-based method

More information

Information in a Two-Stage Adaptive Optimal Design

Information in a Two-Stage Adaptive Optimal Design Information in a Two-Stage Adaptive Optimal Design Department of Statistics, University of Missouri Designed Experiments: Recent Advances in Methods and Applications DEMA 2011 Isaac Newton Institute for

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

An Improved Specification Test for AR(1) versus MA(1) Disturbances in Linear Regression Models

An Improved Specification Test for AR(1) versus MA(1) Disturbances in Linear Regression Models An Improved Specification Test for AR(1) versus MA(1) Disturbances in Linear Regression Models Pierre Nguimkeu Georgia State University Abstract This paper proposes an improved likelihood-based method

More information

Lecture 26: Likelihood ratio tests

Lecture 26: Likelihood ratio tests Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for

More information

1. INTRODUCTION We examine the agreement between frequentist and Bayesian methods for parametric inference using recent methods from higher order like

1. INTRODUCTION We examine the agreement between frequentist and Bayesian methods for parametric inference using recent methods from higher order like 211:1999nov4 Strong matching of frequentist and Bayesian parametric inference By D.A.S. Fraser and N. Reid Department of Statistics University of Toronto Toronto, Canada, M5S 3G3 SUMMARY We dene a notion

More information

Loglikelihood and Confidence Intervals

Loglikelihood and Confidence Intervals Stat 504, Lecture 2 1 Loglikelihood and Confidence Intervals The loglikelihood function is defined to be the natural logarithm of the likelihood function, l(θ ; x) = log L(θ ; x). For a variety of reasons,

More information

Bayesian Analysis (Optional)

Bayesian Analysis (Optional) Bayesian Analysis (Optional) 1 2 Big Picture There are two ways to conduct statistical inference 1. Classical method (frequentist), which postulates (a) Probability refers to limiting relative frequencies

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions Communications for Statistical Applications and Methods 03, Vol. 0, No. 5, 387 394 DOI: http://dx.doi.org/0.535/csam.03.0.5.387 Noninformative Priors for the Ratio of the Scale Parameters in the Inverted

More information

Bayesian Inference and the Parametric Bootstrap. Bradley Efron Stanford University

Bayesian Inference and the Parametric Bootstrap. Bradley Efron Stanford University Bayesian Inference and the Parametric Bootstrap Bradley Efron Stanford University Importance Sampling for Bayes Posterior Distribution Newton and Raftery (1994 JRSS-B) Nonparametric Bootstrap: good choice

More information

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris.

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris. /pgf/stepx/.initial=1cm, /pgf/stepy/.initial=1cm, /pgf/step/.code=1/pgf/stepx/.expanded=- 10.95415pt,/pgf/stepy/.expanded=- 10.95415pt, /pgf/step/.value required /pgf/images/width/.estore in= /pgf/images/height/.estore

More information

Ch. 5 Hypothesis Testing

Ch. 5 Hypothesis Testing Ch. 5 Hypothesis Testing The current framework of hypothesis testing is largely due to the work of Neyman and Pearson in the late 1920s, early 30s, complementing Fisher s work on estimation. As in estimation,

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak.

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak. Large Sample Theory Large Sample Theory is a name given to the search for approximations to the behaviour of statistical procedures which are derived by computing limits as the sample size, n, tends to

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Parametric fractional imputation for missing data analysis

Parametric fractional imputation for missing data analysis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Biometrika (????),??,?, pp. 1 15 C???? Biometrika Trust Printed in

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain A BAYESIAN MATHEMATICAL STATISTICS PRIMER José M. Bernardo Universitat de València, Spain jose.m.bernardo@uv.es Bayesian Statistics is typically taught, if at all, after a prior exposure to frequentist

More information

Bayesian inference for factor scores

Bayesian inference for factor scores Bayesian inference for factor scores Murray Aitkin and Irit Aitkin School of Mathematics and Statistics University of Newcastle UK October, 3 Abstract Bayesian inference for the parameters of the factor

More information

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota Stat 5102 Lecture Slides Deck 3 Charles J. Geyer School of Statistics University of Minnesota 1 Likelihood Inference We have learned one very general method of estimation: method of moments. the Now we

More information

BFF Four: Are we Converging?

BFF Four: Are we Converging? BFF Four: Are we Converging? Nancy Reid May 2, 2017 Classical Approaches: A Look Way Back Nature of Probability BFF one to three: a look back Comparisons Are we getting there? BFF Four Harvard, May 2017

More information