STAT215: Solutions for Homework 2

Size: px
Start display at page:

Download "STAT215: Solutions for Homework 2"

Transcription

1 STAT25: Solutions for Homework 2 Due: Wednesday, Feb 4. (0 pt) Suppose we take one observation, X, from the discrete distribution, x Pr(X x θ) ( θ)/4 θ/2 /2 (3 θ)/2 θ/4, 0 θ Find an unbiased estimator of θ. Obtain the maximum likelihood estimator (MLE) ˆθ(x) of θ and show that it is not unique.is any choice of MLE unbiased? (a) Let T (2) 4, T (x) 0 when x 2. Then E[T (X)] 4 θ + 0 (( θ)/4 + θ/2 + /2 + (3 θ)/2) θ 4, which is an unbiased estimator of θ. (b) Denote the MLE ˆθ. Since there s only one observation: ˆθ( 2) arg max(( θ)/4)) 0 ˆθ( ) arg max(θ/2) ˆθ(0) arg max(/2) c (0, ) ˆθ() arg max((3 θ)/2) 0 ˆθ(2) arg max( θ 4 ) Since ˆθ(0) can be multiple values, it s not unique and all the MLE s are biased since E[ˆθ] 0 ( θ)/4 + θ/2 + ˆθ(0) (3 θ)/2 + θ 4 θ 2. (0 pt) Bickel & Doksum pg 53, problem 2.3.8

2 (a) It is enough to show that the negative log likelihood function l(θ) log f(x i θ) is a strictly convex function of θ R p. Since it s the sum of the negative log likelihoods for each X j, and a sum of strictly convex functions is strictly convex, it s enough to consider a single observation n. To show the negative log likelihood is strictly convex it is enough to show that its Hessian, the matrix H ij 2 θ i θ j l(θ) of second derivatives, is positive-definite everywhere (except possibly at ˆθ x). Let s compute the necessary derivatives: θ 2 k ) α/2 l(θ) log c α + (x i θ i ) 2 ) (α 2)/2 l(θ) α (x i θ i ) 2 (x k θ k ) θ k ) (α 2)/2 ) (α 4)/2 2 l(θ) α (x i θ i ) 2 + α(α 2) (x i θ i ) 2 (x k θ k ) 2 α (x i θ i ) 2 + (α 2)(x k θ k ) 2 ] 2)(α 4)/2 [ p (x i θ i ) ) (α 4)/2 2 l(θ) α (x i θ i ) 2 (α 2)(x i θ i )(x k θ k ) θ i θ k The Hessian H α x θ α 4 A is the product of a constant positive factor α x θ α 4 and a matrix A whose on- and off-diagonal entries are: A kk p (x i θ i ) 2 + (α 2)(x k θ k ) 2 A kj (α 2)(x k θ k )(x j θ j ) If we introduce the notation (x θ) R p for the vector with components i (x i θ i ), and I p for the p p identity matrix, we can write A in the form A 2 I p + (α 2) The matrix A staisfies A λ with eigenvalue λ 2 (α ), strictly postive since α > (except at 0, i.e., θ ˆθ x, which is okay). The other eigenvectors are orthogonal to, all with eigenvalues λ 2, which are also strictly positive. Thus A is positive-definite and so is the Hessian, H α α 4 A. 2

3 (b) First consider the case where α in dimension p, with n 2m even. WLOG order the data x x 2 x n. The log likelihood function is given by l(θ) n log c(α) x i θ, a continuous function whose derivative does not exist at the data points θ {x i } and which elsewhere satisfies d dθ l(θ) d dθ x i θ [ ] [ ] ( ) + (+) x i <θ x i >θ The number of x i > θ minus the number of x i < θ (note that the derivative of x θ is on the interval θ (, x), + on the interval θ (x, ), and undefined at the point θ x). Thus l(θ) is increasing when θ < x m, when more than half the {x i } exceed θ, and is decreasing when θ > x m+, when fewer than half the {x i } exceed θ. In the interval x m < θ < x m+ the derivative is zero, so l(θ) is constant there and equal to its maximum value. In case n 2m is odd, the same argument shows that l(θ) achieves a unique maximum at the median x m. In dimension p > 2 a similar argument holds, only ˆθ now should be any value in the median rectangle (or median block ) where each of its components is a median of the corresponding components of the x i s. 3. (0 pt) Let (X,, X n ) be a random sample from the uniform distribution on the interval (θ 2, θ + 2 ), where θ R is unknown. Let X (j) be the j th order statistic. (a) Show that (X () + X (n) )/2 is strongly consistent for θ, i.e., that lim n (X () + X (n) )/2 θ a.s. (b) Show that X n : (X () + + X (n) )/n is L 2 consistent. solution: (a) For any ɛ > 0, P ( X () (θ 2 ) > ɛ) P (X () > ɛ + (θ 2 )) [P (X > ɛ + (θ 2 ))]n ( ɛ) n 3

4 and P ( X (n) (θ + 2 ) > ɛ) P (X (n) < ɛ + (θ + 2 )) [P (X < ɛ + (θ + 2 ))]n ( ɛ) n Since n ( ɛ)n <, by the crollary of Borel-Cantelli lemma, we conclude that lim n X () θ 2 a.s. and lim n X (n) θ + 2 a.s. Hence lim n (X () + X (n) )/2 θ a.s. (b) X n : (X () + + X (n) )/n (X + + X n )/n Since E(X ) θ, E[X n ] θ and V ar[x n ] E[X n θ 2 ] n E[(X θ) 2 ] n 0. 2n Therefore, X n is L 2 consistent. 4. (0 pt) Let {X i } iid No(µ, σ 2 ) be a random sample from the normal distribution with unknown mean µ R and known variance σ 2 > 0. For fixed t 0, find the Uniform Minimum-Variance Unbiased Estimator (UMVUE) of e tµ and show that its variance is larger than the Cramér-Rao lower bound. Show that the ratio of its variance to the Cramér-Rao lower bound converges to as n. (a) The sample mean X is complete and sufficient for µ. Since E[e tx ] e µt+σ2 t 2 /(2n), the UMVUE of e tµ is T (X) e σ2 t 2 /(2n)+tX. The Fisher information I(µ) n/σ 2. Then the Cramér-Rao lower bound is ( d dµ etµ ) 2 /I(µ) σ 2 t 2 e 2tµ /n. On the other hand, V ar(t ) e σ2 t 2 /n Ee 2tX e 2tµ (e σ2 t 2 /n )e 2tµ > σ2 t 2 e 2tµ, the Cramér-Rao lower bound. (b) The ratio of the variance of the UMVUE over the Cramér-Rao lower bound is (e σ2 t 2 /n )/(σ 2 t 2 /n), which converges to as n, since lim x 0 (e x )/x n 4

5 5. (0 pt) Let X have density function f(x θ), x R d, and let θ have (proper) prior density π(θ). Let δ π (x) denote the Bayes estimate of θ under π(θ) for squared-error loss (i.e., δ π (x) : E[θ X x]) and suppose δ π has finite Bayes risk r(π, δ π ) E[ δ π (X) θ 2 ]. Show that for any other estimator δ(x), (δ(x) r(π, δ) r(π, δ π ) δ π (x) )2 f(x)dx where f(x) is the marginal density of X. If f(x θ) is normal No(θ, ), consider the collection of estimators of the form δ(x) : cx + d. Show that whenever 0 c < these estimators are all proper Bayes estimators, and hence admissible [Hint: Find a prior π for which δ π (X) cx + d]. Show that if c > the resulting estimator is inadmissible. (a) r(π, δ) r(π, δ π ) [(θ δ(x)) 2 (θ δ π (x)) 2 ]f(x θ)π(θ)dxdθ [(θ δ(x)) 2 (θ δ π (x)) 2 ]π(θ x)f(x)dθdx f(x)[ [(θ δ(x)) 2 (θ δ π (x)) 2 ]π(θ x)f(x)dθ]dx f(x)[δ 2 (x) δ π2 (x) + 2δ π2 (x) 2δδ π ]dx (δ(x) δ π (x) )2 f(x)dx (b) Take π(θ) No(µ, τ 2 ), where τ is the precision parameter. Then E[θ x] τ 2 τ 2 + x + τ 2 + µ. Let c τ 2, d µ. Whenever 0 c <, we can always get µ, τ 2 and τ 2 + τ 2 + cx + d is a Bayes estimator with proper prior No(µ, τ 2 ). (c) When c >, MSE(cX + d) R(θ, δ c ) (cθ + d θ) 2 + c 2 V ar(x) >, while MSE for δ 0 (X) X is, so the estimator δ 0 (X) X is uniformly better than cx + d. Similarly when c, d 0, X is uniformly better than X + d. 6. (0 pt) Bickel & Doksum pg 97, problem

6 (a) One way to show this is to notice that it is a limiting case of homework problem.2.4 from the first homework set, taking the limit as τ 2 goes to infinity. Then the posterior distribution of µ approaches a normal distribution with mean x and standard deviation σ 2. If we were bad and interpreted a frequentist confidence interval for µ in a Bayesian way, we would be implicitly assuming that our prior knowledge of µ was utterly nil that all real values were equally likely in our minds (a questionable assumption, since it is not a proper prior). Here is a slightly more detailed development of the solution. We know that if X j iid No(θ, σ 2 ), then the sufficient statistic X No(θ, σ 2 /n). So the likelihood function for θ is given by: l(θ) f( x θ) ( ) 2πσ2 /n exp ( x 2σ 2 θ)2 /n The posterior distribution of θ given X is given by: π(θ X) π(θ X) π(θ)f(x θ) ( ) 2πσ2 /n exp ( x 2σ 2 θ)2 /n This function, which came about because it was the pdf of x, is also the kernel of a normal density for θ, and it is easy to see that the mean is x and the variance is σ 2 /n. So θ X No( x, σ 2 /n). Under squared error loss, the Bayes estimator is the posterior mean, which in this case is x. 7. (0 pt) Bickel & Doksum pg 97, problem (a) We begin with λ θ. If we take the prior on λ to be the improper prior θ π λ (λ), we find the induced prior on θ as follows: ( θ π θ (θ) π λ θ ) [ ] d θ dθ θ ( θ) 2 ( θ) 2 Using this prior for θ, we find the posterior distribution of θ thus: π(θ X) π(θ)π(x θ) ( θ) 2 ( θ S ( θ) n S) θ S ( θ) n S 2 6

7 This is the kernel of a Be(S +, n S ) density, so long as the conditions are met for such a density to exist, which are that S + > 0 and n S > 0. The first of these will always be true, but the second will only be true when n S >, i.e., when at least two failures are observed. (Should we have n S or n S 0, then the expression θ S ( θ) n S 2 would not have a fininte integral, so the posterior distribution on θ would be improper, a decided no-no.) Under the squared error loss function, the Bayes estimator is the posterior mean S+ of θ, which for a Be(S +, n S ) density is known to be S+. (S+)+(n S ) n Note that some students calculated the Bayes rule for λ instead of for θ, which S+ I also marked correct. The Bayes rule for λ is, exists when S < n, n S 2 finite when S < n 2. 7

STAT215: Solutions for Homework 1

STAT215: Solutions for Homework 1 STAT25: Solutions for Homework Due: Wednesday, Jan 30. (0 pt) For X Be(α, β), Evaluate E[X a ( X) b ] for all real numbers a and b. For which a, b is it finite? (b) What is the MGF M log X (t) for the

More information

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003 Statistical Approaches to Learning and Discovery Week 4: Decision Theory and Risk Minimization February 3, 2003 Recall From Last Time Bayesian expected loss is ρ(π, a) = E π [L(θ, a)] = L(θ, a) df π (θ)

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b)

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b) LECTURE 5 NOTES 1. Bayesian point estimators. In the conventional (frequentist) approach to statistical inference, the parameter θ Θ is considered a fixed quantity. In the Bayesian approach, it is considered

More information

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources STA 732: Inference Notes 10. Parameter Estimation from a Decision Theoretic Angle Other resources 1 Statistical rules, loss and risk We saw that a major focus of classical statistics is comparing various

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

Evaluating the Performance of Estimators (Section 7.3)

Evaluating the Performance of Estimators (Section 7.3) Evaluating the Performance of Estimators (Section 7.3) Example: Suppose we observe X 1,..., X n iid N(θ, σ 2 0 ), with σ2 0 known, and wish to estimate θ. Two possible estimators are: ˆθ = X sample mean

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

Lecture 8 October Bayes Estimators and Average Risk Optimality

Lecture 8 October Bayes Estimators and Average Risk Optimality STATS 300A: Theory of Statistics Fall 205 Lecture 8 October 5 Lecturer: Lester Mackey Scribe: Hongseok Namkoong, Phan Minh Nguyen Warning: These notes may contain factual and/or typographic errors. 8.

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Spring, 2005 1. Properties of Estimators Let X j be a sequence of independent, identically

More information

Lecture 7 October 13

Lecture 7 October 13 STATS 300A: Theory of Statistics Fall 2015 Lecture 7 October 13 Lecturer: Lester Mackey Scribe: Jing Miao and Xiuyuan Lu 7.1 Recap So far, we have investigated various criteria for optimal inference. We

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

STAT 830 Decision Theory and Bayesian Methods

STAT 830 Decision Theory and Bayesian Methods STAT 830 Decision Theory and Bayesian Methods Example: Decide between 4 modes of transportation to work: B = Ride my bike. C = Take the car. T = Use public transit. H = Stay home. Costs depend on weather:

More information

Statistics Ph.D. Qualifying Exam: Part II November 3, 2001

Statistics Ph.D. Qualifying Exam: Part II November 3, 2001 Statistics Ph.D. Qualifying Exam: Part II November 3, 2001 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part : Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Bayesian statistics: Inference and decision theory

Bayesian statistics: Inference and decision theory Bayesian statistics: Inference and decision theory Patric Müller und Francesco Antognini Seminar über Statistik FS 28 3.3.28 Contents 1 Introduction and basic definitions 2 2 Bayes Method 4 3 Two optimalities:

More information

Lecture 2: Statistical Decision Theory (Part I)

Lecture 2: Statistical Decision Theory (Part I) Lecture 2: Statistical Decision Theory (Part I) Hao Helen Zhang Hao Helen Zhang Lecture 2: Statistical Decision Theory (Part I) 1 / 35 Outline of This Note Part I: Statistics Decision Theory (from Statistical

More information

λ(x + 1)f g (x) > θ 0

λ(x + 1)f g (x) > θ 0 Stat 8111 Final Exam December 16 Eleven students took the exam, the scores were 92, 78, 4 in the 5 s, 1 in the 4 s, 1 in the 3 s and 3 in the 2 s. 1. i) Let X 1, X 2,..., X n be iid each Bernoulli(θ) where

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

STAT 830 Bayesian Estimation

STAT 830 Bayesian Estimation STAT 830 Bayesian Estimation Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Bayesian Estimation STAT 830 Fall 2011 1 / 23 Purposes of These

More information

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm Midterm Examination STA 215: Statistical Inference Due Wednesday, 2006 Mar 8, 1:15 pm This is an open-book take-home examination. You may work on it during any consecutive 24-hour period you like; please

More information

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee Stochastic Processes Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee 1 Outline Methods of Mean Squared Error Bias and Unbiasedness Best Unbiased Estimators CR-Bound for variance

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Lecture 1: Introduction

Lecture 1: Introduction Principles of Statistics Part II - Michaelmas 208 Lecturer: Quentin Berthet Lecture : Introduction This course is concerned with presenting some of the mathematical principles of statistical theory. One

More information

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm Statistics GIDP Ph.D. Qualifying Exam Theory Jan, 06, 9:00am-:00pm Instructions: Provide answers on the supplied pads of paper; write on only one side of each sheet. Complete exactly 5 of the 6 problems.

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Consider a sample of observations on a random variable Y. his generates random variables: (y 1, y 2,, y ). A random sample is a sample (y 1, y 2,, y ) where the random variables y

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Eco517 Fall 2004 C. Sims MIDTERM EXAM

Eco517 Fall 2004 C. Sims MIDTERM EXAM Eco517 Fall 2004 C. Sims MIDTERM EXAM Answer all four questions. Each is worth 23 points. Do not devote disproportionate time to any one question unless you have answered all the others. (1) We are considering

More information

Final Examination a. STA 532: Statistical Inference. Wednesday, 2015 Apr 29, 7:00 10:00pm. Thisisaclosed bookexam books&phonesonthefloor.

Final Examination a. STA 532: Statistical Inference. Wednesday, 2015 Apr 29, 7:00 10:00pm. Thisisaclosed bookexam books&phonesonthefloor. Final Examination a STA 532: Statistical Inference Wednesday, 2015 Apr 29, 7:00 10:00pm Thisisaclosed bookexam books&phonesonthefloor Youmayuseacalculatorandtwo pagesofyourownnotes Do not share calculators

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

STAB57: Quiz-1 Tutorial 1 (Show your work clearly) 1. random variable X has a continuous distribution for which the p.d.f.

STAB57: Quiz-1 Tutorial 1 (Show your work clearly) 1. random variable X has a continuous distribution for which the p.d.f. STAB57: Quiz-1 Tutorial 1 1. random variable X has a continuous distribution for which the p.d.f. is as follows: { kx 2.5 0 < x < 1 f(x) = 0 otherwise where k > 0 is a constant. (a) (4 points) Determine

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 1: Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

Chapter 3. Point Estimation. 3.1 Introduction

Chapter 3. Point Estimation. 3.1 Introduction Chapter 3 Point Estimation Let (Ω, A, P θ ), P θ P = {P θ θ Θ}be probability space, X 1, X 2,..., X n : (Ω, A) (IR k, B k ) random variables (X, B X ) sample space γ : Θ IR k measurable function, i.e.

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

ECE531 Lecture 8: Non-Random Parameter Estimation

ECE531 Lecture 8: Non-Random Parameter Estimation ECE531 Lecture 8: Non-Random Parameter Estimation D. Richard Brown III Worcester Polytechnic Institute 19-March-2009 Worcester Polytechnic Institute D. Richard Brown III 19-March-2009 1 / 25 Introduction

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over Point estimation Suppose we are interested in the value of a parameter θ, for example the unknown bias of a coin. We have already seen how one may use the Bayesian method to reason about θ; namely, we

More information

Chapters 9. Properties of Point Estimators

Chapters 9. Properties of Point Estimators Chapters 9. Properties of Point Estimators Recap Target parameter, or population parameter θ. Population distribution f(x; θ). { probability function, discrete case f(x; θ) = density, continuous case The

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Assume X P θ, θ Θ, with joint pdf (or pmf) f(x θ). Suppose we observe X = x. The Likelihood function is L(θ x) = f(x θ) as a function of θ (with the data x held fixed). The

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13 The Jeffreys Prior Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) The Jeffreys Prior MATH 9810 1 / 13 Sir Harold Jeffreys English mathematician, statistician, geophysicist, and astronomer His

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 8 Maximum Likelihood Estimation 8. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

Final Examination. STA 215: Statistical Inference. Saturday, 2001 May 5, 9:00am 12:00 noon

Final Examination. STA 215: Statistical Inference. Saturday, 2001 May 5, 9:00am 12:00 noon Final Examination Saturday, 2001 May 5, 9:00am 12:00 noon This is an open-book examination, but you may not share materials. A normal distribution table, a PMF/PDF handout, and a blank worksheet are attached

More information

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE)

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) 1 ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Minimum Variance Unbiased Estimators (MVUE)

More information

Statistics Masters Comprehensive Exam March 21, 2003

Statistics Masters Comprehensive Exam March 21, 2003 Statistics Masters Comprehensive Exam March 21, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

Suggested solutions to written exam Jan 17, 2012

Suggested solutions to written exam Jan 17, 2012 LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 73A36 THEORY OF STATISTICS, 6 CDTS Master s program in Statistics and Data Mining Fall semester Written exam Suggested solutions to

More information

Principles of Statistics

Principles of Statistics Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 81 Paper 4, Section II 28K Let g : R R be an unknown function, twice continuously differentiable with g (x) M for

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation University of Pavia Maximum Likelihood Estimation Eduardo Rossi Likelihood function Choosing parameter values that make what one has observed more likely to occur than any other parameter values do. Assumption(Distribution)

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Statistics and Econometrics I

Statistics and Econometrics I Statistics and Econometrics I Point Estimation Shiu-Sheng Chen Department of Economics National Taiwan University September 13, 2016 Shiu-Sheng Chen (NTU Econ) Statistics and Econometrics I September 13,

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Theory of Statistics.

Theory of Statistics. Theory of Statistics. Homework V February 5, 00. MT 8.7.c When σ is known, ˆµ = X is an unbiased estimator for µ. If you can show that its variance attains the Cramer-Rao lower bound, then no other unbiased

More information

Peter Hoff Minimax estimation November 12, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11

Peter Hoff Minimax estimation November 12, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11 Contents 1 Motivation and definition 1 2 Least favorable prior 3 3 Least favorable prior sequence 11 4 Nonparametric problems 15 5 Minimax and admissibility 18 6 Superefficiency and sparsity 19 Most of

More information

Econ 2140, spring 2018, Part IIa Statistical Decision Theory

Econ 2140, spring 2018, Part IIa Statistical Decision Theory Econ 2140, spring 2018, Part IIa Maximilian Kasy Department of Economics, Harvard University 1 / 35 Examples of decision problems Decide whether or not the hypothesis of no racial discrimination in job

More information

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 18.466 Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 1. MLEs in exponential families Let f(x,θ) for x X and θ Θ be a likelihood function, that is, for present purposes,

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is Multinomial Data The multinomial distribution is a generalization of the binomial for the situation in which each trial results in one and only one of several categories, as opposed to just two, as in

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

General Bayesian Inference I

General Bayesian Inference I General Bayesian Inference I Outline: Basic concepts, One-parameter models, Noninformative priors. Reading: Chapters 10 and 11 in Kay-I. (Occasional) Simplified Notation. When there is no potential for

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Nearest Neighbor Pattern Classification

Nearest Neighbor Pattern Classification Nearest Neighbor Pattern Classification T. M. Cover and P. E. Hart May 15, 2018 1 The Intro The nearest neighbor algorithm/rule (NN) is the simplest nonparametric decisions procedure, that assigns to unclassified

More information

ECE 275A Homework 7 Solutions

ECE 275A Homework 7 Solutions ECE 275A Homework 7 Solutions Solutions 1. For the same specification as in Homework Problem 6.11 we want to determine an estimator for θ using the Method of Moments (MOM). In general, the MOM estimator

More information

MIT Spring 2016

MIT Spring 2016 Decision Theoretic Framework MIT 18.655 Dr. Kempthorne Spring 2016 1 Outline Decision Theoretic Framework 1 Decision Theoretic Framework 2 Decision Problems of Statistical Inference Estimation: estimating

More information

BTRY 4090: Spring 2009 Theory of Statistics

BTRY 4090: Spring 2009 Theory of Statistics BTRY 4090: Spring 2009 Theory of Statistics Guozhang Wang September 25, 2010 1 Review of Probability We begin with a real example of using probability to solve computationally intensive (or infeasible)

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

CSC411 Fall 2018 Homework 5

CSC411 Fall 2018 Homework 5 Homework 5 Deadline: Wednesday, Nov. 4, at :59pm. Submission: You need to submit two files:. Your solutions to Questions and 2 as a PDF file, hw5_writeup.pdf, through MarkUs. (If you submit answers to

More information

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002 Name: Last Name 1, First Name 1 Stdnt # StudentNumber1 STAT 450: Final Examination Version 1 Richard Lockhart 16 December 2002 Instructions: This is an open book exam. You may use notes, books and a calculator.

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a) :

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Introduction to Machine Learning. Lecture 2

Introduction to Machine Learning. Lecture 2 Introduction to Machine Learning Lecturer: Eran Halperin Lecture 2 Fall Semester Scribe: Yishay Mansour Some of the material was not presented in class (and is marked with a side line) and is given for

More information

Minimax lower bounds I

Minimax lower bounds I Minimax lower bounds I Kyoung Hee Kim Sungshin University 1 Preliminaries 2 General strategy 3 Le Cam, 1973 4 Assouad, 1983 5 Appendix Setting Family of probability measures {P θ : θ Θ} on a sigma field

More information