Minimum Message Length Analysis of the Behrens Fisher Problem

Size: px
Start display at page:

Download "Minimum Message Length Analysis of the Behrens Fisher Problem"

Transcription

1 Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011

2 Outline Introduction 1 Introduction Problem Description 2 The Wallace Freeman approximation 3 4

3 Outline Introduction Problem Description 1 Introduction Problem Description 2 The Wallace Freeman approximation 3 4

4 Problem Description (1) Problem Description We have two mutually independent sequences of i.i.d. data y 1 = (y 11,..., y 1n1 ) and y 2 = (y 21,..., y 1n2 ) Data assumed to be generated by the Gaussian model y ij N(µ i, τ i ) (i = 1, 2; j = 1,..., n i ) The sequence means and variances are unknown µ = (µ 1, µ 2 ) and τ = (τ 1, τ 2 )

5 Problem Description (2) Problem Description Task Is there a difference between the two population means? µ 1 = µ 2? Existing solutions Frequentist (based on Student t pivot) Bayes factor We will use (MML)

6 Problem Description (2) Problem Description Task Is there a difference between the two population means? µ 1 = µ 2? Existing solutions Frequentist (based on Student t pivot) Bayes factor We will use (MML)

7 Problem Description (2) Problem Description Task Is there a difference between the two population means? µ 1 = µ 2? Existing solutions Frequentist (based on Student t pivot) Bayes factor We will use (MML)

8 Outline Introduction The Wallace Freeman approximation 1 Introduction Problem Description 2 The Wallace Freeman approximation 3 4

9 (1) Introduction The Wallace Freeman approximation Practical implementation of theory of inductive inference Initially proposed by Solomonoff Model that yields the briefest encoding of data in a hypothetical message is optimal The message comprises the assertion, statement describing a particular model θ Θ R k the detail, encoding of the data y using the assertion model θ

10 (2) Introduction The Wallace Freeman approximation The total length of the two-part message, I(θ, y), is sum of the lengths of the assertion and the detail I(θ, y) = I(θ) + I(y θ) MML advocates choosing model θ that minimises the codelength of the two-part message

11 MML87 (1) Introduction The Wallace Freeman approximation The Wallace Freeman, or MML87 codelength, for model θ Θ R k and data y is I 87 (y, θ) = log π(θ) log J θ(θ) + k 2 log κ k + k log p(y θ) }{{}} 2 {{} I 87 (θ) I 87 (y θ) p(y θ) denotes the likelihood function π( ) is a prior distribution over the parameter space Θ R k J θ (θ) is the Fisher information matrix κ k is the normalised second moment of an optimal quantising lattice in k-dimensions

12 MML87 (2) Introduction The Wallace Freeman approximation The model that minimises I 87 (y, θ) is (a posteriori) most plausible ˆθ 87 (y) = arg min {I 87 (y, θ)} θ Θ MML treats both parameter estimation and model class selection on the same footing Wallace Freeman codelengths are invariant under a smooth, one-to-one reparameterisation of the parameters

13 Outline Introduction 1 Introduction Problem Description 2 The Wallace Freeman approximation 3 4

14 MML Solution Introduction The MML solution to the Behrens Fisher problem requires codelength of data under Shared mean model (µ 1 = µ 2 ) Different means model (µ 1 µ 2 ) The model resulting in the shortest codelength is preferred Let δ = I 87 (y, ˆµ, ˆτ ) I 87 (y, ˆµ, ˆτ ) If δ < 0, single population mean preferred The term exp( δ) is the posterior odds in favour of the model with common population mean

15 (1) Let y = (y 1, y 2 ) denote the observed data Parameters to be estimated θ = (µ, τ ) R 3, τ = (τ 1, τ 2 )

16 (2) The negative log-likelihood function log p(y θ) = n 2 log 2π+ 1 2 n i log τ i + 1 n i (y ij µ) 2 2 τ i i=1 j=1 The determinant of the Fisher information matrix ( 2 ) (n1 n i J(θ) = + n ) 2 τ 1 τ 2 2τ 2 i=1 i

17 (3) Prior densities over the parameters θ π(θ) = π µ (µ)π τ (τ ) Population variances π τ (τ ) = (Ωτ 1 τ 2 ) 1, τ 1, τ 2 Ξ Population mean ( ) 1/2 1 n π(µ) = vol(λ 1 ) = 4y, µ Λ 1 y Λ 1 = { µ : nµ 2 y y }

18 (4) Prior density for the population mean Observed data y is generated from the model y = y + ε, ε N n (0, Σ n ) One can show that E (y y) = y y + tr (Σ n ) An estimate (1 n ˆµ) of µ of y should then satisfy y y (1 n ˆµ) (1 n ˆµ) = nˆµ 2

19 (5) Total Wallace Freeman codelength, I 87 (y, µ, τ ) n 2 log 2π n i log τ i + 1 n i (y ij µ) ( 2 τ i=1 i 2 log n1 + n ) 2 τ j=1 1 τ 2 ( ) log Ω 2 (y y) 2 n i 2 32 n Wallace Freeman parameter estimates (ˆµ, ˆτ ) = arg min µ,τ {I 87(y, µ, τ )} i=1

20 (1) Parameters to be estimated θ = (µ, τ ) R 4 where µ = (µ 1, µ 2 ), τ = (τ 1, τ 2 ) The negative log-likelihood function log p(y θ) = n 1 2 log 2πτ 1 + n 2 2 log 2πτ n i (y ij µ i ) 2 i=1 j=1 2τ i The determinant of the Fisher information matrix is ( ) 2 n 2 J(θ) = i i=1 2τ 3 i

21 (2) Prior densities over the parameters θ π(θ) = π µ (µ)π τ (τ ) Population variances π τ (τ ) = (Ωτ 1 τ 2 ) 1, τ 1, τ 2 Ξ Population means π(µ) = Λ 2 = 1 vol(λ 2 ) = n1 n 2 πy y, µ Λ 2 { } 2 (µ 1, µ 2 ) : n i µ 2 i y y i=1

22 (3) Total Wallace Freeman codelength, I 87 (y, µ, τ ) ( 2 ) n 2 log 2π + 1 (n i 1) log ˆτ i + n i=1 + log (y y n 1 n 2 Ωπ/2) 3 14 Wallace Freeman parameter estimates ˆµ i = 1 n i y ij, ˆτ i = 1 (y ij ˆµ i ) 2, (i = 1, 2) n i n j=1 i 1 j=1 n i

23 Outline Introduction 1 Introduction Problem Description 2 The Wallace Freeman approximation 3 4

24 (1) MML approach empirically compared to standard procedures using artificial data Hypothesis testing Parameter estimation

25 (2) Criterion n 1 n MML Student t Bayesian

26 (3) Median Kullback Leibler divergence computed over 10 5 iterations between the data generating distribution and the MML and ML estimators Estimator n 1 n MML ML

The Minimum Message Length Principle for Inductive Inference

The Minimum Message Length Principle for Inductive Inference The Principle for Inductive Inference Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population Health University of Melbourne University of Helsinki, August 25,

More information

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Daniel F. Schmidt Enes Makalic Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School

More information

Minimum Message Length Analysis of Multiple Short Time Series

Minimum Message Length Analysis of Multiple Short Time Series Minimum Message Length Analysis of Multiple Short Time Series Daniel F. Schmidt and Enes Makalic Abstract This paper applies the Bayesian minimum message length principle to the multiple short time series

More information

MML Invariant Linear Regression

MML Invariant Linear Regression MML Invariant Linear Regression Daniel F. Schmidt and Enes Makalic The University of Melbourne Centre for MEGA Epidemiology Carlton VIC 3053, Australia {dschmidt,emakalic}@unimelb.edu.au Abstract. This

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

Shrinkage and Denoising by Minimum Message Length

Shrinkage and Denoising by Minimum Message Length 1 Shrinkage and Denoising by Minimum Message Length Daniel F. Schmidt and Enes Makalic Abstract This paper examines orthonormal regression and wavelet denoising within the Minimum Message Length (MML framework.

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

Minimum Message Length Shrinkage Estimation

Minimum Message Length Shrinkage Estimation Minimum Message Length Shrinage Estimation Enes Maalic, Daniel F. Schmidt Faculty of Information Technology, Monash University, Clayton, Australia, 3800 Abstract This note considers estimation of the mean

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M PD M = PD θ, MPθ Mdθ Lecture 14 : Variational Bayes where θ are the parameters of the model and Pθ M is

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Week 12. Testing and Kullback-Leibler Divergence 1. Likelihood Ratios Let 1, 2, 2,...

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

arxiv: v3 [stat.me] 11 Feb 2018

arxiv: v3 [stat.me] 11 Feb 2018 arxiv:1708.02742v3 [stat.me] 11 Feb 2018 Minimum message length inference of the Poisson and geometric models using heavy-tailed prior distributions Chi Kuen Wong, Enes Makalic, Daniel F. Schmidt February

More information

Bayesian inference: what it means and why we care

Bayesian inference: what it means and why we care Bayesian inference: what it means and why we care Robin J. Ryder Centre de Recherche en Mathématiques de la Décision Université Paris-Dauphine 6 November 2017 Mathematical Coffees Robin Ryder (Dauphine)

More information

Lecture 6: Model Checking and Selection

Lecture 6: Model Checking and Selection Lecture 6: Model Checking and Selection Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 27, 2014 Model selection We often have multiple modeling choices that are equally sensible: M 1,, M T. Which

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Statistical Inference: Maximum Likelihood and Bayesian Approaches

Statistical Inference: Maximum Likelihood and Bayesian Approaches Statistical Inference: Maximum Likelihood and Bayesian Approaches Surya Tokdar From model to inference So a statistical analysis begins by setting up a model {f (x θ) : θ Θ} for data X. Next we observe

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

ICES REPORT Model Misspecification and Plausibility

ICES REPORT Model Misspecification and Plausibility ICES REPORT 14-21 August 2014 Model Misspecification and Plausibility by Kathryn Farrell and J. Tinsley Odena The Institute for Computational Engineering and Sciences The University of Texas at Austin

More information

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling Min-ge Xie Department of Statistics, Rutgers University Workshop on Higher-Order Asymptotics

More information

Logistic Regression with the Nonnegative Garrote

Logistic Regression with the Nonnegative Garrote Logistic Regression with the Nonnegative Garrote Enes Makalic Daniel F. Schmidt Centre for MEGA Epidemiology The University of Melbourne 24th Australasian Joint Conference on Artificial Intelligence 2011

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors Jim Berger, Jose Bernardo and Dongchu Sun Duke University, University of Valencia and University of Missouri Recent advances in statistical inference: theory and case studies University

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 1) Fall 2017 1 / 10 Lecture 7: Prior Types Subjective

More information

Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage

Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage Daniel F. Schmidt Centre for Biostatistics and Epidemiology The University of Melbourne Monash University May 11, 2017 Outline

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information

Minimum Message Length Grouping of Ordered Data

Minimum Message Length Grouping of Ordered Data Minimum Message Length Grouping of Ordered Data Leigh J. Fitzgibbon, Lloyd Allison, and David L. Dowe School of Computer Science and Software Engineering Monash University, Clayton, VIC 3168 Australia

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Lecture 2: Statistical Decision Theory (Part I)

Lecture 2: Statistical Decision Theory (Part I) Lecture 2: Statistical Decision Theory (Part I) Hao Helen Zhang Hao Helen Zhang Lecture 2: Statistical Decision Theory (Part I) 1 / 35 Outline of This Note Part I: Statistics Decision Theory (from Statistical

More information

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population Health

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Minimum Message Length Clustering of Spatially-Correlated Data with Varying Inter-Class Penalties

Minimum Message Length Clustering of Spatially-Correlated Data with Varying Inter-Class Penalties Minimum Message Length Clustering of Spatially-Correlated Data with Varying Inter-Class Penalties Gerhard Visser Clayton School of I.T., Monash University, Clayton, Vic. 3168, Australia, (gvis1@student.monash.edu.au)

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics 9. Model Selection - Theory David Giles Bayesian Econometrics One nice feature of the Bayesian analysis is that we can apply it to drawing inferences about entire models, not just parameters. Can't do

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Estimating Unnormalised Models by Score Matching

Estimating Unnormalised Models by Score Matching Estimating Unnormalised Models by Score Matching Michael Gutmann Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh Spring semester 2018 Program 1. Basics

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Efficient Linear Regression by Minimum Message Length

Efficient Linear Regression by Minimum Message Length 1 Efficient Linear Regression by Minimum Message Length Enes Makalic and Daniel F. Schmidt Abstract This paper presents an efficient and general solution to the linear regression problem using the Minimum

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a) :

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Accouncements You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Please do not zip these files and submit (unless there are >5 files) 1 Bayesian Methods Machine Learning

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Chapter 5. Bayesian Statistics

Chapter 5. Bayesian Statistics Chapter 5. Bayesian Statistics Principles of Bayesian Statistics Anything unknown is given a probability distribution, representing degrees of belief [subjective probability]. Degrees of belief [subjective

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Invariant HPD credible sets and MAP estimators

Invariant HPD credible sets and MAP estimators Bayesian Analysis (007), Number 4, pp. 681 69 Invariant HPD credible sets and MAP estimators Pierre Druilhet and Jean-Michel Marin Abstract. MAP estimators and HPD credible sets are often criticized in

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Universal probability distributions, two-part codes, and their optimal precision

Universal probability distributions, two-part codes, and their optimal precision Universal probability distributions, two-part codes, and their optimal precision Contents 0 An important reminder 1 1 Universal probability distributions in theory 2 2 Universal probability distributions

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems

Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems 1 Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Philip Schniter, and Sundeep Rangan Abstract arxiv:1706.06054v1 cs.it

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain A BAYESIAN MATHEMATICAL STATISTICS PRIMER José M. Bernardo Universitat de València, Spain jose.m.bernardo@uv.es Bayesian Statistics is typically taught, if at all, after a prior exposure to frequentist

More information

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over Point estimation Suppose we are interested in the value of a parameter θ, for example the unknown bias of a coin. We have already seen how one may use the Bayesian method to reason about θ; namely, we

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/??

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/?? to Bayesian Methods Introduction to Bayesian Methods p.1/?? We develop the Bayesian paradigm for parametric inference. To this end, suppose we conduct (or wish to design) a study, in which the parameter

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics CS 540: Machine Learning Lecture 2: Review of Probability & Statistics AD January 2008 AD () January 2008 1 / 35 Outline Probability theory (PRML, Section 1.2) Statistics (PRML, Sections 2.1-2.4) AD ()

More information

STAT215: Solutions for Homework 2

STAT215: Solutions for Homework 2 STAT25: Solutions for Homework 2 Due: Wednesday, Feb 4. (0 pt) Suppose we take one observation, X, from the discrete distribution, x 2 0 2 Pr(X x θ) ( θ)/4 θ/2 /2 (3 θ)/2 θ/4, 0 θ Find an unbiased estimator

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Bayesian statistics DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist statistics

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

Statistical and Inductive Inference by Minimum Message Length

Statistical and Inductive Inference by Minimum Message Length C.S. Wallace Statistical and Inductive Inference by Minimum Message Length With 22 Figures Springer Contents Preface 1. Inductive Inference 1 1.1 Introduction 1 1.2 Inductive Inference 5 1.3 The Demise

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

An Extended BIC for Model Selection

An Extended BIC for Model Selection An Extended BIC for Model Selection at the JSM meeting 2007 - Salt Lake City Surajit Ray Boston University (Dept of Mathematics and Statistics) Joint work with James Berger, Duke University; Susie Bayarri,

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Objective Prior for the Number of Degrees of Freedom of a t Distribution

Objective Prior for the Number of Degrees of Freedom of a t Distribution Bayesian Analysis (4) 9, Number, pp. 97 Objective Prior for the Number of Degrees of Freedom of a t Distribution Cristiano Villa and Stephen G. Walker Abstract. In this paper, we construct an objective

More information

On the identification of outliers in a simple model

On the identification of outliers in a simple model On the identification of outliers in a simple model C. S. Wallace 1 Introduction We suppose that we are given a set of N observations {y i i = 1,...,N} which are thought to arise independently from some

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Overview Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Probabilistic Interpretation: Linear Regression Assume output y is generated

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003 Statistical Approaches to Learning and Discovery Week 4: Decision Theory and Risk Minimization February 3, 2003 Recall From Last Time Bayesian expected loss is ρ(π, a) = E π [L(θ, a)] = L(θ, a) df π (θ)

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

INTRODUCTION TO BAYESIAN STATISTICS

INTRODUCTION TO BAYESIAN STATISTICS INTRODUCTION TO BAYESIAN STATISTICS Sarat C. Dass Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University TOPICS The Bayesian Framework Different Types

More information

Predictive Distributions

Predictive Distributions Predictive Distributions October 6, 2010 Hoff Chapter 4 5 October 5, 2010 Prior Predictive Distribution Before we observe the data, what do we expect the distribution of observations to be? p(y i ) = p(y

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Maximum Likelihood Estimation. only training data is available to design a classifier

Maximum Likelihood Estimation. only training data is available to design a classifier Introduction to Pattern Recognition [ Part 5 ] Mahdi Vasighi Introduction Bayesian Decision Theory shows that we could design an optimal classifier if we knew: P( i ) : priors p(x i ) : class-conditional

More information