EMR coupled with Power-Oriented Graphs for automotive application

Size: px
Start display at page:

Download "EMR coupled with Power-Oriented Graphs for automotive application"

Transcription

1 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation EMR coupled with Power-Oriented Graphs for automotive application Dr. Federica GROSSI, Prof. Roberto ZANASI Università di Modena, Italy Dr.Walter LHOMME, Prof. Alain BOUSCAYROL L2EP, University Lille1, MEGEVH network,

2 Outline 2 1. Power-Oriented Graphs basic features 2. The studied system: simplified model of a vehicle with tire-soil interaction 3. Control structure 4. Simulations 5. Comparison with EMR 6. Conclusion

3 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation 1. Power-Oriented Graphs basic features

4 Power-Oriented Graphs (POG) basic features 4 The Power-Oriented Graphs (POG) are ''block diagrams'' with a ''modular'' structure based on two blocks: Positive power flows Dashed line = power flowing through that section Product of conjugated variables = power Elaboration block Store and dissipate or generate energy Connection block Only transform the energy Direct correspondence between POG and state space equations

5 Dynamic modeling: electrical exemples 5 I R I I I R V c V c R VO C R Kirchhoff s current law C Kirchhoff s voltage law

6 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation 2. The studied system: simplified model of a vehicle with tire-soil interaction

7 Simplified vehicle: the bicycle model 7 2D model with 3 rigid bodies motion possible in plane (xy) no suspensions interaction with the ground by means of tires Energetic model of the tire-soil interaction Degrees of freedom: 2 translational (wheels are solidly connected to chassis for translations) 3 rotational (wheels are independent from chassis for rotations)

8 Tire-road interaction: elastic dynamic model Main drawbacks of Pacejka s formulas: 1. The slip ratio can be used only when v x >0 ( or R>0) 8 2. They mix together the slip and skid phenomena. New definition for the slip ratio: elastic element SLIPPING SKIDDING Only when both the contact force in the x-direction and the angular velocity of the wheel in the y-direction are not zero. Only when the force vector exceeds the skidding threshold. The contact area changes its dimensions according to the adherence conditions.

9 POG scheme of the simplified vehicle 9 Contact point 2D mechanical dynamics of chassis and wheels Coordinate transformation Elastic element Both blocks have a force describing the tire as input and give a velocity as output

10 POG scheme: mathematical details Differential equations of the whole system: 10 Mass and inertia matrix Velocity vector Transformation matrices Stiffness and damping matrices

11 POG and EMR of the vehicle 11 Frx. x m. x m Fpx Env. x 2 tot tot Fry. y m MS2 2 m 1 tot r V. y m Fpy. X c Env. y Fc MS1 1 m Fr Fc Vcsl + Vcsk S+S

12 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation 3. Control Structure

13 Maximum Control Structure 13 input torques 1-ref MS2 MS m 1 m coupling inertias coupling masses. Frx x m tot tot r tot Fry V Fr. y m. x m coupling Fpx. y m Fpy environment. X c Fc Env. x Env. y elastic element Fc Vcsl + Vcsk skidding and slipping S+S E M R Tuning chain Inversion 2-mes r1- meas fcx1-meas tot-ref 1-ref 1-ref Frx-ref. X c- ref fcx2-meas fcx1-ref M C S Maximum Control Structure Frx-ref. x m-ref

14 Model and control without the contact law 14 input torques coupling Equivalent wheel mas environment Frx Vrx Env. x Fpx 2 MS2 2 m tot tot Vrx E M Simplified MS1 1-ref 1 1 m R Model 2-mes tot-ref M C S Simplified Control Frx-ref Vrx-ref

15 Simplified control with the complete model 15 input torques coupling inertias coupling masses Frx environment Env. x Fpx 2 MS2 2 m 1 tot tot r tot Fry V Fpy Env. y elastic element Fc skidding and slipping E M R Complete Model MS1 1-ref 1 m Fr Fc S+S Vcsl + Vcsk 2-mes tot-ref P C S Simplified Control Frx-ref Vrx-ref

16 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation 4. Simulation

17 Matlab-Simulink implementation 17 Global structure: EMR Inner structure: POG

18 Simulation results: complete model and control 18 reference real slip skid Electric vehicle with DC machine Control of velocity: structure based on inversion (MCS) The tire starts skidding

19 Simulation results: Model and control without the contact law 19 First order dynamic system No information on tires slipping

20 Simulation results: complete model and simplified control 20 slip skid Good control of the speed Bad behavior of tire skidding

21 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation 5. Comparison POG - EMR

22 POG and EMR: comparison POG EMR Objective Analysis Control structure Energetic domains All known All known Power variables Scalar and vectorial Scalar and vectorial Analogy between energetic domains Firestone s Maxwell s Causality Integral and differential Integral Nr. Basic elements 2 4 main elements, several symbols Coupling Implicit Explicit Variable direction Explicit Explicit Power direction Implicit Not visible Mathematical model from the graphical scheme Directly obtainable Not directly obtainable Simulation Directly in Simulink Simulink library Graphical representation Linear Planar Control structure No methodology Methodology through inversion rules 22

23 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation 6. Conclusion

24 Conclusion 24 Power-Oriented Graphs (POG) and Energetic Macroscopic Representation (EMR) are energy-based techniques that can be used for modelling all types of physical systems involving power flows Cooperation of both POG and EMR is proposed A simplified vehicle model is given in POG and EMR formalisms An elastic dynamic model of the interaction between tires and ground has been used The MCS is given in order to control the longitudinal velocity of the vehicle A simplified control is also proposed Simulations in Matlab-Simulink

25 EMR 11 Lausanne July 2011 Joint Summer School EMR 11 Energetic Macroscopic Representation «BIOGRAPHIES AND REFERENCES»

26 - Authors - Dr. Federica GROSSI University of Modena, Italy PhD in Information and Telecommunication Tech. at University of Modena (2010) Research topics: graphical modelling techniques applied to electro-mechanical systems and hybrid automotive systems. Prof. Roberto ZANASI University of Modena, Italy PhD in System Engineering at University of Bologna (1992) Research topics: POG modelling of complex physical systems, advanced control techniques, trajectory planning, control in automotive systems Dr. Walter LHOMME L2EP, University Lille1, MEGEVH, France PhD on Hybrid Electric Vehicles at University Lille1, 2007 Engineer at AVL (UK) ( ) Associate Prof. at Univ. Lille1 (2008) Research topics: EMR, EVs and HEVs Prof. Alain BOUSCAYROL University Lille 1, L2EP, MEGEVH, France Coordinator of MEGEVH, French network on HEVs PhD in Electrical Engineering at University of Toulouse (1995) Research topics: EMR, HIL simulation, tractions systems, EVs and HEVs 26

27 References 27 [1] F. Grossi, W. Lhomme, R. Zanasi, A. Bouscayrol, Modelling and control of a vehicle with tireroad interaction using POG and EMR formalisms, ELECTROMOTION 2009, EPE Chapter Electric Drives 8 th International Symposium on Advanced Electromechanical Motion Systems, Lille, France, July 2009 (common paper University of Modena and L2EP Lille) [2] F. Grossi, W. Lhomme, R. Zanasi, A. Bouscayrol, Modelling and control of a vehicle with tireroad interaction using energy-based techniques IEEE VPPC 2009 (Vehicular Power and Propulsion Conference), Dearborn, Michigan, USA, September 2009 common paper University of Modena and L2EP Lille). [3] R. Zanasi, F. Grossi, Modelling Hybrid Automotive Systems with the POG Technique, Journal of Asian Electric Vehicles, Vol. 8, Nr. 1, June [4] R. Zanasi The Power-Oriented Graphs Technique: system modeling and basic properties, IEEE VPPC 2010 (Vehicular Power and Propulsion Conference), Lille, France, September [5] W. Lhomme, R. Zanasi, G.-H. Geitner, A. Bouscayrol, Different graphical descriptions of clutch modelling for traction systems, ElectrIMACS 08, Québec (Canada), May 2008 (common paper L2EP Lille, University of Modena and University of Dresden) [6] F.Grossi, Dynamic Modeling and Control of Hybrid Automotive Systems, PhD Dissertation

«EMR of an ICE taking into account the thermal energy»

«EMR of an ICE taking into account the thermal energy» EMR 2 Madrid June 202 Joint Summer School EMR 2 Energetic Macroscopic Representation «EMR of an ICE taking into account the thermal energy» Mr. Ludovic HORREIN L2EP University Lille, PSA Peugeot Citroën

More information

«Energetic Macroscopic Representation for organization of HIL simulation»

«Energetic Macroscopic Representation for organization of HIL simulation» HIL 16 summer school Lille, 1-2 September 2016 http://l2ep.univ-lille1.fr/hil2016/ «Energetic Macroscopic Representation for organization of HIL simulation» Dr. Clément MAYET Prof. Alain BOUSCAYROL (L2EP,

More information

«About energy and causality principles»

«About energy and causality principles» EMR 16 UdeS - Longueuil June 2016 Summer School EMR 16 Energetic Macroscopic Representation «About energy and causality principles» Prof. X. KESTELYN 1, Prof. A. BOUSCAYROL 2, Prof. CC. CHAN 3 1 L2EP,

More information

«EMR AND CONTROL OF A SEGWAY

«EMR AND CONTROL OF A SEGWAY EMR 16 UdeS - Longueuil June 2016 Summer School EMR 16 Energetic Macroscopic Representation «EMR AND CONTROL OF A SEGWAY BASED ON REVERSE ENGINEERING» Gianluca Dorian Petrucci 1, Dr. Walter Lhomme 2 1

More information

«SYSTEM, ENERGY AND CAUSALITY»

«SYSTEM, ENERGY AND CAUSALITY» EMR 17 Lille June 2017 Summer School EMR 17 Energetic Macroscopic Representation «SYSTEM, ENERGY AND CAUSALITY» Prof. Alain BOUSCAYROL (L2EP, University Lille1, France) Prof. C.C. CHAN (University of Hong-Kong,

More information

The POG Modeling Technique Applied to Electrical Systems

The POG Modeling Technique Applied to Electrical Systems The POG Modeling Technique Applied to Electrical Systems Roberto ZANASI Computer Science Engineering Department (DII) University of Modena and Reggio Emilia Italy E-mail: roberto.zanasi@unimo.it Outline

More information

«EMR for Li-ion Battery electrothermal model taking into account the charge transfer delay»

«EMR for Li-ion Battery electrothermal model taking into account the charge transfer delay» EMR 17 University Lille 1 June 2017 Summer School EMR 17 Energetic Macroscopic Representation «EMR for Li-ion Battery electrothermal model taking into account the charge transfer delay» Dr. Ronan GERMAN

More information

POG Modeling of Automotive Systems

POG Modeling of Automotive Systems POG Modeling of Automotive Systems MORE on Automotive - 28 Maggio 2018 Prof. Roberto Zanasi Graphical Modeling Techniques Graphical Techniques for representing the dynamics of physical systems: 1) Bond-Graph

More information

Seminar on Energetic Macroscopic Representation

Seminar on Energetic Macroscopic Representation Seminar on Energetic Macroscopic Representation From Modelling to Representation and Real-Time Control Implementation Philippe Barrade EPFL Laboratoire d Electronique Industrielle EPFL-STI-IEL-LEI, Station

More information

VEHICLE. Dr. Walter LHOMME L2EP, University Lille1, MEGEVH network.

VEHICLE. Dr. Walter LHOMME L2EP, University Lille1, MEGEVH network. Aalto University Finland May 2011 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» «MODELLING AND EMR OF AN ELECTRIC VEHICLE» Dr. Walter LHOMME L2EP, University Lille1, MEGEVH

More information

CAUSALITY AND ENERGY. Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) Prof. C. C. Chan (University of Hong-Kong, China)

CAUSALITY AND ENERGY. Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) Prof. C. C. Chan (University of Hong-Kong, China) Aalto University Finland May 2011 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» «SYSTEM, CAUSALITY AND ENERGY» Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France)

More information

«IBC AND BACKSTEPPING CONTROL OF AN ELECTRIC

«IBC AND BACKSTEPPING CONTROL OF AN ELECTRIC EMR 5 Lille June 205 Summer School EMR 5 Energetic Macroscopic Representation «IBC AND BACKSTEPPING CONTROL OF AN ELECTRIC VEHICLE» C. DEPATURE, Prof. A. BOUSCAYROL, Dr. W. LHOMME 2 Prof. L. BOULON, Prof.

More information

«Towards an energetic modeling of a helicopter using EMR and BG»

«Towards an energetic modeling of a helicopter using EMR and BG» EMR 2 Madrid June 202 Joint Summer School EMR 2 Energetic Macroscopic Representation «Towards an energetic modeling of a helicopter using EMR and BG» Phd. Zeineb CHIKHAOUI, Dr. François MALBURET, Dr. Julien

More information

Modelling and control using ENERGETIC MACROSCOPIC REPRESENTATION Application to hybrid electric vehicles and others

Modelling and control using ENERGETIC MACROSCOPIC REPRESENTATION Application to hybrid electric vehicles and others INTERNATIONAL SUMMER SCHOOL EMR 2018 Modelling and control using ENERGETIC MACROSCOPIC REPRESENTATION Application to hybrid electric vehicles and others 13 th 15 th June 2018 Centre for Technology Innovation

More information

DISTRIBUTION AND STRATEGY

DISTRIBUTION AND STRATEGY Polytech Paris Sud June 2014 «ENERGY DISTRIBUTION AND STRATEGY» Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) based on the course of Master Electrical Engineering & sustainable Development

More information

Technical University of Graz, April 2012

Technical University of Graz, April 2012 Technical University of Graz, April 2012 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» Dr. Philippe Barrade*, Dr. Walter LHOMME**, Prof. Alain BOUSCAYROL** * LEI, Ecole Polytechnique

More information

DEDUCED FROM EMR» Prof. B. Lemaire-S , Prof. A. Bouscayrol (Université Lille1, L2EP, France)

DEDUCED FROM EMR» Prof. B. Lemaire-S , Prof. A. Bouscayrol (Université Lille1, L2EP, France) Polytech Paris Sud June 2014 «INVERSION-BASED CONTROL DEDUCED FROM EMR» Prof. B. Lemaire-Semail, Prof. A. Bouscayrol (Université Lille1, L2EP, France) based on the course of Master Electrical Engineering

More information

«EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS»

«EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS» EMR 16 UeS - Longueuil June 016 Summer School EMR 16 Energetic Macroscopic Representation «EMR AND INVERSION-BASED CONTROL OF RENEWABLE ENERGY SYSTEMS» Dr. Walter LHOMME 1, Pr. Loïc BOULON, Dr. Philippe

More information

«Different concepts for Hardware-In-the-Loop simulation»

«Different concepts for Hardware-In-the-Loop simulation» HIL 16 summer school Lille, 1-2 September 2016 http://l2ep.univ-lille1.fr/hil2016/ «Different concepts for Hardware-In-the-Loop simulation» Prof. Alain BOUSCAYROL L2EP, University Lille1, MEGEVH network,

More information

«EMR and inversion-based control of a multi-piezo-actuator system»

«EMR and inversion-based control of a multi-piezo-actuator system» EMR 15 Lille June 2015 Summer School EMR 15 Energetic Macroscopic Representation «EMR and inversion-based control of a multi-piezo-actuator system» Dr. Thanh Hung NGUYEN, Prof. Betty LEMAIRE-SEMAIL, L2EP,

More information

Road Vehicle Dynamics

Road Vehicle Dynamics Road Vehicle Dynamics Table of Contents: Foreword Preface Chapter 1 Introduction 1.1 General 1.2 Vehicle System Classification 1.3 Dynamic System 1.4 Classification of Dynamic System Models 1.5 Constraints,

More information

«SYSTEM, CAUSALITY AND ENERGY

«SYSTEM, CAUSALITY AND ENERGY EMR 14 Coimbra June 2014 Summer School EMR 14 Energetic Macrocopic Repreentation «SYSTEM, CAUSALITY AND ENERGY» Prof. A. Boucayrol, Prof. L. Boulon, Prof. C.C. Chan (L2EP, Univ. Lille1, L2EP, France, IRH,

More information

«EMR of a Supply System for Medical Application»

«EMR of a Supply System for Medical Application» EMR 17 University Lille 1 June 2017 Summer School EMR 17 Energetic Macroscopic Representation «EMR of a Supply System for Medical Application» Prof. Philippe BARRADE HES-SO Valais/Wallis, Switzerland University

More information

Single-track models of an A-double heavy vehicle combination

Single-track models of an A-double heavy vehicle combination Single-track models of an A-double heavy vehicle combination PETER NILSSON KRISTOFFER TAGESSON Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group

More information

«EMR AND INVERSION-BASED CONTROL

«EMR AND INVERSION-BASED CONTROL EMR 17 ille June 2017 Summer School EMR 17 Energetic Macroscopic Representation «EMR AND INVERSION-BASED ONTRO OF RENEWABE ENERGY SYSTEMS» Prof. Betty EMAIRE-SEMAI, Dr. Walter HOMME, Dr. Philippe DEARUE,

More information

DYNAMIC EMULATION OF TIRE/ROAD FRICTION FOR DEVELOPING ELECTRIC VEHICLE CONTROL SYSTEMS

DYNAMIC EMULATION OF TIRE/ROAD FRICTION FOR DEVELOPING ELECTRIC VEHICLE CONTROL SYSTEMS Proceedings of the ASME 29 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 29 August 3 - September 2, 29, San Diego, California, USA

More information

Predictive Cascade Control of DC Motor

Predictive Cascade Control of DC Motor Volume 49, Number, 008 89 Predictive Cascade Control of DC Motor Alexandru MORAR Abstract: The paper deals with the predictive cascade control of an electrical drive intended for positioning applications.

More information

«Modelling of piezoelectric actuators : an EMR approach»

«Modelling of piezoelectric actuators : an EMR approach» EMR 15 Lille Sept. 215 Summer School EMR 15 Energetic Macroscopic Representation «Modelling of piezoelectric actuators : an EMR approach» Dr. C.Giraud-Audine (1), Dr. F. Giraud (2) L2EP, (1) Arts et Métiers

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Planar Multi-body Dynamics of a Tracked Vehicle using Imaginary Wheel Model for Tracks

Planar Multi-body Dynamics of a Tracked Vehicle using Imaginary Wheel Model for Tracks Defence Science Journal, Vol. 67, No. 4, July 2017, pp. 460-464, DOI : 10.14429/dsj.67.11548 2017, DESIDOC Planar Multi-body Dynamics of a Tracked Vehicle using Imaginary Wheel Model for Tracks Ilango

More information

Stabilization of Motion of the Segway 1

Stabilization of Motion of the Segway 1 Stabilization of Motion of the Segway 1 Houtman P. Siregar, 2 Yuri G. Martynenko 1 Department of Mechatronics Engineering, Indonesia Institute of Technology, Jl. Raya Puspiptek-Serpong, Indonesia 15320,

More information

Modeling of Vehicle Dynamics using Matrix-Vector Oriented Calculation in Matlab.

Modeling of Vehicle Dynamics using Matrix-Vector Oriented Calculation in Matlab. CAINE 996, pp 5-2. ISCA, Orlando FL, Dec. 996 Modeling of Vehicle Dynamics using Matrix-Vector Oriented Calculation in Matlab. G. Edzko Smid, Ka C. Cheok and K. Kobayashi Department of Electrical and Systems

More information

Analysis and Design of an Electric Vehicle using Matlab and Simulink

Analysis and Design of an Electric Vehicle using Matlab and Simulink Analysis and Design of an Electric Vehicle using Matlab and Simulink Advanced Support Group January 22, 29 23-27: University of Michigan Research: Optimal System Partitioning and Coordination Original

More information

Closed-form Method to Evaluate Bike Braking Performance

Closed-form Method to Evaluate Bike Braking Performance Human Power ejournal, April 4, 13 Closed-form Method to Evaluate Bike Braking Performance Junghsen Lieh, PhD Professor, Mechanical & Materials Engineering Wright State University, Dayton Ohio 45435 USA

More information

DC Motor Position: System Modeling

DC Motor Position: System Modeling 1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System

More information

Model of a DC Generator Driving a DC Motor (which propels a car)

Model of a DC Generator Driving a DC Motor (which propels a car) Model of a DC Generator Driving a DC Motor (which propels a car) John Hung 5 July 2011 The dc is connected to the dc as illustrated in Fig. 1. Both machines are of permanent magnet type, so their respective

More information

Modeling a powertrain in Simscape in a modular vehicle component model library. Stuttgart, , MBtech, Jörn Bader

Modeling a powertrain in Simscape in a modular vehicle component model library. Stuttgart, , MBtech, Jörn Bader Modeling a powertrain in Simscape in a modular vehicle component model library Stuttgart, 24.09.2015, MBtech, Jörn Bader Contents { Introduction initial situation { Driving performance and consumption

More information

Low Complexity MPC Schemes for Integrated Vehicle Dynamics Control Problems

Low Complexity MPC Schemes for Integrated Vehicle Dynamics Control Problems AVEC 8 Low Complexity MPC Schemes for Integrated Vehicle Dynamics Control Problems Paolo Falcone, a Francesco Borrelli, b H. Eric Tseng, Jahan Asgari, Davor Hrovat c a Department of Signals and Systems,

More information

Sloshing cargo in silo vehicles

Sloshing cargo in silo vehicles Journal of Mechanical Science and Technology 23 (29) 968~973 Journal of Mechanical Science and Technology www.springerlink.com/content/738-494x DOI.7/s226-9-323-6 Sloshing cargo in silo vehicles Florian

More information

Modeling of Electromechanical Systems

Modeling of Electromechanical Systems Page 1 of 54 Modeling of Electromechanical Systems Werner Haas, Kurt Schlacher and Reinhard Gahleitner Johannes Kepler University Linz, Department of Automatic Control, Altenbergerstr.69, A 4040 Linz,

More information

Lecture 6 mechanical system modeling equivalent mass gears

Lecture 6 mechanical system modeling equivalent mass gears M2794.25 Mechanical System Analysis 기계시스템해석 lecture 6,7,8 Dongjun Lee ( 이동준 ) Department of Mechanical & Aerospace Engineering Seoul National University Dongjun Lee Lecture 6 mechanical system modeling

More information

Example: DC Motor Speed Modeling

Example: DC Motor Speed Modeling Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and open-loop response Physical setup and system equations A common actuator in

More information

DYNAMIC MODELLING AND IDENTIFICATION OF A CAR. Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson*

DYNAMIC MODELLING AND IDENTIFICATION OF A CAR. Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson* DYNAMIC MODELLING AND IDENTIFICATION OF A CAR Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson* *P.S.A. Peugeot Citroën Direction Plates-formes, Techniques et Achats Route de Gisy 78943

More information

Computational and mathematical modeling of an industrialautomobile robot: a multi-purpose case of study

Computational and mathematical modeling of an industrialautomobile robot: a multi-purpose case of study Issue 2, Volume 5, 2011 91 Computational and mathematical modeling of an industrialautomobile robot: a multi-purpose case of study J. Alejandro Betancur Abstract Nowadays, in automobile industry are found

More information

3 Mathematical modeling of the torsional dynamics of a drill string

3 Mathematical modeling of the torsional dynamics of a drill string 3 Mathematical modeling of the torsional dynamics of a drill string 3.1 Introduction Many works about torsional vibrations on drilling systems [1, 12, 18, 24, 41] have been published using different numerical

More information

Physical Modelling with Simscape Rick Hyde

Physical Modelling with Simscape Rick Hyde Physical Modelling with Simscape Rick Hyde 1 2013 The MathWorks, Inc. Outline Part 1: Introduction to Simscape Review approaches to modelling Overview of Simscape-based libraries Introduction to physical

More information

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law, Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information

More information

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005 Simple Car Dynamics Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, and CMLabs Simulations, Montréal, Canada May 18, 2005 Typeset by FoilTEX May 16th 2005 Outline basics of vehicle dynamics different

More information

Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Closed-form Solution

Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Closed-form Solution Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Closed-form Solution Alexander Viehweider Dept. of Advanced Energy The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan

More information

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Physical Setup A common actuator in control systems is the

More information

Backstepping based approach for the combined longitudinal-lateral vehicle control

Backstepping based approach for the combined longitudinal-lateral vehicle control Intelligent Vehicles Symposium Alcalá de Henares, Spain, June 3-7, Backstepping based approach for the combined longitudinal-lateral vehicle control Lamri Nehaoua and Lydie Nouvelière Abstract This paper

More information

Section 2.2 : Electromechanical. analogies PHILIPE HERZOG AND GUILLAUME PENELET

Section 2.2 : Electromechanical. analogies PHILIPE HERZOG AND GUILLAUME PENELET Section 2.2 : Electromechanical analogies PHILIPE HERZOG AND GUILLAUME PENELET Paternité - Pas d'utilisation Commerciale - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

More information

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

A MECHANICAL MODEL FOR THE DYNAMICAL CONTACT OF ELASTIC ROUGH BODIES WITH VISCOELASTIC PROPERTIES

A MECHANICAL MODEL FOR THE DYNAMICAL CONTACT OF ELASTIC ROUGH BODIES WITH VISCOELASTIC PROPERTIES 11 th International Conference on Engineering Vibration Ljubljana, Slovenia, 7 10 September 2015 A MECHANICAL MODEL FOR THE DYNAMICAL CONTACT OF ELASTIC ROUGH BODIES WITH VISCOELASTIC PROPERTIES Frank

More information

A SELF-TUNING ABS CONTROL FOR ELECTROMECHANICAL BRAKING SYSTEMS

A SELF-TUNING ABS CONTROL FOR ELECTROMECHANICAL BRAKING SYSTEMS A SELF-TUNING ABS CONTROL FOR ELECTROMECHANICAL BRAKING SYSTEMS Riccardo Morselli Roberto Zanasi DII, University of Modena and Reggio Emilia Via Vignolese 905, 41100 Modena, Italy Phone: +39 59 2056161,

More information

Model-in-the-Loop Tuning of Hitch Control Systems of Agricultural Tractors

Model-in-the-Loop Tuning of Hitch Control Systems of Agricultural Tractors Proceedings of the 75th Internationale Tagung LAND.TECHNIK November 10-11, 2017, Hanover, Germany Model-in-the-Loop Tuning of Hitch Control Systems of Agricultural Tractors Dr. Thomas H. Langer, Danfoss

More information

Modelling the wheels of the Robot MAX2D and surfacing

Modelling the wheels of the Robot MAX2D and surfacing Hochschule Ravensburg-Weingarten Master thesis Modelling the wheels of the Robot MAXD and surfacing Sara Yeni González Endrinal First Supervisor in HS: Prof. Andreas Paczynski Second Supervisor in HS:

More information

Car Dynamics using Quarter Model and Passive Suspension; Part V: Frequency Response Considering Driver-seat

Car Dynamics using Quarter Model and Passive Suspension; Part V: Frequency Response Considering Driver-seat 357 Car Dynamics using Quarter Model and Passive Suspension; Part V: Frequency Response Considering Driver-seat Galal Ali Hassaan Emeritus Professor, Department of Mechanical Design & Production, Faculty

More information

VEHICLE MODELS AND ESTIMATION OF CONTACT FORCES AND TIRE ROAD FRICTION

VEHICLE MODELS AND ESTIMATION OF CONTACT FORCES AND TIRE ROAD FRICTION VEHICLE MODELS AND ESTIMATION OF CONTACT FORCES AND TIRE ROAD FRICTION Nacer K M Sirdi LSIS, CNRS UMR 6168 Dom Univ St Jrme, Av Escadrille Normandie - Niemen 13397 Marseille Cedex 2 France Email nacermsirdi@lsisorg;

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

VEHICLE MODELS AND ESTIMATION OF CONTACT FORCES AND TIRE ROAD FRICTION

VEHICLE MODELS AND ESTIMATION OF CONTACT FORCES AND TIRE ROAD FRICTION VEHICLE MODELS AND ESTIMATION OF CONTACT FORCES AND TIRE ROAD FRICTION Nacer K M Sirdi LSIS, CNRS UMR 6168 Dom Univ St Jrme, Av Escadrille Normandie - Niemen 13397, Marseille Cedex 2, France nacermsirdi@lsisorg;

More information

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile:

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile: Mechanics Objectives: 00UR Discipline: Physics Ponderation: 3-2-3 Course Code: 203-NYA-05 Prerequisite: Sec. V Physics 534, Mathematics 536 (or equivalent) Course Credit: 2 2/3 Corequisite: 00UP (Calculus

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

ET-105(A) : PHYSICS. Show that only an infinitesimal rotation can be regarded as a vector.

ET-105(A) : PHYSICS. Show that only an infinitesimal rotation can be regarded as a vector. No. of Printed Pages : 7 ET-105(A) B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI Term-End Examination June, 2017 ET-105(A)

More information

Dynamic analysis of the Empact CVT Ratio and slip dependent, non-minimum phase dynamics

Dynamic analysis of the Empact CVT Ratio and slip dependent, non-minimum phase dynamics Dynamic analysis of the Empact CVT Ratio and slip dependent, non-minimum phase dynamics T.W.G.L. Klaassen, B.G. Vroemen and M. Steinbuch Eindhoven University of Technology, Department of Mechanical Engineering

More information

NONLINEAR BACKSTEPPING DESIGN OF ANTI-LOCK BRAKING SYSTEMS WITH ASSISTANCE OF ACTIVE SUSPENSIONS

NONLINEAR BACKSTEPPING DESIGN OF ANTI-LOCK BRAKING SYSTEMS WITH ASSISTANCE OF ACTIVE SUSPENSIONS NONLINEA BACKSTEPPING DESIGN OF ANTI-LOCK BAKING SYSTEMS WITH ASSISTANCE OF ACTIVE SUSPENSIONS Wei-En Ting and Jung-Shan Lin 1 Department of Electrical Engineering National Chi Nan University 31 University

More information

Modelling and Control of DWR 1.0 A Two Wheeled Mobile Robot

Modelling and Control of DWR 1.0 A Two Wheeled Mobile Robot APPLICAIONS OF MODELLING AND SIMULAION http://www.ams-mss.org eissn 600-8084 VOL 1, NO. 1, 017, 9-35 Modelling and Control of DW 1.0 A wo Wheeled Mobile obot Nurhayati Baharudin, Mohamad Shukri Zainal

More information

Modeling and Simulation of Flux-Optimized Induction Motor Drive

Modeling and Simulation of Flux-Optimized Induction Motor Drive Research Journal of Applied Sciences, Engineering and Technology 2(6): 603-613, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: July 21, 2010 Accepted Date: August 20, 2010 Published

More information

Modification of a Sophomore Linear Systems Course to Reflect Modern Computing Strategies

Modification of a Sophomore Linear Systems Course to Reflect Modern Computing Strategies Session 3220 Modification of a Sophomore Linear Systems Course to Reflect Modern Computing Strategies Raymond G. Jacquot, Jerry C. Hamann, John E. McInroy Electrical Engineering Department, University

More information

Experimental analysis and modeling of transmission torsional vibrations

Experimental analysis and modeling of transmission torsional vibrations Experimental analysis and modeling of transmission torsional vibrations ENRICO GALVAGNO *, GUIDO RICARDO GUERCIONI, MAURO VELARDOCCHIA Department of Mechanical and Aerospace Engineering (DIMEAS) Politecnico

More information

Verification of model connection by FMI using acausal modeling tools ~ JSAE WG Activities ~

Verification of model connection by FMI using acausal modeling tools ~ JSAE WG Activities ~ Modelica Conference 2017, FMI User Meeting Verification of model connection by FMI using acausal modeling tools ~ JSAE WG Activities ~ Society of Automotive Engineers of Japan (JSAE) Committee of Automotive

More information

Appendix A Prototypes Models

Appendix A Prototypes Models Appendix A Prototypes Models This appendix describes the model of the prototypes used in Chap. 3. These mathematical models can also be found in the Student Handout by Quanser. A.1 The QUANSER SRV-02 Setup

More information

MODEL-BASED ANALYSIS OF WHEEL SPEED VIBRATIONS FOR ROAD FRICTION CLASSIFICATION USING MF-SWIFT. Antoine Schmeitz, Mohsen Alirezaei

MODEL-BASED ANALYSIS OF WHEEL SPEED VIBRATIONS FOR ROAD FRICTION CLASSIFICATION USING MF-SWIFT. Antoine Schmeitz, Mohsen Alirezaei MODEL-BASED ANALYSIS OF WHEEL SPEED VIBRATIONS FOR ROAD FRICTION CLASSIFICATION USING MF-SWIFT Antoine Schmeitz, Mohsen Alirezaei CONTENTS Introduction Road friction classification from wheel speed vibrations

More information

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Che Kun Law, Darshit Dalal, Stephen Shearrow A robust Model Predictive Control (MPC) approach for controlling front steering of

More information

ENGINEERING MECHANICS: STATICS AND DYNAMICS

ENGINEERING MECHANICS: STATICS AND DYNAMICS ENGINEERING MECHANICS: STATICS AND DYNAMICS Dr. A.K. Tayal ENGINEERING MECHANICS STATICS AND DYNAMICS A.K. Tayal Ph. D. Formerly Professor Department of Mechanical Engineering Delhi College of Engineering

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

Methodology for modeling, parameter estimation, and validation of powertrain torsional vibration

Methodology for modeling, parameter estimation, and validation of powertrain torsional vibration Methodology for modeling, parameter estimation, and validation of powertrain torsional vibration Abstract Neda Nickmehr, Lars Eriksson, and Jan Åslund Dep. of Electrical Engineering, Linköping University,

More information

Tire/road contact modeling for the in-vehicle noise prediction

Tire/road contact modeling for the in-vehicle noise prediction Tire/road contact modeling for the in-vehicle noise prediction Trong Dai VU 1,2 ; Hai Ping YIN 1 ; Denis DUHAMEL 1 ; Arnaud GAUDIN 2 ; Zouhir ABBADI 2 1 Université Paris-Est, Laboratoire Navier (CNRS-ENPC-IFSTTAR),

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 1 / 42 CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, November 27, 2012 2 / 42 KINETIC

More information

DYNAMICS OF ELECTROMECHANICAL DRIVE OF SUSPENDED TIMBERTRANSPORTING ROPE SYSTEM

DYNAMICS OF ELECTROMECHANICAL DRIVE OF SUSPENDED TIMBERTRANSPORTING ROPE SYSTEM Technical Sciences, 2016, 19(3) 245 256 DYNAMICS OF ELECTROMECHANICAL DRIVE OF SUSPENDED TIMBERTRANSPORTING ROPE SYSTEM Lidiya Dzyuba 1, Vasyl Baryliak 2 1 Department of Applied Mathematics and Mechanics,

More information

Mechatronics Engineering. Li Wen

Mechatronics Engineering. Li Wen Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

More information

IMPACT OF ROAD SURFACE ROUGHNESS AND ENGINE TORQUE ON THE LOAD OF AUTOMOTIVE TRANSMISSION SYSTEM

IMPACT OF ROAD SURFACE ROUGHNESS AND ENGINE TORQUE ON THE LOAD OF AUTOMOTIVE TRANSMISSION SYSTEM International Journal of echanical Engineering and Technology (IJET) Volume 10, Issue 02, February 2019, pp. 1752 1761, Article ID: IJET_10_02_181 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijet&vtype=10&itype=2

More information

Influence of Rotor Structure and Number of Phases on Torque and Flux Weakening Characteristics of V-Shape Interior PM Electrical Machine

Influence of Rotor Structure and Number of Phases on Torque and Flux Weakening Characteristics of V-Shape Interior PM Electrical Machine Influence of Rotor Structure and Number of Phases on Torque and Flux Weakening Characteristics of V-Shape Interior PM Electrical Machine Bassel Aslan, Julien Korecki, Thimoté Vigier, Eric Semail To cite

More information

A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY. Gridsada Phanomchoeng

A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY. Gridsada Phanomchoeng State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Gridsada

More information

Prediction and Prevention of Tripped Rollovers

Prediction and Prevention of Tripped Rollovers Prediction and Prevention of Tripped Rollovers Final Report Prepared by: Gridsada Phanomchoeng Rajesh Rajamani Department of Mechanical Engineering University of Minnesota CTS 12-33 Technical Report Documentation

More information

Cork Institute of Technology. Summer 2007 Mechanics of Machines (Time: 3 Hours)

Cork Institute of Technology. Summer 2007 Mechanics of Machines (Time: 3 Hours) Cork Institute of Technology Bachelor of Engineering (Honours) in Mechanical Engineering- Award Instructions Answer FOUR questions. All questions carry equal marks. (NFQ Level 8) Summer 2007 Mechanics

More information

COMPOSITE REPRESENTATION OF BOND GRAPHS AND BLOCK DIAGRAMS FOR CONTROLLED SYSTEMS

COMPOSITE REPRESENTATION OF BOND GRAPHS AND BLOCK DIAGRAMS FOR CONTROLLED SYSTEMS COMPOSITE REPRESENTATION OF BOND GRAPHS AND BLOCK DIAGRAMS FOR CONTROLLED SYSTEMS Engr. Lubna Moin Dr. Vali Uddin (e-mail: engr_lubna@yahoo.com) (e-mail v_uddin@hotmail.com) National University of Sciences

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass Step Response

Car Dynamics using Quarter Model and Passive Suspension, Part VI: Sprung-mass Step Response IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 2, Ver. 1 (Mar Apr. 2015), PP 65-74 www.iosrjournals.org Car Dynamics using Quarter Model and Passive

More information

1820. Selection of torsional vibration damper based on the results of simulation

1820. Selection of torsional vibration damper based on the results of simulation 8. Selection of torsional vibration damper based on the results of simulation Tomasz Matyja, Bogusław Łazarz Silesian University of Technology, Faculty of Transport, Gliwice, Poland Corresponding author

More information

Real-Time Implementation of a LQR-Based Controller for the Stabilization of a Double Inverted Pendulum

Real-Time Implementation of a LQR-Based Controller for the Stabilization of a Double Inverted Pendulum Proceedings of the International MultiConference of Engineers and Computer Scientists 017 Vol I,, March 15-17, 017, Hong Kong Real-Time Implementation of a LQR-Based Controller for the Stabilization of

More information

Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Electrical Networks

Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Electrical Networks Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Dr. SWISS FEDERAL INSTITUTE OF TECHNOLOGY Electrical Engineering Department, Laboratory of Electromechanics

More information

Analysis of Electric DC Drive Using Matlab Simulink and SimPower Systems

Analysis of Electric DC Drive Using Matlab Simulink and SimPower Systems Analysis of Electric DC Drive Using Matlab Simulink and SimPower Systems Miklosevic, Kresimir ; Spoljaric, Zeljko & Jerkovic, Vedrana Department of Electromechanical Engineering Faculty of Electrical Engineering,

More information

Modeling and simulation aspects of AC machines

Modeling and simulation aspects of AC machines ARCHIVES OF ELECRICAL ENGINEERING VOL. 65(), pp. 35-36 (06) DOI 0.55/aee-06-003 Modeling and simulation aspects of AC machines MICHAEL POPP, PARICK LAZA, WOLFGANG MAHIS Leibniz Universität Hannover Institute

More information

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil ICRA '07 Space Robotics Workshop 14 April, 2007 Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil Kazuya Yoshida and Keiji Nagatani Dept. Aerospace Engineering Graduate

More information

A STUDY ON THE BASIC CONTROL OF SPEED RATIO OF THE CVT SYSTEM USED FOR ELECTRIC VEHICLES

A STUDY ON THE BASIC CONTROL OF SPEED RATIO OF THE CVT SYSTEM USED FOR ELECTRIC VEHICLES A STUDY ON THE BASIC CONTROL OF SPEED RATIO OF THE CVT SYSTEM USED FOR ELECTRIC VEHICLES A. Yildiz, O. Kopmaz Uludag University, Engineering Faculty, Mechanical Engineering Department, 1659 Gorukle Campus,

More information

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 1-3, 007 331 Vehicle Stability Improvement Base on Electronic Differential Using

More information