Hawking Radiation as Tunneling

Size: px
Start display at page:

Download "Hawking Radiation as Tunneling"

Transcription

1 Hawking Radiation as Tunneling Chis H. Fleming May 5, 5 Abstact This is a pesentation of a pape by Paikh and Wilczek[] wheein they deive Hawking adiation fom paticles tunneling though the event hoizon of a black hole. The motivation is to povide a moe mechanistic o heuistic-fiendly deivation of Hawking adiation as a tunneling phenomena. A key featue of this teatment is that a dynamical geomety is used the black hole mass is allowed to vay) with consevation of enegy stictly enfoced. This gives ise to highe ode tems in the Hawking adiance! It is thought that a black hole cannot be pecisely themal, because the mass of the black hole changes as it adiates. These highe ode tems impose enegy coections fo ω not so small, whee ω is the enegy of M the adiated paticle and M is the mass of the black hole. Intoduction The common heuistic explanation of Hawking adiation being caused by pai poduction nea the hoizon whee a negative enegy paticle falls in and the positive enegy paticle is adiated out is used as the key mechanism in this deivation of black hole adiation. Beneath the event hoizon thee is a space-like killing vecto. This allows negative enegy states. These states ae classically esticted to the inteio of the event hoizon. But they can tunnel out Quantum Mechanically. This causes pai ceation with a positive enegy paticle outgoing and a negative enegy antipaticle ingoing[]. Paikh and Wilczek conside two possible scenaios. Pai poduction can occu just inside the hoizon with a positive enegy paticle tunneling out and the pai poduction can occu just outside the event hoizon with a negative enegy paticle tunneling in. Classically speaking a paticle inside the event hoizon of a blackhole is tapped within and cannot escape. We conside a thin shell of enegy ω tunneling though the event hoizon and escaping to an outgoing geodesic. The I do not stictly follow the method of Paikh and Wilczek. Instead of taking the WKB esult to be tue, namely ψ exp ī h dxp, I deive the fomula beginning with a minimally coupled scala field. As a esult I immediately get the ingoing and outgoing, paticle and antipaticle wavefunctions and am able to use fewe ticks initially.

2 tunneling pocess will be teated semiclassically with the tansmission coefficient detemined, via WKB method, fom the classical action of the paticle. Method. Nonsingula Coodinates The fist step is to choose coodinates which ae not singula acoss the hoizon. A tansfomation is made fom Schwazschild to Painlevé coodinates. This was ou fist homewok assignment. Beginning with Schwazschild coodinates, we shift Schwazchild time t S by a function of, f). ds = ) dt S + ) d + dω ) t S = t + f) ) ds = ) dt f ) ) dtd 3) + ) f ) ) ) d + dω 4) Next the metic is made to be spheical fo constant time slices. This fixes f) and ids us of the singulaity. f ) = ) = ds =.. Radial, Null Geodesics ) f ) ) 5) 6) ) dt + dtd + d + dω 7) With the new metic we can now solve fo the only cuves that ae both adial and null. ) ds = 8) dt = ) + ṙ + ṙ 9) ṙ = ± )

3 Whee the ± accounts fo the outgoing ṙ > ) and ingoing ṙ < ) geodesics when outside the event hoizon. When inside the event hoizon, both geodesics ae ingoing. These cuves ae obviously null ays in the asymptotically flat space fa away fom the black hole.. WKB Appoximation Conside the s-wave of a minimally coupled scala field fo an abitay metic. We begin the WKB appoximation by casting the field as an exponential and explicitly sepaating the eal and imaginay pats which give the amplitude and the phase. h φ = m φ ) φx) = e T x)+ısx) ) T + ıs) + T + ı S) = m h 3) T + T ) S) = m h 4) S + S T = 5) As this is a semiclassical appoximation, we expand both T and S as a powe seies in h. They must stat at least with an h tem o the equations cannot be satisfied. T x) = h T x) + ht x) + h T x) + ) Sx) = h S x) + hs x) + h S x) + ) 6) 7) The zeo th ode tems ae as follows. T ) S ) = m 8) T S = 9) In the WKB appoximation we set the amplitude to be slowly vaying as compaed to the phase, T =. S ) = m ) Now let us solve fo S fo a massless field given ou choice of metic. g µν = ) ) 3

4 g µν = = ) S S t = S t + ± ) ) S S ) 3) 4) = S t + ṙ S ) d S = ±ω t ṙ 5) 6) Whee the tem in equation [4] we ecognize as ṙ fo the adial, null geodesic. Via saddle point appoximation the semiclassical kenel K, that popagates the paticle between x and x in configuation space, can now be evaluated. K = N e ī h S x x 7) S hee acts as the classically evaluated action note that it does indeed have units of action). Paikh and Wilczek will efe to it as such. We can use standad esults of the WKB method fo the calculation of the tansmission coefficient fo tunneling though a potential baie that would be fobidden by classical law. The WKB method is used to find solutions befoe, in, and afte the classically fobidden egion. The coefficients ae matched fo continiuty and the esulting tansmission coefficient is Γ = e h Im S x x 8) Whee x and x denote the beginning and the end of the classically fobidden egion..3 Tunneling.3. Paticle Channel Conside pai poduction occuing just beneath the event hoizon with the positive enegy paticle tunneling out. Hee is a diagam of the heuistic pocess. 4

5 + ω IN OUT 7 R With espect to the vacuum, this is an occupied negative enegy state that is tunneling out causing the pai ceation pocess.[] We ae looking fo the imaginay pat of the action ove the classically fobidden egion. out in d p 9) out d p in dp 3) Fist the classical momentum is expanded into an integal. Next Hamilton s equation is used to tansfom vaiables fom momentum to enegy. dh dp = ṙ 3) out in d M ω M dh ṙ 3) In this last equation we have used the fact that if the paticles have tunneled out, then the black hole will have lost some enegy ω. Next we switch integation vaiables fom H to the paticle enegy ω. H = M ω 33) dh = dω 34) out in d ω dω ) ṙ 35) Fom my deivation of the WKB solution, we could have come to equation [35] in two steps. Nomally it would not occu to expand the enegy out into an integal. What this will do is continuously tunnel the paticle though the event hoizon as opposed to all at once. The authos do not mention this and because of thei diffeent oute in deivation I am inclined to believe that they 5

6 may not be awae of it. The affect of this will be coect highe ode tems in the Hawking adiance. Im S = ±Im Im S = ± ω out in d ω ṙ out dω d ṙ in 36) 37) Now because the paticle is tunneling out, we use the outgoing null geodesic and what is the closest thing to an outgoing geodesic within the event hoizon. It is almost as if thee is a classical tuning point just beneath the hoizon, asymptotically in the infinite past. Though tuely these ae not classical tuning points, but the WKB appoximation does not cae. The action becomes imaginay and we can match coefficients in the thee egions. That is all that mattes. We also take the initial point to be just inside the event hoizon. We take the final point to be just outside the event hoizon as well, but it must be taken into account that with the black hole losing enegy, the event hoizon is in a diffeent location afte the paticle has tunneled out. Finally, self gavitation of the shell of enegy is taken into account eplacing M with M ω in the metic in which the paticle tavels. This esult is deived by Kaus and Wilczek[3]. M ω ) ṙ = + 38) in = ɛ 39) out = M ω) + ɛ 4) Im S = Im ω M ω) d ω dω M ω ) 4) Im S = π dω 4M ω ) 4) Im S = 4πω M ω ) 43) In equation [4] the contou integal is a ight-handed semicicle aound the pole by defoming the contou down on the E plane. This gives a pefacto of πı. This gives a positive tempeatue. A second calculation will now be pefomed whee the integals will be evaluated in evese ode. This will easset the choice of out as the coect choice. out in d M ω M de E 44) 6

7 out Im S = π d ) 45) ɛ out = 4M ImS) π 46) out = M ω)) 47) In equation [44] the contou integal is a ight-handed semicicle aound the pole by defoming the contou down on the E plane. This gives a pefacto of πı. This calculation shows that the value of out is consistent with the pevious calculation of the imaginay pat of the action. Note that the fist calculation did not depend on pecise location of out, but only that it encompassed a pole along with in. Equation [8] of Wilczek and Paikh[] contains an typesetting eo. The last tem has both the ı stiped out and Im applied. Doing both sets the tem to zeo and nullifies the equality..3. Antipaticle Channel Now conside pai poduction occuing just outside the event hoizon with the negative enegy paticle tunneling in, in evese time. Mathematically this is the exact same pocess as the fist, the integals will come out to be exactly the same. Physically thee is no eason that this would be esticted to antipaticles and the othe channel esticted to paticles. I think the pape is confusing how negative enegy paticles ae intepeted in QFT with the eally negative enegy states that can occu when you have a space-like killing vecto fo t. This is the evese-time diagam fo the actual calculation that is made. + ω IN OUT 7 7 R Hee is what I think would actually have to happen, in fowad time, fo any of this to make sense. 7

8 + ω IN 7 OUT 7 R Positive enegy must be coming out in fowad time fo the black hole to be shinking. The pai ceation is also stated to occu outside the event hoizon. This leaves the negative enegy paticle to necessaily fall, not tunnel, but fall into the black hole. And now on to the calculation. Fist let us switch to the evesed time metic. ds = ) dt + dtd + d + dω 48) t R = t 49) ds = ) dt R dt Rd + d + dω 5) ṙ R = ± + 5) Now we must choose the incoming geodesic. And we must note to add to the mass of the black hole to take into account the self gavitation of the paticle. ṙ R = + Im S = Im M + ω ) in out d in out d M+ω M ω M+ω) ω d dh ṙ dω ) ṙ ω dω + M+ω ) 5) 53) 54) 55) Im S = π dω M + ω ) 56) Im S = 4πω M ω ) 57) 8

9 .4 Hawking Radiation To combine the two contibutions Paikh and Wilczek simply add the amplitudes of the Feynman diagams. Howeve the channels ae stated to be fo paticle and antipaticle, so that wouldn t be allowable. But eally both channels could be fo eithe and both. But none of this mattes any way because we will get the same exponential tem. Γ e Im S T otal 58) e 8πωM ω ) 59) Fo small enegy ω, this educes to, e 8πMω, a Boltzmann facto fo enegy ω at the Hawking tempeatue 8πM.4. The Highe Ode Tem The highe ode tem enfoces enegy consevation. Fistly conside the effective tempeatue. The negative sign ensues that the tempeatue 8πM ω ) inceases with adiation. Secondly conside if the emitted paticle takes all of the mass of the black hole with it. This would have a tansmission ate of Γω = M) e 4πM 6) Thee can only be one of these outgoing states. But thee ae e S BH, whee S BH is the Bekenstein-Hawking entopy, states in total, so the pobability of finding that states is one in that numbe o P ω = M) e S BH 6) P ω = M) e A 4 6) P ω = M) e 4πM 63) So the highe ode coection is in ageement with the Bekenstein-Hawking entopy..5 Chaged Black Holes It is a tivial extension to conside unchaged adiation fom chaged black holes. We begin with the coesponding Panlevé coodinates and then calculate thei adial, null geodesics. ds = ) + Q dt + Q dtd + d + dω 64) 9

10 is H = M ± M Q 65) ṙ = ± Q 66) The imaginay pat of the action fo the outgoing, positive enegy paticle ω out dω ) in d 67) M ω ) Q A change of vaiables befoe the esidue is taken can simplify this integal geatly. u = M ω ) Q 68) du = u dω 69) M ω) Q out u du d 7) Q in u M ω)+ M ω) Q Im S = π d 7) M+ M Q Im S = π M+ M Q 7) M ω)+ M ω) Q Im S = π ω M ω ) 73) M ω) M ω) Q M )) M Q 74) Γ e Im S 75) Γ e π ωm ω ) M ω) )) M ω) Q M M Q 76) This equation [76] is incoectly multiplied by in Paikh and Wilczek. In the next step we will taylo expand the exponent and take the linea tems to find the Hawking tempeatue. We have Γ = e βω+α ω +α 3 ω 3 + M + ) M Q 77) β H = π M Q 78).5. Highe Ode Tems A simila analysis of the highe ode tems was not given in the pape. I attempting to calculate the shell enegy ω associated with a pobability of in

11 the numbe of states, one will find that it must be the case that Q = o the conditions cannot be satisfied. Such a pocess of unchaged adiation fom a chaged black hole cannot happen. 3 Discussion 3. Results Using the humble tools of WKB tunneling, the Hawking tempeatue is deived fo chaged and unchaged black holes. The dynamical geomety, along with continuous tunneling eveals highe ode tems which enfoce enegy consevation and ae in ageement with the Bekenstein-Hawking entopy. 3. Futhe Reseach It may o may not be impotant to note that the limit of ω compaable to M has been investigated, and yet the paticle is teated semiclassically while the metic is only teated classically. Pehaps it would be wise to conside using the Wheele-DeWitt equation, combining the Hamiltonians fo the metic and paticle, given that the metic can only vay by M. I have just begone the most udimentay investigation and have discoveed this so fa. The Painlevé coodinates aleady natually foliate space and time in the manne needed to use the WDW equation. Howeve the 3-metic q ij is simply the flat spheical metic. The Hamiltonian constaint is identically zeo even though you may vay M in time. What is lost ae the suface integals fom the action. This contibutes to the WDW equation in a most cuious manne. This has all been investigated befoe by Teitelboim and I am just beginning to ead his papes. Refeences [] Maulik K. Paikh and Fank Wilczek Hawking Radiation As Tunneling axiv:hep-th/997 [] Thibaut Damou and Remo Ruffini Black-hole evapoation in the Klein-Saute-Heisenbeg-Eule fomalism Physical Review D, Volume 4, Numbe, page 33 [3] Pe Kaus and Fank Wilczek Self-Inteaction Coection to Black Hole Radiance axiv:g-qc/9483

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2 Intenational Confeence on Engineeing Management Engineeing Education and Infomation Technology (EMEEIT 015) The tunneling spectum of Einsein Bon-Infeld Black Hole J Tang1 W Ren Y Han3 1 Aba teaches college

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

Partition Functions. Chris Clark July 18, 2006

Partition Functions. Chris Clark July 18, 2006 Patition Functions Chis Clak July 18, 2006 1 Intoduction Patition functions ae useful because it is easy to deive expectation values of paametes of the system fom them. Below is a list of the mao examples.

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Hawking Radiation Seminar Talk

Hawking Radiation Seminar Talk Hawking Radiation Semina Talk Julius Eckhad, Max Lautsch June 9, 205 In this talk on Hawking Radiation we will fist motivate why we have to intoduce the counteintuitive concept of a black hole tempeatue

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

arxiv:gr-qc/ v1 29 Jan 1998

arxiv:gr-qc/ v1 29 Jan 1998 Gavitational Analog of the Electomagnetic Poynting Vecto L.M. de Menezes 1 axiv:g-qc/9801095v1 29 Jan 1998 Dept. of Physics and Astonomy, Univesity of Victoia, Victoia, B.C. Canada V8W 3P6 Abstact The

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

BLACK HOLES IN STRING THEORY

BLACK HOLES IN STRING THEORY Black holes in sting theoy N Sadikaj & A Duka Pape pesented in 1 -st Intenational Scientific Confeence on Pofessional Sciences, Alexande Moisiu Univesity, Dues Novembe 016 BLACK OLES IN STRING TEORY NDRIÇIM

More information

arxiv:gr-qc/ v1 1 Sep 2005

arxiv:gr-qc/ v1 1 Sep 2005 Radial fall of a test paticle onto an evapoating black hole Andeas Aste and Dik Tautmann Depatment fo Physics and Astonomy, Univesity of Basel, 456 Basel, Switzeland E-mail: andeas.aste@unibas.ch June

More information

The Schwarzschild Solution

The Schwarzschild Solution The Schwazschild Solution Johannes Schmude 1 Depatment of Physics Swansea Univesity, Swansea, SA2 8PP, United Kingdom Decembe 6, 2007 1 pyjs@swansea.ac.uk Intoduction We use the following conventions:

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

Classical Worm algorithms (WA)

Classical Worm algorithms (WA) Classical Wom algoithms (WA) WA was oiginally intoduced fo quantum statistical models by Pokof ev, Svistunov and Tupitsyn (997), and late genealized to classical models by Pokof ev and Svistunov (200).

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

Single Particle State AB AB

Single Particle State AB AB LECTURE 3 Maxwell Boltzmann, Femi, and Bose Statistics Suppose we have a gas of N identical point paticles in a box of volume V. When we say gas, we mean that the paticles ae not inteacting with one anothe.

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

arxiv:hep-th/ v2 11 Nov 2004

arxiv:hep-th/ v2 11 Nov 2004 Gibbons-Maeda-de Sitte Black Holes Chang Jun Gao 1 Shuang Nan Zhang 1,2,3,4 1 Depatment of Physics and Cente fo Astophysics, Tsinghua Univesity, Beijing 100084, Chinamailaddess) 2 Physics Depatment, Univesity

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

Hawking radiation from Kerr Newman Kasuya black hole via quantum anomalies

Hawking radiation from Kerr Newman Kasuya black hole via quantum anomalies Vol 17 No 6, June 008 c 008 Chin. Phys. Soc. 1674-1056/008/1706/31-05 Chinese Physics B and IOP Publishing Ltd Hawking adiation fom Ke Newman Kasuya black hole via quantum anomalies He Tang-Mei a, Fan

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

Hawking Radiation. Alex Fontana

Hawking Radiation. Alex Fontana Hawking Radiation Alex Fontana In this epot the aim is to undestand the behaviou of a Schwazshild Black Hole in a context whee quantum field fluctuations ae taken into account. We ae going to see how to

More information

Earth and Moon orbital anomalies

Earth and Moon orbital anomalies Eath and Moon obital anomalies Si non è veo, è ben tovato Ll. Bel axiv:1402.0788v2 [g-qc] 18 Feb 2014 Febuay 19, 2014 Abstact A time-dependent gavitational constant o mass would coectly descibe the suspected

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Related Rates - the Basics

Related Rates - the Basics Related Rates - the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

A Hartree-Fock Example Using Helium

A Hartree-Fock Example Using Helium Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty June 6 A Hatee-Fock Example Using Helium Cal W. David Univesity of Connecticut, Cal.David@uconn.edu Follow

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

The Strain Compatibility Equations in Polar Coordinates RAWB, Last Update 27/12/07

The Strain Compatibility Equations in Polar Coordinates RAWB, Last Update 27/12/07 The Stain Compatibility Equations in Pola Coodinates RAWB Last Update 7//7 In D thee is just one compatibility equation. In D polas it is (Equ.) whee denotes the enineein shea (twice the tensoial shea)

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler 3 Adiabatic Invaiants and Action-Angle Vaiables Michael Fowle Adiabatic Invaiants Imagine a paticle in one dimension oscillating back and foth in some potential he potential doesn t have to be hamonic,

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a)

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a) Why Pofesso Richad Feynman was upset solving the Laplace equation fo spheical waves? Anzo A. Khelashvili a) Institute of High Enegy Physics, Iv. Javakhishvili Tbilisi State Univesity, Univesity St. 9,

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Physics 161: Black Holes: Lecture 5: 22 Jan 2013

Physics 161: Black Holes: Lecture 5: 22 Jan 2013 Physics 161: Black Holes: Lectue 5: 22 Jan 2013 Pofesso: Kim Giest 5 Equivalence Pinciple, Gavitational Redshift and Geodesics of the Schwazschild Metic 5.1 Gavitational Redshift fom the Schwazschild metic

More information

Gravitational Memory?

Gravitational Memory? Gavitational Memoy? a Petubative Appoach T. Haada 1, Depatment of Physics, Waseda Univesity, Shinjuku, Tokyo 169-8555, Japan B.J. Ca 2,andC.A.Goyme 3 Astonomy Unit, Queen May and Westfield College, Univesity

More information

Light Time Delay and Apparent Position

Light Time Delay and Apparent Position Light Time Delay and ppaent Position nalytical Gaphics, Inc. www.agi.com info@agi.com 610.981.8000 800.220.4785 Contents Intoduction... 3 Computing Light Time Delay... 3 Tansmission fom to... 4 Reception

More information

Non-Linear Dynamics Homework Solutions Week 2

Non-Linear Dynamics Homework Solutions Week 2 Non-Linea Dynamics Homewok Solutions Week Chis Small Mach, 7 Please email me at smach9@evegeen.edu with any questions o concens eguading these solutions. Fo the ececises fom section., we sketch all qualitatively

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

arxiv: v1 [gr-qc] 27 Mar 2015

arxiv: v1 [gr-qc] 27 Mar 2015 On analytic solutions of wave equations in egula coodinate systems on Schwazschild backgound Dennis Philipp and Volke Pelick ZARM, Univesity of Bemen, 8359 Bemen, Gemany (Dated: Mach 30, 015) axiv:1503.08101v1

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

Transverse Wakefield in a Dielectric Tube with Frequency Dependent Dielectric Constant

Transverse Wakefield in a Dielectric Tube with Frequency Dependent Dielectric Constant ARDB-378 Bob Siemann & Alex Chao /4/5 Page of 8 Tansvese Wakefield in a Dielectic Tube with Fequency Dependent Dielectic Constant This note is a continuation of ARDB-368 that is now extended to the tansvese

More information

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity Solving Poblems of Advance of Mecuy s Peihelion and Deflection of Photon Aound the Sun with New Newton s Fomula of Gavity Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: Accoding to

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

Chem 453/544 Fall /08/03. Exam #1 Solutions

Chem 453/544 Fall /08/03. Exam #1 Solutions Chem 453/544 Fall 3 /8/3 Exam # Solutions. ( points) Use the genealized compessibility diagam povided on the last page to estimate ove what ange of pessues A at oom tempeatue confoms to the ideal gas law

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Study Rev. Adv. on -D Mate. shock Sci. wave 33 (13) pessue 111-118 model in mico scale lase shock peening 111 STUDY ON -D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Y.J. Fan 1, J.Z. Zhou,

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

The Precession of Mercury s Perihelion

The Precession of Mercury s Perihelion The Pecession of Mecuy s Peihelion Owen Biesel Januay 25, 2008 Contents 1 Intoduction 2 2 The Classical olution 2 3 Classical Calculation of the Peiod 4 4 The Relativistic olution 5 5 Remaks 9 1 1 Intoduction

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Def: given incident flux nv particles per unit area and unit time. (n is density and v speed of particles)

Def: given incident flux nv particles per unit area and unit time. (n is density and v speed of particles) 8 Scatteing Theoy I 8.1 Kinematics Poblem: wave packet incident on fixed scatteing cente V () with finite ange. Goal: find pobability paticle is scatteed into angle θ, φ fa away fom scatteing cente. Solve

More information

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by Poblem Pat a The nomal distibution Gaussian distibution o bell cuve has the fom f Ce µ Calculate the nomalization facto C by equiing the distibution to be nomalized f Substituting in f, defined above,

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

Such objects are called black holes, and there is extremely strong circumstantial evidence that they exist.

Such objects are called black holes, and there is extremely strong circumstantial evidence that they exist. Chapte 11 Spheical black holes One of the most spectacula consequences of geneal elativity is the pediction that gavitational fields can become so stong that they can effectively tap even light. Space

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations MATH 415, WEEK 3: Paamete-Dependence and Bifucations 1 A Note on Paamete Dependence We should pause to make a bief note about the ole played in the study of dynamical systems by the system s paametes.

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole Spheical Solutions due to the Exteio Geomety of a Chaged Weyl Black Hole Fain Payandeh 1, Mohsen Fathi Novembe 7, 018 axiv:10.415v [g-qc] 10 Oct 01 1 Depatment of Physics, Payame Noo Univesity, PO BOX

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Radiating Systems. (Dated: November 22, 2013) I. FUNDAMENTALS

Radiating Systems. (Dated: November 22, 2013) I. FUNDAMENTALS Classical Electodynamics Class Notes Radiating Systems (Dated: Novembe 22, 213) Instucto: Zoltán Tooczkai Physics Depatment, Univesity of Note Dame I. FUNDAMENTALS So fa we studied the popagation of electomagnetic

More information

Conformal transformations + Schwarzschild

Conformal transformations + Schwarzschild Intoduction to Geneal Relativity Solutions of homewok assignments 5 Confomal tansfomations + Schwazschild 1. To pove the identity, let s conside the fom of the Chistoffel symbols in tems of the metic tenso

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00 Peliminay Exam: Quantum Physics /4/ 9:-: Answe a total of SIX questions of which at least TWO ae fom section A and at least THREE ae fom section B Fo you answes you can use eithe the blue books o individual

More information