Angular Momentum Properties

Size: px
Start display at page:

Download "Angular Momentum Properties"

Transcription

1 Cheistry 460 Fall 017 Dr. Jean M. Standard October 30, 017 Angular Moentu Properties Classical Definition of Angular Moentu In classical echanics, the angular oentu vector L is defined as L = r p, (1) where r corresponds to the position vector and p is the (linear) oentu vector. The cartesian coponents of the angular oentu vector, L x, L y, and L z, can be expressed in ters of the coponents of position and oentu using the definition of the cross product, L x = yp z zp y () L y = zp x xp z (3) L z = xp y yp x. (4) The square of the agnitude of the angular oent vector, L, is defined as for any vector as the su of the squares of the coponents, L = L x + L y + L z. (5) The agnitude L of the angular oentu vector is therefore the square root of the relation in Eq. (5), L = L x + L y + L # z 1/. (6) Angular Moentu Operators To construct quantu echanical operators for angular oentu, the basic rules for constructing operators are eployed: coordinates are transfored into ultiply by operators, and oenta are transfored into derivative operators using the relation ˆp k = i, k = x, y, or z. (7) k Using the rules for operator construction, the angular oentu coponent operators becoe ˆL x = ŷˆp z ẑˆp y = i y z z % ' (8) # y & ˆL y = ẑˆp x ˆxˆp z = i z x x % ' (9) # z & ˆL z = ˆxˆp y ŷˆp x = i x y y % '. (10) # x &

2 The operator for the square of the angular oentu also ay be constructed, ˆL = ˆLx + ˆL y + ˆL z. (11) Note that there is no ˆL operator in quantu echanics. Since quantu echanical operators ust be linear operators, the square root in the classical definition precludes the use of the agnitude L as an operator. Spherical Polar Coordinates The angular oentu is closely related to the angular variables θ and φ of the spherical polar coordinate syste. A point r, θ, φ ( ) in the cartesian axis syste is shown in Fig. 1. Figure 1. Diagra illustrating the spherical polar coordinates r, q, and h. The equations relating cartesian coordinates ( x, y, z) and spherical polar coordinates ( r, θ, φ) are x = r sinθ cosφ y = r sinθ sinφ z = r cosθ. (1) The ranges of the coordinates are 0 r, 0 θ π, and 0 < φ π. Solving for r, θ, φ yields ( ) in ters of ( x, y, z) r = ( x + y + z ) 1/ (13) θ = cos 1 z # x + y + z ( ) 1/ % ' ' &' (14) φ = tan 1 y % '. (15) # x &

3 The angular oentu coponent operators also ay be expressed in ters of spherical polar coordinates, 3 ˆL x = i sinφ % cotθ cosφ ' (16) # θ φ & ˆL y = i cosφ % cotθ sinφ ' (17) # θ φ & ˆL z = i φ. (18) The square of the angular oentu operator also ay be expressed in spherical polar coordinates, ˆ L = x + y + z = & ( ' θ + cotθ θ + 1 sin θ φ ) +. (19) * Coutators The coponents of the angular oentu operators do not coute, [ x, y ] = i z [ y, z ] = i x [ z, x ] = i y. (0) However, each of the coponents coute with the square of the angular oentu, [, x ] =, ˆ [ L y ] = ˆ [ L, z ] = 0. (1) Since and z coute, they can possess a set of siultaneous eigenfunctions. However, since x and y do not coute with z, they cannot possess the sae set of eigenfunctions as z and. Angular Moentu Eigenvalue Equations The angular oentu eigenvalue equations are ˆL Y l ( θ,φ) = l( l +1) Y l ( θ,φ) () ˆL z Y l ( θ,φ) = Y l ( θ,φ). (3) Here, l and are integers, with l = 0, 1,, and = 0, ±1, ±,, ± l. The integer l is known as the angular oentu quantu nuber and is known as the agnetic, or aziuthal, quantu nuber. The functions Y l θ,φ ( ) are known as spherical haronics, and they are discussed in ore detail below.

4 Eigenfunctions of Angular Moentu The eigenfunctions of the angular oentu operators are the spherical haronics, 4 Y l ( θ,φ) = ( 1) ( l +1) 4π ( l ) ( l + ) 1/ P l ( cosθ) e iφ. (4) In Eq. (4), the phase factor 1 functions, ( ) is oitted for < 0. The functions P l ( cosθ ) are associated Legendre P l 1 ( u) = l l ( 1 u) / d l+ du l+ The associated Legendre functions obey the recursion forula ( ) P l+1 ( l +1) u P l ( u) = l +1 ( u 1) l. (5) ( ) P l 1 ( u) + l + The first several associated Legendre polynoials are listed in the table below. ( u). (6) ( ) ( ) 1/ ( ) P 0 0 ( u) = 1 P 0 1 ( u) = u 0 1 P ( u) = 3u 1 1 P 1 ( u) = 1 u ( ) 1/ 1 P ( u) = 3u 1 u P u ( ) = 3 1 u As with any quantu echanical eigenfunctions, the spherical haronic functions are orthonoral, π ( θ,φ) Y l ( θ,φ) sinθ dθ dφ = δ l 'l δ '. (7) π 0 0 * Y l'' Raising and Lowering Operators The angular oentu raising and lowering operators ˆ L + and ˆ L are defined as ˆL + = ˆL x + i ˆL y (8) ˆL = ˆL x i ˆL y. (9) In spherical polar coordinates, the raising and lowering operators becoe ˆL + = e iφ θ icotθ % ' (30) # φ & ˆL = e iφ θ + icotθ % '. (31) # φ &

5 Soe useful coutators involving the raising and lowering operators are 5 ˆL, ˆL+ # = ˆL, ˆL # = 0 ˆL +, ˆL # = ˆL z ˆL z, ˆL+ # = ˆL + ˆL z, ˆL # = ˆL. (3) The raising and lowering operators + and have the following effects on the eigenfunctions Y l ( θ,φ), ˆL + Y l θ,φ ˆL Y l θ,φ ( ) = l( l +1) ( +1) # % 1/ Yl,+1 θ,φ ( ) = l( l +1) ( 1) ( ) (33) # 1/ % Yl, 1 ( θ,φ ). (34) Note that the raising operator raises the agnetic quantu nuber by one and the lowering operator lowers by one, but the operators have no effect on the angular oentu quantu nuber l.

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2 Chapter 6: The Rigid Rotator * Energy Levels of the Rigid Rotator - this is the odel for icrowave/rotational spectroscopy - a rotating diatoic is odeled as a rigid rotator -- we have two atos with asses

More information

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Lecture 8 Syetries, conserved quantities, and the labeling of states Angular Moentu Today s Progra: 1. Syetries and conserved quantities labeling of states. hrenfest Theore the greatest theore of all ties

More information

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z.

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z. Angular momentum is an important concept in quantum theory, necessary for analyzing motion in 3D as well as intrinsic properties such as spin Classically the orbital angular momentum with respect to a

More information

On the summations involving Wigner rotation matrix elements

On the summations involving Wigner rotation matrix elements Journal of Matheatical Cheistry 24 (1998 123 132 123 On the suations involving Wigner rotation atrix eleents Shan-Tao Lai a, Pancracio Palting b, Ying-Nan Chiu b and Harris J. Silverstone c a Vitreous

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

Eigenvalues of the Angular Momentum Operators

Eigenvalues of the Angular Momentum Operators Eigenvalues of the Angular Moentu Operators Toda, we are talking about the eigenvalues of the angular oentu operators. J is used to denote angular oentu in general, L is used specificall to denote orbital

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

All you need to know about QM for this course

All you need to know about QM for this course Introduction to Eleentary Particle Physics. Note 04 Page 1 of 9 All you need to know about QM for this course Ψ(q) State of particles is described by a coplex contiguous wave function Ψ(q) of soe coordinates

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

THE RIGID ROTOR. mrmr= + m K = I. r 2 2. I = m 1. m + m K = Diatomic molecule. m 1 r 1. r 2 m 2. I moment of inertia. (center of mass) COM K.E.

THE RIGID ROTOR. mrmr= + m K = I. r 2 2. I = m 1. m + m K = Diatomic molecule. m 1 r 1. r 2 m 2. I moment of inertia. (center of mass) COM K.E. 5.6 Fall 4 Lecture #7-9 page Diatoic olecule THE RIGID ROTOR r r r r rr= (center of ass) COM r K.E. K = r r K = I ( = r r ) I oent of inertia I = r r = µ r µ = (reduced ass) K = µ r = µv z Prob l e reduced

More information

Vector Spherical Harmonics

Vector Spherical Harmonics Vector Spherica Haronics Lecture Introduction Previousy we have seen that the Lapacian operator is different when operating on a vector or a scaar function. We avoided this probe by etting the Lapacian

More information

Scattering and bound states

Scattering and bound states Chapter Scattering and bound states In this chapter we give a review of quantu-echanical scattering theory. We focus on the relation between the scattering aplitude of a potential and its bound states

More information

Fun With Carbon Monoxide. p. 1/2

Fun With Carbon Monoxide. p. 1/2 Fun With Carbon Monoxide p. 1/2 p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results C V (J/K-mole) 35 30 25

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x = 0,

More information

A complete set of ladder operators for the hydrogen atom

A complete set of ladder operators for the hydrogen atom A copete set of adder operators for the hydrogen ato C. E. Burkhardt St. Louis Counity Coege at Forissant Vaey 3400 Persha Road St. Louis, MO 6335-499 J. J. Leventha Departent of Physics University of

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

5.2. Example: Landau levels and quantum Hall effect

5.2. Example: Landau levels and quantum Hall effect 68 Phs460.nb i ħ (-i ħ -q A') -q φ' ψ' = + V(r) ψ' (5.49) t i.e., using the new gauge, the Schrodinger equation takes eactl the sae for (i.e. the phsics law reains the sae). 5.. Eaple: Lau levels quantu

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

More On Carbon Monoxide

More On Carbon Monoxide More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations of CO 1 / 26 More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations

More information

3 Angular Momentum and Spin

3 Angular Momentum and Spin In this chapter we review the notions surrounding the different forms of angular momenta in quantum mechanics, including the spin angular momentum, which is entirely quantum mechanical in nature. Some

More information

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 7 Prof. Steven Errede LECTURE NOTES 7

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 7 Prof. Steven Errede LECTURE NOTES 7 UIUC Physics 435 EM Fields & Sources I Fall Seester, 7 Lecture Notes 7 Prof. Steven Errede LECTURE NOTES 7 LAPLACE S EQUATION As we have seen in previous lectures, very often the priary task in an electrostatics

More information

Sample Quantum Chemistry Exam 2 Solutions

Sample Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 7 Dr. Jean M. Standard Name SAMPE EXAM Sample Quantum Chemistry Exam Solutions.) ( points) Answer the following questions by selecting the correct answer from the choices provided. a.)

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor A Quantum Mechanical Model for the Vibration and Rotation of Molecules Harmonic Oscillator Rigid Rotor Degrees of Freedom Translation: quantum mechanical model is particle in box or free particle. A molecule

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

The Slepian approach revisited:

The Slepian approach revisited: he Slepian approach revisited: dealing with the polar gap in satellite based geopotential recovery Oliver Baur, Nico Sneeuw Geodätisches Institut Universität Stuttgart 3 rd GOCE user workshop 6-8 Noveber

More information

Effects of an Inhomogeneous Magnetic Field (E =0)

Effects of an Inhomogeneous Magnetic Field (E =0) Effects of an Inhoogeneous Magnetic Field (E =0 For soe purposes the otion of the guiding centers can be taken as a good approxiation of that of the particles. ut it ust be recognized that during the particle

More information

Quantum Chemistry Exam 2 Take-home Solutions

Quantum Chemistry Exam 2 Take-home Solutions Cheistry 60 Fall 07 Dr Jean M Standard Nae KEY Quantu Cheistry Exa Take-hoe Solutions 5) (0 points) In this proble, the nonlinear variation ethod will be used to deterine an approxiate solution for the

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009 ME 5 - Machine Design I Spring Seester 009 Nae Lab. Div. FINAL EXAM. OPEN BOOK AND LOSED NOTES. Friday, May 8th, 009 Please use the blank paper for your solutions. Write on one side of the paper only.

More information

arxiv: v2 [hep-th] 16 Mar 2017

arxiv: v2 [hep-th] 16 Mar 2017 SLAC-PUB-6904 Angular Moentu Conservation Law in Light-Front Quantu Field Theory arxiv:70.07v [hep-th] 6 Mar 07 Kelly Yu-Ju Chiu and Stanley J. Brodsky SLAC National Accelerator Laboratory, Stanford University,

More information

Orbital Angular Momentum Eigenfunctions

Orbital Angular Momentum Eigenfunctions Obital Angula Moentu Eigenfunctions Michael Fowle 1/11/08 Intoduction In the last lectue we established that the opeatos J Jz have a coon set of eigenkets j J j = j( j+ 1 ) j Jz j = j whee j ae integes

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2 1 I iediately have 1 q 1 = f( q )q/ q and q = f( q )q/ q. Multiplying these equations by and 1 (respectively) and then subtracting, I get 1 ( q 1 q ) = ( + 1 )f( q )q/ q. The desired equation follows after

More information

Advance P. Chem. Problems (I) Populations, Partition Functions, Particle in Box, Harmonic Oscillators, Angular Momentum and Rigid Rotor

Advance P. Chem. Problems (I) Populations, Partition Functions, Particle in Box, Harmonic Oscillators, Angular Momentum and Rigid Rotor University of Connecticut DigitalCoons@UConn Cheistry Education Materials Departent of Cheistry March 8 Advance P. Che. Probles I) Populations, Partition Functions, Particle in Box, Haronic Oscillators,

More information

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that?

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that? Module #1: Units and Vectors Revisited Introduction There are probably no concepts ore iportant in physics than the two listed in the title of this odule. In your first-year physics course, I a sure that

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

The Lagrangian Method vs. other methods (COMPARATIVE EXAMPLE)

The Lagrangian Method vs. other methods (COMPARATIVE EXAMPLE) The Lagrangian ethod vs. other ethods () This aterial written by Jozef HANC, jozef.hanc@tuke.sk Technical University, Kosice, Slovakia For Edwin Taylor s website http://www.eftaylor.co/ 6 January 003 The

More information

Chapter 6 Aberrations

Chapter 6 Aberrations EE90F Chapter 6 Aberrations As we have seen, spherical lenses only obey Gaussian lens law in the paraxial approxiation. Deviations fro this ideal are called aberrations. F Rays toward the edge of the pupil

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

Physics 401: Quantum Mechanics I Chapter 4

Physics 401: Quantum Mechanics I Chapter 4 Physics 401: Quantum Mechanics I Chapter 4 Are you here today? A. Yes B. No C. After than midterm? 3-D Schroedinger Equation The ground state energy of the particle in a 3D box is ( 1 2 +1 2 +1 2 ) π2

More information

PHYS 404 Lecture 1: Legendre Functions

PHYS 404 Lecture 1: Legendre Functions PHYS 404 Lecture 1: Legendre Functions Dr. Vasileios Lempesis PHYS 404 - LECTURE 1 DR. V. LEMPESIS 1 Legendre Functions physical justification Legendre functions or Legendre polynomials are the solutions

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1)

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1) Tor Kjellsson Stockholm University Chapter 4 4.5 Q. A hydrogen atom starts out in the following linear combination of the stationary states n, l, m =,, and n, l, m =,, : Ψr, 0 = ψ + ψ. a Q. Construct Ψr,

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

6.6 Charge Conjugation Charge Conjugation in Electromagnetic Processes Violation of C in the Weak Interaction

6.6 Charge Conjugation Charge Conjugation in Electromagnetic Processes Violation of C in the Weak Interaction Chapter 6 6.1 Introduction 6.2 Invariance Principle Reminder 6.2.1 Invariance in Classical Mechanics 6.2.2 Invariance in Quantum Mechanics 6.2.3 Continuous Transformations: Translations and Rotations 6.3

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Quantization of the Spins

Quantization of the Spins Chapter 5 Quantization of the Spins As pointed out already in chapter 3, the external degrees of freedom, position and momentum, of an ensemble of identical atoms is described by the Scödinger field operator.

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

Entangling characterization of (SWAP) 1/m and Controlled unitary gates

Entangling characterization of (SWAP) 1/m and Controlled unitary gates Entangling characterization of (SWAP) / and Controlled unitary gates S.Balakrishnan and R.Sankaranarayanan Departent of Physics, National Institute of Technology, Tiruchirappalli 65, India. We study the

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

WYSE Academic Challenge Sectional Physics 2006 Solution Set

WYSE Academic Challenge Sectional Physics 2006 Solution Set WYSE Acadeic Challenge Sectional Physics 6 Solution Set. Correct answer: d. Using Newton s nd Law: r r F 6.N a.kg 6./s.. Correct answer: c. 6. sin θ 98. 3. Correct answer: b. o 37.8 98. N 6. N Using Newton

More information

Summary: angular momentum derivation

Summary: angular momentum derivation Summary: angular momentum derivation L = r p L x = yp z zp y, etc. [x, p y ] = 0, etc. (-) (-) (-3) Angular momentum commutation relations [L x, L y ] = i hl z (-4) [L i, L j ] = i hɛ ijk L k (-5) Levi-Civita

More information

Chapter VI: Motion in the 2-D Plane

Chapter VI: Motion in the 2-D Plane Chapter VI: Motion in the -D Plane Now that we have developed and refined our vector calculus concepts, we can ove on to specific application of otion in the plane. In this regard, we will deal with: projectile

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

Generalized r-modes of the Maclaurin spheroids

Generalized r-modes of the Maclaurin spheroids PHYSICAL REVIEW D, VOLUME 59, 044009 Generalized r-odes of the Maclaurin spheroids Lee Lindblo Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 9115 Jaes R. Ipser

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

Spherical Harmonics on S 2

Spherical Harmonics on S 2 7 August 00 1 Spherical Harmonics on 1 The Laplace-Beltrami Operator In what follows, we describe points on using the parametrization x = cos ϕ sin θ, y = sin ϕ sin θ, z = cos θ, where θ is the colatitude

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

An Overview of the Mechanics of Oscillating Mechanisms

An Overview of the Mechanics of Oscillating Mechanisms Aerican Journal of echanical Engineering, 3, Vol., No. 3, 58-65 Available online at http://pubs.sciepub.co/aje//3/ Science Education Publishing DOI:.69/aje--3- An Overview of the echanics of Oscillating

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators Lecture Spin, orbital, and total angular momentum 70.00 Mechanics Very brief background MATH-GA In 9, a famous experiment conducted by Otto Stern and Walther Gerlach, involving particles subject to a nonuniform

More information

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1 PHY 546: Theoretical Dynaics, Fall 05 Noveber 3 rd, 05 Assignent #, Solutions Graded probles Proble.a) Given the -diensional syste we want to show that is a constant of the otion. Indeed,.b) dd dt Now

More information

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry Spin Dynamics Basic Theory Operators Richard Green SBD Research Group Department of Chemistry Objective of this session Introduce you to operators used in quantum mechanics Achieve this by looking at:

More information

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm.

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm. 1. (a) The aplitude is half the range of the displaceent, or x = 1.0. (b) The axiu speed v is related to the aplitude x by v = ωx, where ω is the angular frequency. Since ω = πf, where f is the frequency,

More information

PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 10: Solutions

PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 10: Solutions PHYS851 Quantum Mechanics I, Fall 009 HOMEWORK ASSIGNMENT 10: Solutions Topics Covered: Tensor product spaces, change of coordinate system, general theory of angular momentum Some Key Concepts: Angular

More information

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS PROBLEMS 5. SSM REASONING According to Equation 21.1, the agnitude of the agnetic force on a oving charge is F q 0 vb sinθ. Since the agnetic field points

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

Classical systems in equilibrium

Classical systems in equilibrium 35 Classical systes in equilibriu Ideal gas Distinguishable particles Here we assue that every particle can be labeled by an index i... and distinguished fro any other particle by its label if not by any

More information

Chapter 10: Collisions

Chapter 10: Collisions PHYS 172: odern echanics Sring 2010 EXA 2 Please check your ultile choice art a.s.a.. (on CHIP). The aer eas will be discarded in one week fro now. Lecture 18 Collisions Read 10.1 10.7 PHYS 172: odern

More information

MA304 Differential Geometry

MA304 Differential Geometry MA304 Differential Geoetry Hoework 4 solutions Spring 018 6% of the final ark 1. The paraeterised curve αt = t cosh t for t R is called the catenary. Find the curvature of αt. Solution. Fro hoework question

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Variations on Backpropagation

Variations on Backpropagation 2 Variations on Backpropagation 2 Variations Heuristic Modifications Moentu Variable Learning Rate Standard Nuerical Optiization Conjugate Gradient Newton s Method (Levenberg-Marquardt) 2 2 Perforance

More information

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL (Del I, teori; 1 p.) 1. In fracture echanics, the concept of energy release rate is iportant. Fro the fundaental energy balance of a case with possible crack growth, one usually derives the equation where

More information

ELG3311: Assignment 3

ELG3311: Assignment 3 LG33: ssignent 3 roble 6-: The Y-connected synchronous otor whose naeplate is shown in Figure 6- has a perunit synchronous reactance of 0.9 and a per-unit resistance of 0.0. (a What is the rated input

More information

CLASS XII CBSE MATHEMATICS INTEGRALS

CLASS XII CBSE MATHEMATICS INTEGRALS Using Partial Fractions LSS XII SE MTHEMTIS INTEGRLS () cos ( sin)(sin ) () ns: log sin sin () () (SE 8) tan (sin ) c Let sin t cos ( t)( t ) t ( )( ) cosθ (sin θ)(5 cos θ) t,,, t (SE 8 OMP) dθ (SE 7)

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

These lecture notes cover 1.8, 1.9, 1.11, 1.12, and most of

These lecture notes cover 1.8, 1.9, 1.11, 1.12, and most of Part I: Introduction Reading assignent: Chapters 1 and 2 These lecture notes cover 1.8, 1.9, 1.11, 1.12, and ost of 2.1 2.4. 1.1 Change of Coordinates A k k j Let A be a vector with coponents (relative

More information

V(R) = D e (1 e a(r R e) ) 2, (9.1)

V(R) = D e (1 e a(r R e) ) 2, (9.1) Cheistry 6 Spectroscopy Ch 6 Week #3 Vibration-Rotation Spectra of Diatoic Molecules What happens to the rotation and vibration spectra of diatoic olecules if ore realistic potentials are used to describe

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

Nuclear Physics (10 th lecture)

Nuclear Physics (10 th lecture) ~Theta Nuclear Physics ( th lecture) Content Nuclear Collective Model: Rainwater approx. (reinder) Consequences of nuclear deforation o Rotational states High spin states and back bending o Vibrational

More information

Name: Partner(s): Date: Angular Momentum

Name: Partner(s): Date: Angular Momentum Nae: Partner(s): Date: Angular Moentu 1. Purpose: In this lab, you will use the principle of conservation of angular oentu to easure the oent of inertia of various objects. Additionally, you develop a

More information

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz.

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. Chapter 5. (a) During siple haronic otion, the speed is (oentarily) zero when the object is at a turning point (that is, when x = +x or x = x ). Consider that it starts at x = +x and we are told that t

More information