Casimir Friction Aleksandr Volokitin Research Center Jülich and Samara State Technical University

Size: px
Start display at page:

Download "Casimir Friction Aleksandr Volokitin Research Center Jülich and Samara State Technical University"

Transcription

1 p 1 Casimir Friction Aleksandr Volokitin Research Center Jülich and Samara State Technical University Fluctuational Electrodynamics Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction Non-Contact Friction Frictional Drag

2 Fluctuation-Dissipation Theorem p 2 mẍ+mω 2 0x+Γẋ = F(t) Γ = (k B T) 1 Re 0 dt ˆF(t)ˆF(0) The detection of single spins by MRFM for: (a) 3D atomic imaging (b) quantum computation Measurements of gravitation force at short length scale Measurements of Casimir forces

3 Rytov s Theory p 3 E = i ω c B H = i ω c D+4π c jf j f i (r)jf k (r ) = ω (2π) 2 ( ) 1 2 +n(ω) ω 2 Imε ik (r,r,ω) n(ω) = [e ω/k BT 1] 1

4 Origin of Non-Contact Friction p 4 AI Volokitin and BNJ Persson, RevModPhys, 79, 1291 (2007)

5 Non-contact Friction Experiment: Stipe BC etal PRL, 87, (2001) F friction = Γv, Γ kg/s at d nm Γ d n with n = 13±03 and n = 05±03, Γ V 2 Theory: AI Volokitin and BNJ Persson, PRB, 73, (2006) p 5

6 p 6 Electronic versus Phononic Friction Experiment: M Kisiel etal Nat Materials, 10, 119 (2011)

7 p 7 Electronic versus Phononic Friction Theory: AI Volokitin and BNJ Persson, PRB, 73, (2006)

8 p 8 Casimir Friction v ω+q v x ω-q v x Pendry JB JPCM 9, (1997) AI Volokitin and BNJ Persson, JPCM, 11, 345 (1999)

9 p 9 Frictional Stress σ xz = 0 dω 2π i=(s,p) d 2 q (2π) 2 q xsgn(ω ) ( n 2 (ω ) n 1 (ω) ) Γ i (ω,q), 1 Γ i (ω,q) = 2k z 1 e 2ikzd R 1i (ω)r 2i (ω ) 2 [ (k z +kz)(1 R 1i (ω) 2 )(1 R 2i (ω 2 ) ] +4(k z kz)imr 1i (ω)imr 2i (ω )e 2dImk z ω = ω q x v, n i (ω) = [exp( ω/k B T i ) 1] 1, k z = (ω/c) 2 q 2 AI Volokitin and BNJ Persson, JPCM, 11, 345 (1999)

10 p 10 Small Velocities v v T = k B Td/, d λ T = c /k B T, γ = 2 8π 3 k B T 0 σ xz = γv, dω sinh( ω/k B T) i=p,s d 2 qq 2 xe 2qd ImR 1i (ω)imr 2i (ω) 1 e 2qd R 1i (ω)r 2i (ω) 2, Γ = dsγ(z(x, y))

11 p 11 Adsorbate enhancement of Casimir friction log Γ (kg/s) log d (Angstrom) Cs/Cu(100) AI Volokitin and BNJ Persson, PRB, 73, (2006)

12 p 12 Radiative Heat Transfer log (S / Jm -2 s -1 ) clean surfaces with adsorbates o log (d / A) K/Cu(001) log (S / 1Jm -2 s -1 ) o log (d / 1A) SiC T 1 = 273 K, T 2 = 0 K Volokitin AI and Persson BNJ PRB, 69, (2004)

13 Two ways to study Casimir friction p 13 v 2 J 2= n 2ev U 1 Left:Upper block is sliding relative to block at the bottom Right: The current is induced in the upper block

14 Frictional Drag in 2D-systems p 14 Layer 1 J 1 d Layer 2 E 2 (J =0) 2 V Theory - Coulomb Drag M B Pogrebenskii SovPhysSecond,11 (1977) 372, P J Price Physica B+C,117 (1983) 750 Experiment - Quantum wells T J Gramila etal PRL,66 (1991) 1216, U Sivan etal PRL,68 (1992) 1196 Experiment - Graphene Sheets S Kim etal PRB,83 (2011) , RV Gorbachev etal NatPhys,8 (2012) 896 Theory - Casimir Friction AI Volokitin and BNJ Persson, JPhys:CondensMatter, 13, 859 (2001); ibid, EPL (2013)

15 Quantum Friction p 15 q x v = ω 1 +ω 2 Pendry JB JPCM 9, (1997) Volokitin AI and Persson BNJ JPCM, 11, 345 (1999) Volokitin AI and Persson BNJ PRB, 78, (2008)

16 Anomalous Doppler Effect p 16 v ω+q v x ω-q v x Normal Doppler effect ω = ω q x v > 0 Anomalous Doppler effect ω = ω q x v<0 Thermal fluctuations dominate at v < v T = k B Td/ Quantum fluctuations dominate at v > v T = k B Td/

17 p 17 Classical Vavilov-Cherenkov Radiation Cherenkov PA Dokl Akad Nauk SSSR, 2, 451 (1934) Resonant condition: q x v = cq/n > v 0 = cq x /n Threshold velocity: v > c/n

18 p 18 Quantum Vavilov-Cherenkov Radiation Frank MI JPhysUSSR, 7, 49 (1943) Doppler effect (a): ω ph = ω 0 g x v > 0 Doppler effect (b): ω 0 g x v < 0;ω ph = q x v ω 0

19 p 19 The Landau criterion for the critical velocity of a superfluid ε(p) p E = Mv2 2 +ε(p) pv ε(p) pv < 0 v > v c = min ( ε(p) p Landau LD, Zh Eksp Teor Fiz 11, 592 (1941) )

20 Radiation at shearing two transparent plates p 20 Pendry JB JMO 45, 2389 (1998) Magreby FM, Golestian R, and Kardar M, PRA 88, (2013) Volokitin AI and Persson BNJ PRB 93, (2016)

21 Non-Relativistic Theory F s 1x [normalized] Resonant condition: ω ph = q x v cq/n = cq/n,v > v 0 = 2c/n F1x s = v 0 π 3 d F s 4 1x [normalized] v/v o R s = (ω/c) 2 q 2 (nω/c) 2 q 2 (ω/c) 2 q 2 + (nω/c) 2 q 2 Magreby FM, Golestian R, and Kardar M, PRA 88, (2013) Volokitin AI and Persson BNJ PRB 93, (2016) p 21

22 Relativistic Theory p F 1x [normalized] F 1x [normalized] v/c v/c ω ph = q x v cq /γn = cq/n,v > v 0 = 2cn/(n 2 +1) Volokitin AI and Persson BNJ PRB 78, (2008) Volokitin AI and Persson BNJ PRB 93, (2016)

23 Radiation From Moving Neutral Particle p 23 2 a) v b) c) v v ω ph = q x v ω 0 /γ = cq/n,v > v 0 = c/n Pieplow G and Henkel C, JPCM 27, (2015) Volokitin AI and Persson BNJ arxivorg/abs/ (2016)

24 Quantum Friction for Particle p 24 log 10 f friction (N) (a) (b) v/c log 10 γ

25 p 25 Polar Dielectric SiO F friction, 10 5 N/m v, 10 5 m/s Resonant condition: ω ph = q x v ω 0 = ω 0 Threshold velocity: v > 2ω 0 /q xmax 2ω 0 d m/s

26 p 26 Graphene on SiO 2 electrode graphene SiO 2 Threshold velocity: v > v F +ω 0 /q xmax v F 10 6 m/s Resonant condition: ω ph = q x v v F q = ω 0 Experiment:Freitag M,Steiner M, Martin Y, Perebeinos V, Chen Z, Tsang JC, and Avouris P, Nano Lett 9, 1883 (2009) Theory:Volokitin AI and Persson BNJ PRL (2011)

27 p 27 Current density-electric field dependence in graphene on SiO 2 16 a) 9 b) 16 T=300 K J (ma/µm) T = 150 K 300 K 450 K J (ma/µm) T=0 K E (V/µm) F x, 10 3 N/m K E (V/µm) v, 10 5 m/s v sat v F 10 6 m/s J sat = en s v sat 1mA/µm

28 Frictional Drag between Graphene Sheets p F x, N/m a) T=600 K 300 K 0 K F x, N/m b) T=300 K 100 K 0 K v, 10 5 m/s v, 10 5 m/s d=1 nm d=10 nm At l v v F induced electric field E = ρ D J = µ 1 v ρ D = Γ (ne) 2 = h πζ(3) e 2 32 ( kb T ǫ F ) 2 1 (k F d) 2 1 (k TF d) 2, F x0 = v 15ζ(5) d 4 128π 2 ( v v F ) 2 1 (k TF d) 2 Volokitin AI and Persson BNJ EPL (2013)

29 p 29 Acoustic Phonon Emission solid 0solid 0 solid 0 d + u - u eq 0 1 z solid 1 σ(x,t) = K[u 0 (x vt,t) u 1 (x,t)], Persson BNJ, Volokitin AI and Ueba H, JPCM (2011)

30 p 30 Acoustic Phonon Emission σ, N/m v, m/s

31 p 31 Summary Casimir friction can be studied using modern experimental setups for observation of frictional drag in graphene systems The challenging problem is to study frictional drag for graphene for strong electric field (large drift velocity) when Casimir friction is dominated by quantum fluctuations (quantum friction) The challenging problem for experimentalists is to develop setup for mechanical detection of Casimir friction using AFM Quantum friction is strongly enhanced above the threshold velocity The threshold velocity is determined by a type of excitations which are responsible for quantum friction

Linear Response in Fluctuational Electrodynamics

Linear Response in Fluctuational Electrodynamics Max Planck Institute Stuttgart Linear Response in Fluctuational Electrodynamics Matthias Krüger Group Members: Artem Aerov Roberta Incardone Moritz Förster MIT - Student: Vladyslav Golyk Collaborators:

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Electromagnetic fluctuations are related to one of the most fundamental phenomena in nature, namely Brownian motion. In [1 4], the nature of this motion is discussed, and its statistical

More information

Singular evanescent wave resonances in moving media

Singular evanescent wave resonances in moving media Singular evanescent wave resonances in moving media Yu Guo and Zubin Jacob* Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G V4, Canada *zjacob@ualberta.ca

More information

On the Foundations of Fluctuation Forces

On the Foundations of Fluctuation Forces On the Foundations of Fluctuation Forces Carsten Henkel 1 and Vanik E. Mkrtchian 2 1 Universität Potsdam, Germany 2 Academy of Sciences, Armenia Progress in Electromagnetic Research Symposium (Stockholm

More information

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Black-hole & white-hole horizons for capillary-gravity waves in superfluids Black-hole & white-hole horizons for capillary-gravity waves in superfluids G. Volovik Helsinki University of Technology & Landau Institute Cosmology COSLAB Particle Particle physics Condensed matter Warwick

More information

Dispersion interactions with long-time tails or beyond local equilibrium

Dispersion interactions with long-time tails or beyond local equilibrium Dispersion interactions with long-time tails or beyond local equilibrium Carsten Henkel PIERS session Casimir effect and heat transfer (Praha July 2015) merci à : G. Barton (Sussex, UK), B. Budaev (Berkeley,

More information

arxiv: v1 [quant-ph] 26 Mar 2014

arxiv: v1 [quant-ph] 26 Mar 2014 CASIMIR FRICTION AT ZERO AND FINITE TEMPERATURES arxiv:1403.6635v1 [quant-ph] 26 Mar 2014 Johan S. Høye 1 Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

More information

Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems

Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems PHYSICAL REVIEW B 73, 16543 006 Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems A. I. Volokitin, 1, B. N. J. Persson, 1 and H. Ueba 3 1 Institut für Festkörperforschung,

More information

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear propagation. Once a tear is identified at low magnification,

More information

Singular evanescent wave resonances in moving media

Singular evanescent wave resonances in moving media Singular evanescent wave resonances in ing media Yu Guo and Zubin Jacob * Department of Electrical and Computer Engineering University of Alberta, Edmonton, AB T6G V4, Canada * zjacob@ualberta.ca Abstract:

More information

Superlight inverse Doppler effect

Superlight inverse Doppler effect Superlight inverse Doppler effect Xihang Shi 1, Xiao Lin 1 *, Ido Kaminer 2*, Fei Gao 1, Zhaoju Yang 1, John D. Joannopoulos 2, Marin Soljačić 2 & Baile Zhang 1,3* 1 Division of Physics and Applied Physics,

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

arxiv: v2 [quant-ph] 3 Aug 2015

arxiv: v2 [quant-ph] 3 Aug 2015 arxiv:1506.03937v2 [quant-ph] 3 Aug 2015 Casimir friction between polarizable particle and half-space with radiation and image damping at zero temperature J. S. Høye 1, I. Brevik 2 and K. A. Milton 3 1

More information

Thermodynamics and energy conversion of near-field thermal radiation: Maximum work and efficiency bounds

Thermodynamics and energy conversion of near-field thermal radiation: Maximum work and efficiency bounds EPJ Web of Conferences 79, 11 (214) DOI: 1.151/epjconf/2147911 C Owned by the authors, published by EDP Sciences, 214 Thermodynamics and energy conversion of near-field thermal radiation: Maximum work

More information

Landau Bogolubov Energy Spectrum of Superconductors

Landau Bogolubov Energy Spectrum of Superconductors Landau Bogolubov Energy Spectrum of Superconductors L.N. Tsintsadze 1 and N.L. Tsintsadze 1,2 1. Department of Plasma Physics, E. Andronikashvili Institute of Physics, Tbilisi 0128, Georgia 2. Faculty

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Photonic crystals, graphene, and new effects in Čerenkov radiation

Photonic crystals, graphene, and new effects in Čerenkov radiation April 2016 Photonic crystals, graphene, and new effects in Čerenkov radiation Ido Kaminer Postdoc with John D. Joannopoulos and Marin Soljačić, MIT Ph.D. with Moti Segev, Technion Marie Curie IOF project

More information

Scaling Anomaly and Atomic Collapse Collective Energy Propagation at Charge Neutrality

Scaling Anomaly and Atomic Collapse Collective Energy Propagation at Charge Neutrality Scaling Anomaly and Atomic Collapse Collective Energy Propagation at Charge Neutrality Leonid Levitov (MIT) Electron Interactions in Graphene FTPI, University of Minnesota 05/04/2013 Scaling symmetry:

More information

Electron-electron interactions and Dirac liquid behavior in graphene bilayers

Electron-electron interactions and Dirac liquid behavior in graphene bilayers Electron-electron interactions and Dirac liquid behavior in graphene bilayers arxiv:85.35 S. Viola Kusminskiy, D. K. Campbell, A. H. Castro Neto Boston University Workshop on Correlations and Coherence

More information

Dust density waves: ion flows and finite temperature effects

Dust density waves: ion flows and finite temperature effects Dust density waves: ion flows and finite temperature effects Edward Thomas, Jr. Physics Department, Auburn University This work is supported by National Science Foundation and the US Department of Energy

More information

arxiv:cond-mat/ v1 13 Jun 1994

arxiv:cond-mat/ v1 13 Jun 1994 MIC Preprint Coulomb Drag as a Probe of Coupled Plasmon Modes in Parallel Quantum Wells arxiv:cond-mat/9406052v1 13 Jun 1994 Karsten Flensberg and Ben Yu-Kuang Hu Mikroelektronik Centret, Danmarks Tekniske

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Basics of non-equilibrium Electrodynamics on the nano-scale

Basics of non-equilibrium Electrodynamics on the nano-scale Basics of non-equilibrium Electrodynamics on the nano-scale C. Henkel Institute of Physics and Astronomy Universität Potsdam, Germany Heat Transfer and Conduction on the Nanoscale WE Heraeus workshop 613

More information

Lei Zhou Physics Department, Fudan University, Shanghai , China

Lei Zhou Physics Department, Fudan University, Shanghai , China Tunable Meta-surfaces for Active Manipulations of Electromagnetic Waves Lei Zhou Physics Department, Fudan University, Shanghai 200433, China phzhou@fudan.edu.cn Acknowledgements Key collaborators Yuanbo

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

ELECTROMAGNETISM SUMMARY

ELECTROMAGNETISM SUMMARY Review of E and B ELECTROMAGNETISM SUMMARY (Rees Chapters 2 and 3) The electric field E is a vector function. E q o q If we place a second test charged q o in the electric field of the charge q, the two

More information

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene Philip Kim Physics Department, Columbia University Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo Canadian Association of Physicists SUPPORTING PHYSICS RESEARCH AND EDUCATION IN CANADA 2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

More information

Near field radiative heat transfer between a sphere and a substrate

Near field radiative heat transfer between a sphere and a substrate Near field radiative heat transfer between a sphere and a substrate Arvind Narayanaswamy Department of Mechanical Engineering, Columbia University, New York, NY 10027. Sheng Shen and Gang Chen Department

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES The purpose of this problem is to develop a simple theory to understand the so-called laser cooling and optical molasses phenomena. This

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Appendix A Spectral Function of Fluctuations of the Electric Fields

Appendix A Spectral Function of Fluctuations of the Electric Fields Appendix A Spectral Function of Fluctuations of the Electric Fields Using 3.33), 3.34) and 3.6), we get E i r)e j r ω = ) ω 8π coth dr dr Imε k B T kl r, r )D ik r, r )D jl r, r ) = ) ω 16π i coth dr dr

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc M D O : 8 / M z G D z F zw z z P Dẹ O B M B N O U v O NO - v M v - v v v K M z z - v v MC : B ; 9 ; C vk C G D N C - V z N D v - v v z v W k W - v v z v O v : v O z k k k q k - v q v M z k k k M O k v

More information

Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Eugene Zaremba Queen s University, Kingston, Ontario, Canada Financial support from NSERC Work done in collaboration with Ed Taylor

More information

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

The Casimir Effect. Notes by Asaf Szulc

The Casimir Effect. Notes by Asaf Szulc The Casimir Effect Notes by Asaf Szulc Introduction The Casimir effect describes the attraction between two perfectly conducting and uncharged parallel plates confined in vacuum. It was the Dutch physicist

More information

Waves and Instabilities in Dusty Plasmas

Waves and Instabilities in Dusty Plasmas 15 th Topical Conference on RF Power in Plasmas May 20 22, 2003 Jackson Hole, Wyoming Waves and Instabilities in Dusty Plasmas Bob Merlino University of Iowa Outline What is a dusty plasma? Where are dusty

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Outline: I. Introduction: materials, transport, Hall effects II. III. IV. Composite particles FQHE, statistical transformations Quasiparticle charge

More information

Quantum limited spin transport in ultracold atomic gases

Quantum limited spin transport in ultracold atomic gases Quantum limited spin transport in ultracold atomic gases Searching for the perfect SPIN fluid... Tilman Enss (Uni Heidelberg) Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München) Technical University

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Nonlinear phenomena at the surface of liquid hydrogen

Nonlinear phenomena at the surface of liquid hydrogen HAIT Journal of Science and Engineering, Volume 1, Issue 2, pp. 348-362 Copyright C 2004 Holon Academic Institute of Technology Nonlinear phenomena at the surface of liquid hydrogen Leonid P. Mezhov-Deglin,

More information

Bulk viscosity in superfluid neutron star cores

Bulk viscosity in superfluid neutron star cores A&A 372, 130 137 2001 DOI: 10.1051/0004-6361:20010383 c ESO 2001 Astronomy & Astrophysics Bulk viscosity in superfluid neutron star cores II. Modified Urca processes in npeµ matter P. Haensel 1,K.P.Levenfish

More information

arxiv:quant-ph/ v2 9 Jun 2005

arxiv:quant-ph/ v2 9 Jun 2005 The Electromagnetic Field Stress Tensor between Dielectric Half-Spaces V. Sopova and L. H. Ford Institute of Cosmology Department of Physics and Astronomy arxiv:quant-ph/54143v 9 Jun 5 Tufts University,

More information

On the Dirty Boson Problem

On the Dirty Boson Problem On the Dirty Boson Problem Axel Pelster 1. Experimental Realizations of Dirty Bosons 2. Theoretical Description of Dirty Bosons 3. Huang-Meng Theory (T=0) 4. Shift of Condensation Temperature 5. Hartree-Fock

More information

Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime September 2010

Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime September 2010 2164-12 Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime 6-10 September 2010 A Phonon-Tunneling Approach to Support-Induced Dissipation of Nanomechanical Resonators Ignacio

More information

On correlation lengths of thermal electromagnetic fields in equilibrium and out of equilibrium conditions

On correlation lengths of thermal electromagnetic fields in equilibrium and out of equilibrium conditions On elation lengths of thermal electromagnetic fields in uilibrium and out of uilibrium conditions Illarion Dorofeyev Institute for Physics of Microstructures Russian Academy of Sciences, GSP-5, Nizhny

More information

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

arxiv: v2 [physics.acc-ph] 18 Feb 2014

arxiv: v2 [physics.acc-ph] 18 Feb 2014 Acceleration of electrons by high intensity laser radiation in a magnetic field Robert Melikian arxiv:1307.5428v2 [physics.acc-ph] 18 Feb 2014 A.I. Alikhanyan National Science Laboratory, Alikhanyan Brothers

More information

C c V Det. V Emi. C Self R S,E

C c V Det. V Emi. C Self R S,E Z( ) ( ) S I,Em (A /Hz) S V,Det (V /Hz) SUPPLEMENTARY INFORMATION: DETECTING NOISE WITH SHOT NOISE USING ON-CHIP PHOTON DETECTOR SUPPLEMENTARY FIGURES (a) V Emi C c V Det S I,Emi R E S I,SE C Self R S,E

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

An introduction to vibrational properties of glass models

An introduction to vibrational properties of glass models An introduction to vibrational properties of glass models Simona ISPAS simona.ispas@univ-montp2.fr Laboratoire Charles Coulomb, Dépt. Colloïdes, Verres et Nanomatériaux, UMR 522 Université Montpellier

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures F. Amet, 1 J. R. Williams, 2 A. G. F. Garcia, 2 M. Yankowitz, 2 K.Watanabe, 3 T.Taniguchi, 3 and D. Goldhaber-Gordon

More information

BREMSSTRAHLUNG IN A THIN LAYER OF MATTER AT HIGH ENERGY

BREMSSTRAHLUNG IN A THIN LAYER OF MATTER AT HIGH ENERGY BREMSSTRAHLUNG IN A THIN LAYER OF MATTER AT HIGH ENERGY S.P. Fomin, A.S. Fomin, N.F. Shul ga Akhiezer Institute for Theoretical Physics National Science Center Kharkov Institute of Physics & Technology

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localised ferromagnetism: moments localised in real space Ferromagnet

More information

Weak Link Probes and Space-Time Translation Symmetry Breaking

Weak Link Probes and Space-Time Translation Symmetry Breaking Weak Link Probes and Space-Time Translation Symmetry Breaking Frank Wilczek Center for Theoretical Physics, MIT, Cambridge MA 02139 USA August 10, 2013 Abstract Intermittent weak link (Josephson type)

More information

le LPTMS en Bretagne... photo extraite du site

le LPTMS en Bretagne... photo extraite du site le LPTMS en Bretagne... 1 photo extraite du site http://www.chateau-du-val.com le LPTMS en Bretagne... 1 2 Quantum signature of analog Hawking radiation in momentum space Nicolas Pavloff LPTMS, CNRS, Univ.

More information

From Critical Phenomena to Holographic Duality in Quantum Matter

From Critical Phenomena to Holographic Duality in Quantum Matter From Critical Phenomena to Holographic Duality in Quantum Matter Joe Bhaseen TSCM Group King s College London 2013 Arnold Sommerfeld School Gauge-Gravity Duality and Condensed Matter Physics Arnold Sommerfeld

More information

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003 Writing Spin in a Quantum Dot with Ferromagnetic and Superconducting Electrodes arxiv:cond-mat/0303v [cond-mat.mes-hall] 4 Jan 003 Yu Zhu, Qing-feng Sun, and Tsung-han Lin, State Key Laboratory for Mesoscopic

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012759 TITLE: Low-Dimensional Electron Semiconductor Structures as Tunable Far-Infrared Amplifiers and Generators DISTRIBUTION:

More information

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

Heat conduction and phonon localization in disordered harmonic lattices

Heat conduction and phonon localization in disordered harmonic lattices Heat conduction and phonon localization in disordered harmonic lattices Anupam Kundu Abhishek Chaudhuri Dibyendu Roy Abhishek Dhar Joel Lebowitz Herbert Spohn Raman Research Institute NUS, Singapore February

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

Plasmons, Surface Plasmons and Plasmonics

Plasmons, Surface Plasmons and Plasmonics Plasmons, Surface Plasmons and Plasmonics Plasmons govern the high frequency optical properties of materials since they determine resonances in the dielectric function ε(ω) and hence in the refraction

More information

Superfluid Heat Conduction in the Neutron Star Crust

Superfluid Heat Conduction in the Neutron Star Crust Superfluid Heat Conduction in the Neutron Star Crust Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma arxiv:0807.4754 Thermal Conduction

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Casimir and Casimir-Polder forces in chiral and non-reciprocal media

Casimir and Casimir-Polder forces in chiral and non-reciprocal media Casimir and Casimir-Polder forces in chiral and non-reciprocal media Stefan Yoshi Buhmann, Stefan Scheel, David Butcher Quantum Optics and Laser Science Blackett Laboratory, Imperial College London, UK

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Magneto-plasmonic effects in epitaxial graphene

Magneto-plasmonic effects in epitaxial graphene Magneto-plasmonic effects in epitaxial graphene Alexey Kuzmenko University of Geneva Graphene Nanophotonics Benasque, 4 March 13 Collaborators I. Crassee, N. Ubrig, I. Nedoliuk, J. Levallois, D. van der

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #5 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1 Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred rectangular

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Casimir energy & Casimir entropy

Casimir energy & Casimir entropy Workshop HBAR-KB, Grenoble, 29/09-01/10/2014 Casimir energy & Casimir entropy Astrid Lambrecht, Serge Reynaud, Romain Guérout, Gabriel Dufour, Laboratoire Kastler Brossel, Paris with M.-T. Jaekel (LPTENS

More information

Superfluidity and Supersolidity in 4 He

Superfluidity and Supersolidity in 4 He Superfluidity and Supersolidity in 4 He Author: Lars Bonnes Supervisor: Lode Pollet Proseminar Theoretische Physik: Phase Transitions SS 07 18.06.2007 Superfluid Liquid Helium Motivation Two-fluid Model

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 67 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

arxiv: v3 [quant-ph] 26 Mar 2009

arxiv: v3 [quant-ph] 26 Mar 2009 No quantum friction between uniformly moving plates arxiv:0810.3750v3 quant-ph] 26 Mar 2009 1. Introduction T G Philbin and U Leonhardt School of Physics and Astronomy, University of St Andrews, North

More information

arxiv: v3 [hep-ph] 13 Jul 2011

arxiv: v3 [hep-ph] 13 Jul 2011 IL NUOVO CIMENTO Vol.?, N.?? arxiv:1102.5281v3 [hep-ph] 13 Jul 2011 Doppler effect in the oscillator radiation process in the medium Lekdar Gevorgian( 1 ) and Valeri Vardanyan( 2 ) ( 1 ) Theory Department,

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 16, 17 (8:3 a.m. - 9:45 a.m.) PLACE: RB 11 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions: This

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Nanomechanics II. Why vibrating beams become interesting at the nanoscale. Andreas Isacsson Department of Physics Chalmers University of Technology

Nanomechanics II. Why vibrating beams become interesting at the nanoscale. Andreas Isacsson Department of Physics Chalmers University of Technology Nanomechanics II Why vibrating beams become interesting at the nanoscale Andreas Isacsson Department of Physics Chalmers University of Technology Continuum mechanics Continuum mechanics deals with deformation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.123 Ultra-strong Adhesion of Graphene Membranes Steven P. Koenig, Narasimha G. Boddeti, Martin L. Dunn, and J. Scott Bunch* Department of Mechanical Engineering,

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

arxiv: v1 [cond-mat.other] 11 Sep 2008

arxiv: v1 [cond-mat.other] 11 Sep 2008 arxiv:0809.1990v1 [cond-mat.other] 11 Sep 2008 Momentum deficit in quantum glasses A.F. Andreev Kapitza Institute for Physical Problems, Russian Academy of Sciences, Kosygin Str. 2, Moscow, 119334 Russia

More information

CHANNELING 2014 CHARGED & NEUTRAL PARTICLES CHANNELING PHENOMENA, Capri (Napoli), Italy, October 5-10, 2014

CHANNELING 2014 CHARGED & NEUTRAL PARTICLES CHANNELING PHENOMENA, Capri (Napoli), Italy, October 5-10, 2014 CHANNELING 2014 CHARGED & NEUTRAL PARTICLES CHANNELING PHENOMENA, Capri (Napoli), Italy, October 5-10, 2014 Spontaneous and Induced Radiation of Relativistic Electrons/Positrons in Natural and Photonic

More information

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials ECE8: Nano-Plasonics and Its Applications Week8 Negative Refraction & Plasonic Metaaterials Anisotropic Media c k k y y ω μ μ + Dispersion relation for TM wave isotropic anisotropic k r k i, S i S r θ

More information

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation Radiation Damping Lecture 18 1 Introduction to the Abraham-Lorentz equation Classically, a charged particle radiates energy if it is accelerated. We have previously obtained the Larmor expression for the

More information