PHYS 445 Lecture 3 - Random walks at large N 3-1

Size: px
Start display at page:

Download "PHYS 445 Lecture 3 - Random walks at large N 3-1"

Transcription

1 PHYS 445 Lecture 3 - andom walks at large N 3 - Lecture 3 - andom walks at large N What's Important: random walks in the continuum limit Text: eif D andom walks at large N As the number of steps N in a walk becomes very large, the individual step sizes in n become relatively small. Further, the difference in values of W(n between successive values of n becomes small as well. The proof of how the difference scales with N is given in eif. For our purposes, the important point is that we can regard n and W(n as continuous at large N. To obtain a continuous description of W(n, consider its form near its most likely value at n W(n n n At the peak of the distribution, its derivative with respect to n vanishes dw = 0 or n d lnw = 0 n Let's expand W(n or its logarithm around n using where n = n +. as an expansion parameter, Choosing the logarithm, for example, we have lnw (n = lnw ( n + B + B +... (3. where B i = d i lnw i n At the maximum in W, the coefficient B = 0 by definition. The coefficients B i can be obtained from the discrete expression for W in terms of factorials. Start with the definition lnw(n = lnn! - lnn! - ln(n-n! + n lnp + (N-n lnq, so 00 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

2 PHYS 445 Lecture 3 - andom walks at large N 3 - d lnw (n = 0 d lnn! d ln(n n! +lnp lnq. (3. Now, the derivatives of the factorials can be approximated by d lnn! ln(n +! lnn! (n +! = ln = ln(n + lnn (3.3 n! Thus, Eq. (3. becomes d lnw (n = lnn +ln(n n + ln p q (3.4 where care has been taken with the sign of the derivative of ln(n-n! Eq. (3.4 gives an expression for B, which can be used to obtain n = Np (3.5 by setting B = 0. Of course, we already know Eq. (3.5 from general considerations of the random walk. Pressing on to extract B, we first take another derivative of W: d lnw (n = d lnn +ln(n n +ln p q = n = n +( + 0 N n N n We evaluate this at n = n = Np to determine B B = d lnw (n = Np N Np = N p + p = N p + p p( p = N pq n = n N n (3.6 (3.7 Higher-order terms in B are smaller by successive powers of N and are not important for our level of approximation. 00 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

3 PHYS 445 Lecture 3 - andom walks at large N 3-3 Thus, inserting B and B into the expansion (3. gives lnw (n = lnw ( n Npq With the definition W W ( n this expression yields W(n = W e /Npq (3.8 The implications of this Gaussian form will be discussed momentarily. But first, we obtain an expression for the prefactor by means of the normalization condition W ( n + d = where we assume that N is so large that the integration limits are effectively infinite. Substituting Eq. (3.8 for W(n gives = W e /Npq d = W (Npq / e x dx = W (Npq / π Inverting W = (πnpq / (3.9 The proof for the value of the integral is Define C = - exp(-y dy so that C = - exp(-x dx - exp(-y dy = exp[-(x +y ]dx dy = 0 π d 0 exp(-r r dr = π (/ o exp(-z dz (z = r = π. Thus, C = π. At long last, we have the complete form, after substituting W(n = (πnpq exp (n Np / Npq = n - n = n - Np : ( by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

4 PHYS 445 Lecture 3 - andom walks at large N 3-4 An alternate form is to write this in terms of n and its dispersion n = Npq so that W(n = (π n exp (n n (3. / n This distribution is of a Gaussian form, peaked at its mean value. We've done this for a number, which is a special case of the Gaussian probability density (x P(x = exp (3. π defined such that the probability of a variable x having a value between x and x + dx is P(x dx. Identifying parameters in the distributions leads to = n = n. (3.3 P(x µ x Note that the full width at half maximum IS NOT but rather.355. The distribution in displacements is also Gaussian. To find P(m, which is the probability of m steps to the right, use N = n + n L and m = n - n L to give n = (N + m /. Thus, P(m =W (n = [N +m]/ = (πnpq exp ([N +m]/ Np / Npq = (πnpq exp (m N[p (3.4 q] / 8Npq Now, P(m is the probability of finding a given value of m in an ensemble of walks with N steps. If we wish m to be continuous, rather than discrete, then we must work with probability densities: [probability of finding y in the range y to y + dy] = [probability density at y] [range dy] 00 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

5 PHYS 445 Lecture 3 - andom walks at large N 3-5 or [probability of finding y in the range y to y + dy] = P(y dy. As applied to random walks, this becomes P(n = W(n = (/W(n dm where the last equality arises from dm = d (n N = In other words, because m increases by units for every increase in n by one unit: [probability of finding n between n r and n + ] = [probability of finding m between m and m + ] The same argument can be repeated to give probabilities as a function of x, which has dimensions of length. Let the step size be l, so [probability of finding n between n and n + ] = [probability of finding x between x and x + l] or P(x dx = [W(n / l] dx. ( by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

PHYS120 Lecture 19 - Friction 19-1

PHYS120 Lecture 19 - Friction 19-1 PHYS120 Lecture 19 - riction 19-1 Demonstrations: blocks on planes, scales, to ind coeicients o static and kinetic riction Text: ishbane 5-1, 5-2 Problems: 18, 21, 28, 30, 34 rom Ch. 5 What s important:

More information

Probability Distributions - Lecture 5

Probability Distributions - Lecture 5 Probability Distributions - Lecture 5 1 Introduction There are a number of mathematical models of probability density functions that represent the behavior of physical systems. In this lecture we explore

More information

Errata to: A Guide to First-Passage Processes

Errata to: A Guide to First-Passage Processes Errata to: A Guide to First-Passage Processes Cambridge University Press, 00 Sidney Redner August, 04 Chapter :. Page. The second paragraph should read: To make these questions precise and then answer

More information

Physics Sep Example A Spin System

Physics Sep Example A Spin System Physics 30 7-Sep-004 4- Example A Spin System In the last lecture, we discussed the binomial distribution. Now, I would like to add a little physical content by considering a spin system. Actually this

More information

Chapter 2: Statistical Methods. 4. Total Measurement System and Errors. 2. Characterizing statistical distribution. 3. Interpretation of Results

Chapter 2: Statistical Methods. 4. Total Measurement System and Errors. 2. Characterizing statistical distribution. 3. Interpretation of Results 36 Chapter : Statistical Methods 1. Introduction. Characterizing statistical distribution 3. Interpretation of Results 4. Total Measurement System and Errors 5. Regression Analysis 37 1.Introduction The

More information

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer.

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer. . Correct The Mistake Determine whether these equations are false, and if so write the correct answer. ( x ( x (a ln + ln = ln(x (b e x e y = e xy (c (d d dx cos(4x = sin(4x 0 dx xe x = (a This is an incorrect

More information

MTH135/STA104: Probability

MTH135/STA104: Probability MTH35/STA04: Probability Homework # 3 Due: Tuesday, Sep 0, 005 Prof. Robert Wolpert. from prob 7 p. 9 You roll a fair, six-sided die and I roll a die. You win if the number showing on your die is strictly

More information

04. Random Variables: Concepts

04. Random Variables: Concepts University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 215 4. Random Variables: Concepts Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

11.6: Ratio and Root Tests Page 1. absolutely convergent, conditionally convergent, or divergent?

11.6: Ratio and Root Tests Page 1. absolutely convergent, conditionally convergent, or divergent? .6: Ratio and Root Tests Page Questions ( 3) n n 3 ( 3) n ( ) n 5 + n ( ) n e n ( ) n+ n2 2 n Example Show that ( ) n n ln n ( n 2 ) n + 2n 2 + converges for all x. Deduce that = 0 for all x. Solutions

More information

Coupling Binomial with normal

Coupling Binomial with normal Appendix A Coupling Binomial with normal A.1 Cutpoints At the heart of the construction in Chapter 7 lies the quantile coupling of a random variable distributed Bin(m, 1 / 2 ) with a random variable Y

More information

Signal Processing - Lecture 7

Signal Processing - Lecture 7 1 Introduction Signal Processing - Lecture 7 Fitting a function to a set of data gathered in time sequence can be viewed as signal processing or learning, and is an important topic in information theory.

More information

Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002

Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002 Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002 Problem -22 For this problem we need the formula given in class (Mcuarie -33) for the energy states of a particle in an three-dimensional

More information

1.3 Forward Kolmogorov equation

1.3 Forward Kolmogorov equation 1.3 Forward Kolmogorov equation Let us again start with the Master equation, for a system where the states can be ordered along a line, such as the previous examples with population size n = 0, 1, 2,.

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 4 I. THE ISOTHERMAL-ISOBARIC ENSEMBLE The isothermal-isobaric ensemble is the closest mimic to the conditions under which most experiments are

More information

Singular Measures and f(α)

Singular Measures and f(α) Chapter 10 Singular Measures and f(α) 10.1 Definition Another approach to characterizing the complexity of chaotic attractors is through the singularities of the measure. Demonstration 1 illustrates the

More information

Statistical Mechanics and Information Theory

Statistical Mechanics and Information Theory 1 Multi-User Information Theory 2 Oct 31, 2013 Statistical Mechanics and Information Theory Lecturer: Dror Vinkler Scribe: Dror Vinkler I. INTRODUCTION TO STATISTICAL MECHANICS In order to see the need

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

Probability Distributions

Probability Distributions 02/07/07 PHY310: Statistical Data Analysis 1 PHY310: Lecture 05 Probability Distributions Road Map The Gausssian Describing Distributions Expectation Value Variance Basic Distributions Generating Random

More information

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B Canonical ensemble (Two derivations) Determine the probability that a system S in contact with a reservoir 1 R to be in one particular microstate s with energy ɛ s. (If there is degeneracy we are picking

More information

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone : Lecturer: Math1 Lecture 1 Dr. Robert C. Busby Office: Korman 66 Phone : 15-895-1957 Email: rbusby@mcs.drexel.edu Course Web Site: http://www.mcs.drexel.edu/classes/calculus/math1_spring0/ (Links are case

More information

The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function

The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function SCIENTIA Series A: Mathematical Sciences, Vol 7 29, 45 66 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 76-8446 c Universidad Técnica Federico Santa María 29 The integrals in Gradshteyn

More information

1 Probability References A Statistical View Distributions for a random walk Thermodynamic limit...

1 Probability References A Statistical View Distributions for a random walk Thermodynamic limit... Contents 1 Probability 1 1.1 References.................................................... 1 1. A Statistical View................................................ 1..1 Distributions for a random walk...................................

More information

Introduction to Environment System Modeling

Introduction to Environment System Modeling Introduction to Environment System Modeling (3 rd week:modeling with differential equation) Department of Environment Systems, Graduate School of Frontier Sciences, the University of Tokyo Masaatsu AICHI

More information

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

18.175: Lecture 17 Poisson random variables

18.175: Lecture 17 Poisson random variables 18.175: Lecture 17 Poisson random variables Scott Sheffield MIT 1 Outline More on random walks and local CLT Poisson random variable convergence Extend CLT idea to stable random variables 2 Outline More

More information

PHYS 404 Lecture 1: Legendre Functions

PHYS 404 Lecture 1: Legendre Functions PHYS 404 Lecture 1: Legendre Functions Dr. Vasileios Lempesis PHYS 404 - LECTURE 1 DR. V. LEMPESIS 1 Legendre Functions physical justification Legendre functions or Legendre polynomials are the solutions

More information

Statistical thermodynamics Lectures 7, 8

Statistical thermodynamics Lectures 7, 8 Statistical thermodynamics Lectures 7, 8 Quantum classical Energy levels Bulk properties Various forms of energies. Everything turns out to be controlled by temperature CY1001 T. Pradeep Ref. Atkins 7

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

18.175: Lecture 13 Infinite divisibility and Lévy processes

18.175: Lecture 13 Infinite divisibility and Lévy processes 18.175 Lecture 13 18.175: Lecture 13 Infinite divisibility and Lévy processes Scott Sheffield MIT Outline Poisson random variable convergence Extend CLT idea to stable random variables Infinite divisibility

More information

Random processes and probability distributions. Phys 420/580 Lecture 20

Random processes and probability distributions. Phys 420/580 Lecture 20 Random processes and probability distributions Phys 420/580 Lecture 20 Random processes Many physical processes are random in character: e.g., nuclear decay (Poisson distributed event count) P (k, τ) =

More information

Statistics and data analyses

Statistics and data analyses Statistics and data analyses Designing experiments Measuring time Instrumental quality Precision Standard deviation depends on Number of measurements Detection quality Systematics and methology σ tot =

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

Infinite Series. 1 Introduction. 2 General discussion on convergence

Infinite Series. 1 Introduction. 2 General discussion on convergence Infinite Series 1 Introduction I will only cover a few topics in this lecture, choosing to discuss those which I have used over the years. The text covers substantially more material and is available for

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

Generators for Continuous Coordinate Transformations

Generators for Continuous Coordinate Transformations Page 636 Lecture 37: Coordinate Transformations: Continuous Passive Coordinate Transformations Active Coordinate Transformations Date Revised: 2009/01/28 Date Given: 2009/01/26 Generators for Continuous

More information

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester Physics 403 Choosing Priors and the Principle of Maximum Entropy Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Odds Ratio Occam Factors

More information

Statistical thermodynamics Lectures 7, 8

Statistical thermodynamics Lectures 7, 8 Statistical thermodynamics Lectures 7, 8 Quantum Classical Energy levels Bulk properties Various forms of energies. Everything turns out to be controlled by temperature CY1001 T. Pradeep Ref. Atkins 9

More information

1 Characteristic functions

1 Characteristic functions 1 Characteristic functions Life is the sum of trifling motions. Joseph Brodsky In this chapter we introduce the characteristic function, a tool that plays a central role in the mathematical description

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 16 June 24th, 2009 Review Sum of Independent Normal Random Variables Sum of Independent Poisson Random Variables Sum of Independent Binomial Random Variables Conditional

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Background mathematics 5 Sum, factorial and product notations Summation notation If we want to add a set of numbers a 1, a 2, a 3, and a 4, we

More information

Introduction to Statistics and Error Analysis II

Introduction to Statistics and Error Analysis II Introduction to Statistics and Error Analysis II Physics116C, 4/14/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx Lecture 3 We give a couple examples of using L Hospital s Rule: Example 3.. [ (a) Compute x 0 sin(x) x. To put this into a form for L Hospital s Rule we first put it over a common denominator [ x 0 sin(x)

More information

Special Functions. SMS 2308: Mathematical Methods

Special Functions. SMS 2308: Mathematical Methods Special s Special s SMS 2308: Mathematical Methods Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia. Sem 1 2014/2015 Factorial Bessel

More information

Assignment 3. Tyler Shendruk February 26, 2010

Assignment 3. Tyler Shendruk February 26, 2010 Assignment 3 Tyler Shendruk February 6, 00 Kadar Ch. 4 Problem 7 N diatomic molecules are stuck on metal. The particles have three states:. in plane and aligned with the ˆx axis. in plane but aligned with

More information

2009 GCE A Level H1 Mathematics Solution

2009 GCE A Level H1 Mathematics Solution 2009 GCE A Level H1 Mathematics Solution 1) x + 2y = 3 x = 3 2y Substitute x = 3 2y into x 2 + xy = 2: (3 2y) 2 + (3 2y)y = 2 9 12y + 4y 2 + 3y 2y 2 = 2 2y 2 9y + 7 = 0 (2y 7)(y 1) = 0 y = 7 2, 1 x = 4,

More information

Bohr & Wheeler Fission Theory Calculation 4 March 2009

Bohr & Wheeler Fission Theory Calculation 4 March 2009 Bohr & Wheeler Fission Theory Calculation 4 March 9 () Introduction The goal here is to reproduce the calculation of the limiting Z /A against spontaneous fission Z A lim a S. (.) a C as first done by

More information

Math 341: Probability Eighteenth Lecture (11/12/09)

Math 341: Probability Eighteenth Lecture (11/12/09) Math 341: Probability Eighteenth Lecture (11/12/09) Steven J Miller Williams College Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public html/341/ Bronfman Science Center Williams

More information

221A Lecture Notes Convergence of Perturbation Theory

221A Lecture Notes Convergence of Perturbation Theory A Lecture Notes Convergence of Perturbation Theory Asymptotic Series An asymptotic series in a parameter ɛ of a function is given in a power series f(ɛ) = f n ɛ n () n=0 where the series actually does

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

Lecture 13. Multiplicity and statistical definition of entropy

Lecture 13. Multiplicity and statistical definition of entropy Lecture 13 Multiplicity and statistical definition of entropy Readings: Lecture 13, today: Chapter 7: 7.1 7.19 Lecture 14, Monday: Chapter 7: 7.20 - end 2/26/16 1 Today s Goals Concept of entropy from

More information

If the objects are replaced there are n choices each time yielding n r ways. n C r and in the textbook by g(n, r).

If the objects are replaced there are n choices each time yielding n r ways. n C r and in the textbook by g(n, r). Caveat: Not proof read. Corrections appreciated. Combinatorics In the following, n, n 1, r, etc. will denote non-negative integers. Rule 1 The number of ways of ordering n distinguishable objects (also

More information

2m + U( q i), (IV.26) i=1

2m + U( q i), (IV.26) i=1 I.D The Ideal Gas As discussed in chapter II, micro-states of a gas of N particles correspond to points { p i, q i }, in the 6N-dimensional phase space. Ignoring the potential energy of interactions, the

More information

Chapter 5. Random Variables (Continuous Case) 5.1 Basic definitions

Chapter 5. Random Variables (Continuous Case) 5.1 Basic definitions Chapter 5 andom Variables (Continuous Case) So far, we have purposely limited our consideration to random variables whose ranges are countable, or discrete. The reason for that is that distributions on

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

Lecture Notes on the Gaussian Distribution

Lecture Notes on the Gaussian Distribution Lecture Notes on the Gaussian Distribution Hairong Qi The Gaussian distribution is also referred to as the normal distribution or the bell curve distribution for its bell-shaped density curve. There s

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Reduction of Variance. Importance Sampling

Reduction of Variance. Importance Sampling Reduction of Variance As we discussed earlier, the statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = = 1/vT v = error of mean and T = total CPU time How can you make

More information

Homework 1 Solutions

Homework 1 Solutions Homework Solutions Econ 50 - Stanford University - Winter Quarter 204/5 January 6, 205 Exercise : Constrained Optimization with One Variable (a) For each function, write the optimal value(s) of x on the

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

Math 163: Lecture notes

Math 163: Lecture notes Math 63: Lecture notes Professor Monika Nitsche March 2, 2 Special functions that are inverses of known functions. Inverse functions (Day ) Go over: early exam, hw, quizzes, grading scheme, attendance

More information

PHYS 7411 Spring 2015 Computational Physics Homework 3

PHYS 7411 Spring 2015 Computational Physics Homework 3 PHYS 7411 Spring 2015 Computational Physics Homework 3 Due by 3:00pm in Nicholson 447 on 13 March 2015, Friday the 13th (Any late assignments will be penalized in the amount of 25% per day late. Any copying

More information

p-adic Analysis Compared to Real Lecture 1

p-adic Analysis Compared to Real Lecture 1 p-adic Analysis Compared to Real Lecture 1 Felix Hensel, Waltraud Lederle, Simone Montemezzani October 12, 2011 1 Normed Fields & non-archimedean Norms Definition 1.1. A metric on a non-empty set X is

More information

Exercises, module A (ODEs, numerical integration etc)

Exercises, module A (ODEs, numerical integration etc) FYTN HT18 Dept. of Astronomy and Theoretical Physics Lund University, Sweden Exercises, module A (ODEs, numerical integration etc) 1. Use Euler s method to solve y (x) = y(x), y() = 1. (a) Determine y

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

1D Wave Equation General Solution / Gaussian Function

1D Wave Equation General Solution / Gaussian Function D Wave Euation General Solution / Gaussian Function Phys 375 Overview and Motivation: Last time we derived the partial differential euation known as the (one dimensional wave euation Today we look at the

More information

Entropy and Ergodic Theory Lecture 13: Introduction to statistical mechanics, II

Entropy and Ergodic Theory Lecture 13: Introduction to statistical mechanics, II Entropy and Ergodic Theory Lecture 13: Introduction to statistical mechanics, II 1 Recap and an example Recap: A ta 1, a 2,... u is a set of possible states for a single particle, so a state for a system

More information

Purdue University Study Guide for MA Credit Exam

Purdue University Study Guide for MA Credit Exam Purdue University Study Guide for MA 60 Credit Exam Students who pass the credit exam will gain credit in MA60. The credit exam is a twohour long exam with 5 multiple choice questions. No books or notes

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

Renormalization of the fermion self energy

Renormalization of the fermion self energy Part I Renormalization of the fermion self energy Electron self energy in general gauge The self energy in n = 4 Z i 0 = ( ie 0 ) d n k () n (! dimensions is i k )[g ( a 0 ) k k k ] i /p + /k m 0 use Z

More information

Lecture 2. Binomial and Poisson Probability Distributions

Lecture 2. Binomial and Poisson Probability Distributions Durkin, Lecture 2, Page of 6 Lecture 2 Binomial and Poisson Probability Distributions ) Bernoulli Distribution or Binomial Distribution: Consider a situation where there are only two possible outcomes

More information

Weak chaos, infinite ergodic theory, and anomalous diffusion

Weak chaos, infinite ergodic theory, and anomalous diffusion Weak chaos, infinite ergodic theory, and anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Marseille, CCT11, 24 May 2011 Weak chaos, infinite ergodic theory,

More information

laplace s method for ordinary differential equations

laplace s method for ordinary differential equations Physics 24 Spring 217 laplace s method for ordinary differential equations lecture notes, spring semester 217 http://www.phys.uconn.edu/ rozman/ourses/p24_17s/ Last modified: May 19, 217 It is possible

More information

Logistic Regression. Sargur N. Srihari. University at Buffalo, State University of New York USA

Logistic Regression. Sargur N. Srihari. University at Buffalo, State University of New York USA Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative 1. Fixed basis

More information

221A Lecture Notes Steepest Descent Method

221A Lecture Notes Steepest Descent Method Gamma Function A Lecture Notes Steepest Descent Method The best way to introduce the steepest descent method is to see an example. The Stirling s formula for the behavior of the factorial n! for large

More information

Return probability on a lattice

Return probability on a lattice Return probability on a lattice Chris H. Rycroft October 24, 2006 To begin, we consider a basic example of a discrete first passage process. Consider an unbiased Bernoulli walk on the integers starting

More information

Will Landau. Feb 21, 2013

Will Landau. Feb 21, 2013 Iowa State University Feb 21, 2013 Iowa State University Feb 21, 2013 1 / 31 Outline Iowa State University Feb 21, 2013 2 / 31 random variables Two types of random variables: Discrete random variable:

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

18.440: Lecture 19 Normal random variables

18.440: Lecture 19 Normal random variables 18.440 Lecture 19 18.440: Lecture 19 Normal random variables Scott Sheffield MIT Outline Tossing coins Normal random variables Special case of central limit theorem Outline Tossing coins Normal random

More information

Nonlinear Integral Equation Formulation of Orthogonal Polynomials

Nonlinear Integral Equation Formulation of Orthogonal Polynomials Nonlinear Integral Equation Formulation of Orthogonal Polynomials Eli Ben-Naim Theory Division, Los Alamos National Laboratory with: Carl Bender (Washington University, St. Louis) C.M. Bender and E. Ben-Naim,

More information

Introduction to Differentials

Introduction to Differentials Introduction to Differentials David G Radcliffe 13 March 2007 1 Increments Let y be a function of x, say y = f(x). The symbol x denotes a change or increment in the value of x. Note that a change in the

More information

Modeling the Goodness-of-Fit Test Based on the Interval Estimation of the Probability Distribution Function

Modeling the Goodness-of-Fit Test Based on the Interval Estimation of the Probability Distribution Function Modeling the Goodness-of-Fit Test Based on the Interval Estimation of the Probability Distribution Function E. L. Kuleshov, K. A. Petrov, T. S. Kirillova Far Eastern Federal University, Sukhanova st.,

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Pseudorandom Generators

Pseudorandom Generators Outlines Saint Petersburg State University, Mathematics and Mechanics 2nd April 2005 Outlines Part I: Main Approach Part II: Blum-Blum-Shub Generator Part III: General Concepts of Pseudorandom Generator

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Random Variables. P(x) = P[X(e)] = P(e). (1)

Random Variables. P(x) = P[X(e)] = P(e). (1) Random Variables Random variable (discrete or continuous) is used to derive the output statistical properties of a system whose input is a random variable or random in nature. Definition Consider an experiment

More information

Probability Foundation for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras

Probability Foundation for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:23) Probability Foundation for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 22 Independent

More information

Lecture 1a: Basic Concepts and Recaps

Lecture 1a: Basic Concepts and Recaps Lecture 1a: Basic Concepts and Recaps Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced

More information

Math 113/114 Lecture 22

Math 113/114 Lecture 22 Math 113/114 Lecture 22 Xi Chen 1 1 University of Alberta October 31, 2014 Outline 1 2 (Application of Implicit Differentiation) Given a word problem about related rates, we need to do: interpret the problem

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

G H. Extended Unit Tests A L L. Higher Still Advanced Higher Mathematics. (more demanding tests covering all levels) Contents. 3 Extended Unit Tests

G H. Extended Unit Tests A L L. Higher Still Advanced Higher Mathematics. (more demanding tests covering all levels) Contents. 3 Extended Unit Tests M A T H E M A T I C S H I G H E R Higher Still Advanced Higher Mathematics S T I L L Extended Unit Tests A (more demanding tests covering all levels) Contents Extended Unit Tests Detailed marking schemes

More information

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39 The Integral Test P. Sam Johnson September 29, 207 P. Sam Johnson (NIT Karnataka) The Integral Test September 29, 207 / 39 Overview Given a series a n, we have two questions:. Does the series converge?

More information

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Module-05 Lecture-04 Maxwellian Distribution Law of Velocity Part 02 So, we have already told to experiment

More information

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2000 2013 Contents 9 Introduction to Number Theory 63 9.1 Subgroups

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n Assignment 4 Arfken 5..2 We have the sum Note that the first 4 partial sums are n n(n + ) s 2, s 2 2 3, s 3 3 4, s 4 4 5 so we guess that s n n/(n + ). Proving this by induction, we see it is true for

More information