Recall we measure angles in terms of degrees or radians: 360 = 2π radians

Size: px
Start display at page:

Download "Recall we measure angles in terms of degrees or radians: 360 = 2π radians"

Transcription

1 Review: trigonometry 8 Review of trigonometry 8.1 Definition of sine and cosine Recall we measure angles in terms of degrees or radians: 360 = 2π radians 8.2 Basic facts: 1. Te point (cos(t), sin(t)) lies on te unit circle wit center (0, 0), so (cos(t)) 2 + (sin(t)) 2 = From te picture cos( π 2 t ) = sin(t). 3. For any angle t, if we add 2π (radians) more, be ave done completely around, so: sin(t + 2π) = sin(t), and cos(t + 2π) = cos(t). We say sin and cos are periodic wit period 2π. 4. cos is an even function, and sin is an odd function. 5. Combining facts 2 and 4, we get cos( t π 2 ) = cos( π 2 t ) = sin(t) Terefore, te grap of sin is rigtward sift of te grap of cos by te amount π Te tangent, secant and cosecant functions are defined as: tan(t) = sin(t) cos(t), sec(t) = 1 cos(t), and cosec(t) = 1 sin(t). Te tangent function tan(t) measures te slope of te angle t, and it is an odd function and periodic wit period π (180 degrees).

2 7. Two important trigonometric identities wic we use later to compute te derivative of te sin and cos functions are: sin ( A + B ) = sin ( A ) cos ( B ) + cos ( A ) sin ( B ) cos ( A + B ) = cos ( A ) cos ( B ) sin ( A ) sin ( B ) 9 Inverse trigonometic functions 9.1 Intervals of real numbers If a < b are two real numbers te set of numbers between a and b is called te interval between a and b. To be more precise, we use te notations: [ a, b ] = { x R a x b } te closed interval between a and b ( a, b ) = { x R a < x < b } te open interval between a and b [ a, b ) = { x R a x < b } te alf open/closed interval between a and b ( a, b ] = { x R a < x b } te alf open/closed interval between a and b for te 4 types of intervals of numbers between a and b. We can also allow te numbers a and b to be infinity: (, b] = { x R x b }, etc, (a, ) = { x R a < x}

3 Te usual domains for te functions cos and sin is te entire set of (real) numbers R. Te range of bot cos, and sin is: range = C = { 1 y 1 } = [ 1, 1]. But, cos and sin are not one-to-one functions on R. If we restrict te domain of sin to be te interval D = [ π 2, π 2 ], were sin is an increasing function, ten [ π 2, π 2 ] sin [ 1, 1 ] is a one-to-one and onto function. Te inverse function is called arcsin. arcsin [ 1, 1 ] [ π 2, π 2 ] 9.2 arcsin graps of sin (red) and arcsin (blue) arcsin(x) sin(x)

4 9.3 arccos For cos, we restrict te domain to te interval [ 0, π ]. Te inverse arccos function is arccos: [ 1, 1 ] [ 0, π ] graps of cos (red) and arccos (blue) arccos(x) cos(x) arctan For tan, we restrict te domain to te open interval ( π 2, π 2 ). Te arctan inverse function is arctan: (, ) ( π 2, π 2 ) graps of tan (red) and arctan (blue) tan(x) arctan(x)

5 14 Some trigonometric inequalities and te its tey yield Consider a circular sector wit center O and radius 1. Let A, B, E be points on te circular sector as sown. E 2 B D O C A Ten: lengt(bc) = sin(), lengt(arc(ab)) =, and lengt(ad) = tan() st inequalties and te it 0 sin() = 1. For 0 < < π 4, so 2 is at most π 2 (90 degrees), we ave: lengt(bc) < lengt(ab) < lengt(arc(ab)), so sin() < lengt(ab) < and lengt(arc(ab)) < lengt(ad), so < tan(). In summary, we ave: sin() < < tan() We manipulate to: cos() < sin() < 1, valid for 0 < < π 4. Te tree functions cos(), sin(), and 1 are all even, so te inequality is also true for π 4 < < 0. In a picture:

6 Te rule sin() does NOT allow input of = 0. Zero is not in te domain. But, te function sin() is caugt (for 0) between te two functions cos() and 1. We can apply te squeeze teorem to get sin() 0 = nd it involving te function 1 cos() From te 1st picture we ave: lengt(ac) 2 + lengt(bc) 2 = lengt(ab) 2 lengt(arc(ab)) 2, so (1 cos()) 2 + (sin()) 2 2, ten expand to get 2 ( 1 cos() ) 2, and deduce 0 ( 1 cos() ) 2, for 0 < < π 4 Te (odd symmetry) rule ( 1 cos() ) does not allow input = 0.

7 A picture of tis rule (grap in red), wit values of ( 1 cos() ) caugt between 0 (grap in yellow) and 2 (grap in blue), is: As before, we can deduce 0 ( 1 cos() ) = 0. sin() ( 1 cos() ) Tese two its 0 = 1, and 0 = 0 are very important. Tey are used later to compute te slope of tangent lines to te functions sin and cos. 15 Tangent slope of te functions sine and cosine 15.1 Tangent slope to te grap of sine at te point (b, sin(b)). Te tangent slope at te grap point (b, sin(b)) is te it of te difference quotient: sin( b + ) sin( b ). We use te formula for te sine of a sum to get: sin( b + ) sin( b ) = sin(b) cos() + cos(b) sin() sin(b) = sin(b) ( cos() 1 ) + cos(b) sin() sin( b + ) sin( b ) 0 ( = sin(b) ( cos() 1 ) 0 ( cos() 1 ) = sin(b) 0 = sin(b) 0 + cos(b) 1 = cos(b) + cos(b) sin() ) + cos(b) 0 sin() Te tangent slope to te grap of sine at te point (b, sin(b)) is cos(b).

8 15.2 Tangent slope to te grap of cosine at te point (b, cos(b)). Te tangent slope at te grap point (b, cos(b)) is te it of te difference quotient: cos( b + ) cos( b ). We use te formula for te cosine of a sum to get: cos( b + ) cos( b ) = cos(b) cos() sin(b) sin() cos(b) = cos(b) ( cos() 1 ) sin(b) sin() cos( b + ) cos( b ) 0 ( = cos(b) ( cos() 1 ) 0 = cos(b) 0 ( cos() 1 ) sin(b) sin() ) sin(b) 0 sin() Our earlier calculation using te squeeze teorem sowed so, ( cos() 1 ) 0 = 0 and 0 sin() = 1 ; cos( b + ) cos( b ) = cos(b) 0 sin(b) 1 = sin(b) 0 Te tangent slope to te grap of cosine at te point (b, cos(b)) is sin(b).

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/19 MTH 11: Elementary Functions Section 6.6 6.6:Inverse Trigonometric functions /19 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line crosses the graph of a 1

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions MTH 11: Elementary Functions F. Patricia Medina Department of Mathematics. Oregon State University Section 6.6 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line

More information

June 9 Math 1113 sec 002 Summer 2014

June 9 Math 1113 sec 002 Summer 2014 June 9 Math 1113 sec 002 Summer 2014 Section 6.5: Inverse Trigonometric Functions Definition: (Inverse Sine) For x in the interval [ 1, 1] the inverse sine of x is denoted by either and is defined by the

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Grade Math (HL) Curriculum

Grade Math (HL) Curriculum Grade 11-12 Math (HL) Curriculum Unit of Study (Core Topic 1 of 7): Algebra Sequences and Series Exponents and Logarithms Counting Principles Binomial Theorem Mathematical Induction Complex Numbers Uses

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

TRIGONOMETRY OUTCOMES

TRIGONOMETRY OUTCOMES TRIGONOMETRY OUTCOMES C10. Solve problems involving limits of trigonometric functions. C11. Apply derivatives of trigonometric functions. C12. Solve problems involving inverse trigonometric functions.

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Trigonometric Functions () 1 / 28

Trigonometric Functions () 1 / 28 Trigonometric Functions () 1 / 28 Trigonometric Moel On a certain ay, ig tie at Pacific Beac was at minigt. Te water level at ig tie was 9.9 feet an later at te following low tie, te tie eigt was 0.1 ft.

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

2.3 More Differentiation Patterns

2.3 More Differentiation Patterns 144 te derivative 2.3 More Differentiation Patterns Polynomials are very useful, but tey are not te only functions we need. Tis section uses te ideas of te two previous sections to develop tecniques for

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Unit 6 Trigonometric Identities

Unit 6 Trigonometric Identities Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

16 Inverse Trigonometric Functions

16 Inverse Trigonometric Functions 6 Inverse Trigonometric Functions Concepts: Restricting the Domain of the Trigonometric Functions The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function Using the Inverse Trigonometric

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Math 1 Lecture 22. Dartmouth College. Monday

Math 1 Lecture 22. Dartmouth College. Monday Math 1 Lecture 22 Dartmouth College Monday 10-31-16 Contents Reminders/Announcements Last Time Implicit Differentiation Derivatives of Inverse Functions Derivatives of Inverse Trigonometric Functions Examish

More information

1.3 Basic Trigonometric Functions

1.3 Basic Trigonometric Functions www.ck1.org Chapter 1. Right Triangles and an Introduction to Trigonometry 1. Basic Trigonometric Functions Learning Objectives Find the values of the six trigonometric functions for angles in right triangles.

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

Inverse Trigonometric Functions. September 5, 2018

Inverse Trigonometric Functions. September 5, 2018 Inverse Trigonometric Functions September 5, 08 / 7 Restricted Sine Function. The trigonometric function sin x is not a one-to-one functions..0 0.5 Π 6, 5Π 6, Π Π Π Π 0.5 We still want an inverse, so what

More information

Function and Relation Library

Function and Relation Library 1 of 7 11/6/2013 7:56 AM Function and Relation Library Trigonometric Functions: Angle Definitions Legs of A Triangle Definitions Sine Cosine Tangent Secant Cosecant Cotangent Trig functions are functions

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Core 3 (A2) Practice Examination Questions

Core 3 (A2) Practice Examination Questions Core 3 (A) Practice Examination Questions Trigonometry Mr A Slack Trigonometric Identities and Equations I know what secant; cosecant and cotangent graphs look like and can identify appropriate restricted

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives Objectives 1. Find the Exact Value of an Inverse Sine, Cosine, or Tangent Function. 2. Find an Approximate Value of an Inverse Sine Function. 3. Use Properties of Inverse Functions to Find Exact Values

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations

Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

1 Solutions to the in class part

1 Solutions to the in class part NAME: Solutions to te in class part. Te grap of a function f is given. Calculus wit Analytic Geometry I Exam, Friday, August 30, 0 SOLUTIONS (a) State te value of f(). (b) Estimate te value of f( ). (c)

More information

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk Trigonometry - Part 1 (12 pages; 4/9/16) (1) Sin, cos & tan of 30, 60 & 45 sin30 = 1 2 ; sin60 = 3 2 cos30 = 3 2 ; cos60 = 1 2 cos45 = sin45 = 1 2 = 2 2 tan45 = 1 tan30 = 1 ; tan60 = 3 3 Graphs of y =

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Curriculum Map for Mathematics HL (DP1)

Curriculum Map for Mathematics HL (DP1) Curriculum Map for Mathematics HL (DP1) Unit Title (Time frame) Sequences and Series (8 teaching hours or 2 weeks) Permutations & Combinations (4 teaching hours or 1 week) Standards IB Objectives Knowledge/Content

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Section 2.4: Definition of Function

Section 2.4: Definition of Function Section.4: Definition of Function Objectives Upon completion of tis lesson, you will be able to: Given a function, find and simplify a difference quotient: f ( + ) f ( ), 0 for: o Polynomial functions

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Chapter 1. Functions 1.3. Trigonometric Functions

Chapter 1. Functions 1.3. Trigonometric Functions 1.3 Trigonometric Functions 1 Chapter 1. Functions 1.3. Trigonometric Functions Definition. The number of radians in the central angle A CB within a circle of radius r is defined as the number of radius

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

First we will go over the following derivative rule. Theorem

First we will go over the following derivative rule. Theorem Tuesday, Feb 1 Tese slides will cover te following 1 d [cos(x)] = sin(x) iger-order derivatives 3 tangent line problems 4 basic differential equations First we will go over te following derivative rule

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

NOTES 10: ANALYTIC TRIGONOMETRY

NOTES 10: ANALYTIC TRIGONOMETRY NOTES 0: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 0. USING FUNDAMENTAL TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sin csc cos sec

More information

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4 Inverse Functions Inverse Relations The inverse of a relation is the set of ordered pairs obtained by switching the input with the output of each ordered pair in the original relation. (The domain of the

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

CHAPTER 5: Analytic Trigonometry

CHAPTER 5: Analytic Trigonometry ) (Answers for Chapter 5: Analytic Trigonometry) A.5. CHAPTER 5: Analytic Trigonometry SECTION 5.: FUNDAMENTAL TRIGONOMETRIC IDENTITIES Left Side Right Side Type of Identity (ID) csc( x) sin x Reciprocal

More information

A: Derivatives of Circular Functions. ( x) The central angle measures one radian. Arc Length of r

A: Derivatives of Circular Functions. ( x) The central angle measures one radian. Arc Length of r 4: Derivatives of Circular Functions an Relate Rates Before we begin, remember tat we will (almost) always work in raians. Raians on't ivie te circle into parts; tey measure te size of te central angle

More information

A List of Definitions and Theorems

A List of Definitions and Theorems Metropolitan Community College Definition 1. Two angles are called complements if the sum of their measures is 90. Two angles are called supplements if the sum of their measures is 180. Definition 2. One

More information

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator.

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. Math 5 Trigonometry Chapter Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. 23 1. Consider an arclength of t = travelled counter-clockwise around

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -8-006 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

These items need to be included in the notebook. Follow the order listed.

These items need to be included in the notebook. Follow the order listed. * Use the provided sheets. * This notebook should be your best written work. Quality counts in this project. Proper notation and terminology is important. We will follow the order used in class. Anyone

More information

2 Recollection of elementary functions. II

2 Recollection of elementary functions. II Recollection of elementary functions. II Last updated: October 5, 08. In this section we continue recollection of elementary functions. In particular, we consider exponential, trigonometric and hyperbolic

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Maths for Computer Graphics

Maths for Computer Graphics Trigonometry Is concerned wit te analysis of triangles. Degrees and radians Te degree (or sexagesimal unit of measure derives from defining one complete rotation as 360. Eac degree divides into 60 minutes,

More information

Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.2 Solving Quadratic Equations

Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.2 Solving Quadratic Equations Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.1.1 Solve Simple Equations Involving Absolute Value 0.2 Solving Quadratic Equations 0.2.1 Use the

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS INTODUCTION ND MTHEMTICL CONCEPTS PEVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips of sine,

More information

Ch 5 and 6 Exam Review

Ch 5 and 6 Exam Review Ch 5 and 6 Exam Review Note: These are only a sample of the type of exerices that may appear on the exam. Anything covered in class or in homework may appear on the exam. Use the fundamental identities

More information

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER Prof. Israel N. Nwaguru MATH 11 CHAPTER,,, AND - REVIEW WORKOUT EACH PROBLEM NEATLY AND ORDERLY ON SEPARATE SHEET THEN CHOSE THE BEST ANSWER TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

More information

5 Trigonometric Functions

5 Trigonometric Functions 5 Trigonometric Functions 5.1 The Unit Circle Definition 5.1 The unit circle is the circle of radius 1 centered at the origin in the xyplane: x + y = 1 Example: The point P Terminal Points (, 6 ) is on

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

Functions. Remark 1.2 The objective of our course Calculus is to study functions.

Functions. Remark 1.2 The objective of our course Calculus is to study functions. Functions 1.1 Functions and their Graphs Definition 1.1 A function f is a rule assigning a number to each of the numbers. The number assigned to the number x via the rule f is usually denoted by f(x).

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

Exercises. 880 Foundations of Trigonometry

Exercises. 880 Foundations of Trigonometry 880 Foundations of Trigonometry 0.. Exercises For a link to all of the additional resources available for this section, click OSttS Chapter 0 materials. In Exercises - 0, find the exact value. For help

More information

Chapter P: Preliminaries

Chapter P: Preliminaries Chapter P: Preliminaries Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 67 Preliminaries The preliminary chapter reviews the most important things that you should know before beginning

More information

Prentice Hall: Algebra 2 with Trigonometry 2006 Correlated to: California Mathematics Content Standards for Trigonometry (Grades 9-12)

Prentice Hall: Algebra 2 with Trigonometry 2006 Correlated to: California Mathematics Content Standards for Trigonometry (Grades 9-12) California Mathematics Content Standards for Trigonometry (Grades 9-12) Trigonometry uses the techniques that students have previously learned from the study of algebra and geometry. The trigonometric

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

Math Module Preliminary Test Solutions

Math Module Preliminary Test Solutions SSEA Summer 207 Mat Module Preliminar Test Solutions. [3 points] Find all values of tat satisf =. Solution: = ( ) = ( ) = ( ) =. Tis means ( ) is positive. Tat is, 0, wic implies. 2. [6 points] Find all

More information