GLOBALLY CONVERGENT GAUSS-NEWTON METHODS

Size: px
Start display at page:

Download "GLOBALLY CONVERGENT GAUSS-NEWTON METHODS"

Transcription

1 GLOBALLY CONVERGENT GAUSS-NEWTON METHODS by C. Fraley TECHNICAL REPORT No. 200 March 1991 Department of Statistics, GN-22 University of Washington Seattle, Washington USA

2 Globally Convergent Gauss-Newton Methods C. Fraley * Department of Statistics GN-22 t University of Washington Seattle, vva USA & Statistical Sciences, Inc. t 1700 Westlake Ave. N., Suite 500 Seattle, WA USA March 1991 Abstract This paper introduces a linesearch algorithm for nonlinear least squares and nonlinear equations. Each iteration involves a one-dimensional minimization along an unmodified Gauss-Newton direction which may be different from the classical Gauss Newton direction. Global convergence to a stationary point is proved by showing that in the worst case the algorithm uses the steepest-descent direction - which is itself Gauss-Newton direction.

3

4 1 Introduction This paper addresses the problem of minimizing a sum of squares of smooth nonlinear functions or, equivalently where 1 m min -2 I>pf(x) xelr n i=l I (x) = ( ~l ~x) ). ~m(x) The factor 1(2 is introduced to avoid a factor of 2 in derivatives and does not affect the location of the minimum. We place no restrictions on m relative to n, so that the discussion applies to nonlinear equations (m :::; (1. n) as well as to overdetermined systems (m > n). In what follows we often drop the argument x, assuming that I (and functions of f) are evaluated at the current iterate. The classical Gauss-Newton method for (1.1) is the sequential one-dimensional minimization of ITI along the solution to the linear least-squares problem min HJp pelr n Here J denotes the m x n Jacobian matrix for I, 71 \ ( 8~lfx) 8~1(X) \ 8X1 8xn J \.X) - I 8~~(X) 8<P~(X)) \ 8X1 8xn Solving (1.2) is equivalent to solving the normal equations JT Jp = _JT f. Since JTI = %V (IT I), the classical Gauss-Newton method can be interpreted as a mourned Newton method in which the matrix JTJ replaces the Hessian matrix!v 2 (ITI) = ~iv2~i (see, e. and Schnabel J does not column JTJ is an of We cenne.2) (1.3)

5 In general, linesearch algorithms for unconstrained minimization are globally convergent if each search direction is a descent direction for the objective function, and if the sequence of search directions is bounded away from orthogonality to the gradient (see, e. g.,. For the nonlinear least-squares problem (1.1), the descent condition is r Jp < O. The classical Gauss-Newton direction PGN is a descent direction for ft f when JTf is nonzero. This can be seen as follows. Let be the singular value decomposition of the Jacobian matrix, in which U is an m x m orthogonal matrix, V is an n x ti orthogonal matrix, and E is a min(m,n) x min(m,n) diagonal matrix whose diagonals are the singular values of J in decreasing order of magnitude: (see, e. g., Golub and Van Loan [7]). The rank of J is the number of nonzero singular values. If u; denotes the ith column of U and Vi denotes the ith column of V, then and min(m,n) rank(j) J = I: O"iUiV; - I: O"iUiV;, i=l i=l T+ J' = rank(j) Li=l Therefore and so 2 <

6 ""r:ank(j) L..t=1 2 j""r:ank(j) (.(ft.))2 ""r:ank(j) ( :-I( '1'f))2 L..t=1 a, U t L..t=1 (Jt U t > ""r: ank( J) ( Tf) 2 L..t=1 U t j 2 ""rank(j) (Tf)2-2 ""rank(j) ( Tf)2 (JI L..i=1 Ui (Jrank(J) L..i=1 Ui (Jrank(J) _ 1 (JI - cond(j). Thus, either JTf vanishes in the limit, implying that the iterates converge to a local minimizer of ft f, or else the sequence of Jacobians approaches a loss of rank. In the next section we show that it is possible to guarantee that the second case will never occur while remaining within the Gauss-Newton framework. 3 Globally-Convergent Algorithm The problem of computing a Gauss-Newton direction need not be viewed as that of solving a fixed linear least-squares problem. Because of nonlinearity, there are many Gauss-Newton directions associated with a given nonlinear objective and a given iterate (Nocedal and Overton [10], Fraley [4]). If Q(x) is an 1x m smooth, nonconstant matrix function satisfying Q(x)TQ(x) = I for all x, then Q(x)f(x) defines the same nonlinear least-squares problem as..j. f \ l.lh h '-h J 1.." J.. " _., """ ""'-T',.,. -, coes J,X), an loug 1 \, e acornan matrices (anc consequently tne \.:iauss-r~ewtoncurectionsj would be different. A globally-convergent algorithm can be obtained by choosing from among several possible Gauss-Newton directions. Define <PI (x) <P2(X) IS dnterentiabte nrrh1hip;j

7 where ek is the kth standard unit vector. The matrix H[kj(X) is an (orthogonal) Householder matrix (see, e. g., [7]). It is defined and differentiable in a neighborhood of x whenever h[kj(x) =f. 0, or equivalently, whenever f(k) (x) =f. O. When f(k) (x) =f. 0, the first k - 1 rows of the Jacobian matrix J[kj of f[kj are identical to those of the Jacobian matrix J of I, and the kth row of J[kj is the following linear combination of the last k - m rows of J : ( '\'1J1' -1...( )Or/>i(X) L...-t=k w«x --a:iil '\'1J1' -1...( )O<Pi(X) ) L...-t=k '/'. a: -ax;:- (Note that \7 (f[ljf[kj) is independent of k whenever it is defined, as is f[ljf[kj, although f[kj and J[kj vary with k.) The case k = 1 is of particular interest, since then the Jacobian matrix consists of a single row, a scalar multiple of the transpose of the steepest-descent direction for ftf. In this instance, the Gauss-Newton direction is the minimum 12-norm solution to the one-dimensional linear least-squares problem and is therefore a negative multiple of the gradient JTf when f O. Hence the steepestdescent direction is one possible Gauss-Newton direction. The derivation of a globally-convergent algorithm is now straightforward. Choose in advance an upper bound K, 2:: 1 on the allowed condition number of the Jacobian. At beginning of an iteration, sort the components <Pi of f so that they are arranged in decreasing order of magnitude. Let k be the largest index for which <Pk(x) =f. O. k as until rank(j[k]) = k and cond(j[kj) :::; K,. These conditions met k = = 1 = L Continue decreasing next iterate.

8 Globally Convergent Gauss-Newton Algorithm initialization: starting value z: K ~ 1 loop sort the components <Pi of f so that l<pl(x)1 ~ 1<P2(X)1 ~.. ~ l<pm(x)1 k <- max{i I <Pi(X) -:j:. O} while (rank(j[k]) < k or cond(j[k]) > K) do k <- k: - 1 P[k] <- argminpeir n II J[k]P + f[k]t ark] <- argminaeir Ilf(X + ap[k])ii: x <- x + Q[k]P[k] forever The results of previous section hold not only for the classical Gauss-Newton directions, but for any sequence of Gauss-Newton directions. The vectors P[k] are descent directions for ft f since they are all unmodified full rank Gauss-Newton directions. Moreover, these vectors are bounded away form orthogonality to the gradient because the condition numbers of the associated Jacobians are bounded above by K. Hence the sequence of iterates produced by the algorithm converges to a stationary point of ftf. 4 Additional Remarks Alternative definitions for f[k] are possible. For example, the contribution last m - k elements of f could be distributed differently among the first k components. The essential properties that f[k] must possess are that f~]f[k] be equal to ft f for all x ; that f[k] be differentiable, and that k = 1 corresponds to steepest descent for the global convergence result. Practical implications remain to be explored. algorithm given the nr~>,n{"\l1<:section a nujmenc'3.1 algorithm. is near 0 can as evidenced descent. F,H/V<.W. convergence is of consequence if rate of convergence IS unobserva steepest-descent orrecnon IS a V<l,U""- ",,,,"urcar> direction

9 which f(x*) = 0 and J(x) has full column rank in a neighborhood of x* (see, e. g., ). Quadratic convergence cannot be assured in the new algorithm under these conditions on account of the upper bound on the condition number of J[k] and the requirement that rpk =i= O. However, if f[k] is redefined as follows : for k - < I', V[rPI(X)]2 + L~k-l [rpi(x)]2 rpl+l(x) for k > I, where 1= max{i I rpi(x) =i= O}, then quadratic convergence will occur whenever it would in the classical method as long as cond(j(x*» ::; K. It would be necessary to replace rank(j[k]) < k by rank(j[k]) < min(k, n) as a condition for decreasing k, and to start each iteration with k = m. Note that this definition of f[k] differs from the previous one only if k ;;:: I, and that f[k] can still be interpreted as the application of a nonlinear Householder transformation to the original problem. The rate of convergence of the algorithms introduced here can be no faster than linear for problems on which the classical Gauss-Newton has linear convergence, Jacobian new methods higher at the solution because nonzero residuals remain nonzero new ruevuous, decreasing k

10 J may also find some use within other algorithms for nonlinear least squares (e.,more [9], Dennis, Gay, and Welsch [2]), as well as for the underdetermined equations that arise in nonlinearly-constrained optimization (e. g., Fletcher [3], Gill, Murray, and vvright [6]). Acknowledgement. Many thanks to Ariela Sofer, Stephen Nash, Karla Hoffman, and Nat Wilson. References [1] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall (1983). [2] J. E. Dennis Jr., D. M. Gay, and R. E. Welsch, "An adaptive nonlinear least squares algorithm", ACjVf Transactions on l\1athematical Software 7 (1981) [3] R. Fletcher, Practical Alethods of Optimization (2nd ed.), Wiley (1987). [4] C. Fraley, "Computational behavior of Gauss-Newton methods", SIA.M Journal on Scientific and Statistical Computing 10 (1989) [5] P. E. Gill and VV. Murray, "Algorithms for the solution of the nonlinear least-squares problem", SIAM Journal on Numerical Analysis 15 (1978) [6] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press (1981). [7] G. H. Golub and C. F. Van Loan, Matrix Computations (2nd ed.), Johns Hopkins (1989). [8] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall (1974). [9] J. J. More, "The Levenberg-Marquardt algorithm: motivation and theory", in Numerical Analysis - Proceedings Dundee 1977, Lecture Notes in Mailiematics 630, Springe-Verlag (1978) [10] J. Nocedal and M. L. Overton, "Projected Hessian updating algorithms for nonlinearly constrained optimization", SIAM Journal on Numerical Analysis 22 (1985)

The Newton-Raphson Algorithm

The Newton-Raphson Algorithm The Newton-Raphson Algorithm David Allen University of Kentucky January 31, 2013 1 The Newton-Raphson Algorithm The Newton-Raphson algorithm, also called Newton s method, is a method for finding the minimum

More information

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k Maria Cameron Nonlinear Least Squares Problem The nonlinear least squares problem arises when one needs to find optimal set of parameters for a nonlinear model given a large set of data The variables x,,

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

Statistics 580 Optimization Methods

Statistics 580 Optimization Methods Statistics 580 Optimization Methods Introduction Let fx be a given real-valued function on R p. The general optimization problem is to find an x ɛ R p at which fx attain a maximum or a minimum. It is of

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf.

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf. Maria Cameron 1. Trust Region Methods At every iteration the trust region methods generate a model m k (p), choose a trust region, and solve the constraint optimization problem of finding the minimum of

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

How do we recognize a solution?

How do we recognize a solution? AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2010 UNIT 2: Unconstrained Optimization, Part 1 Dianne P. O Leary c 2008,2010 The plan: Unconstrained Optimization: Fundamentals How do we recognize

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Spring 2010 Emo Todorov (UW) AMATH/CSE 579, Spring 2010 Lecture 9 1 / 8 Gradient descent

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Trust-region methods for rectangular systems of nonlinear equations

Trust-region methods for rectangular systems of nonlinear equations Trust-region methods for rectangular systems of nonlinear equations Margherita Porcelli Dipartimento di Matematica U.Dini Università degli Studi di Firenze Joint work with Maria Macconi and Benedetta Morini

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. OPTIM. Vol. 18, No. 1, pp. 106 13 c 007 Society for Industrial and Applied Mathematics APPROXIMATE GAUSS NEWTON METHODS FOR NONLINEAR LEAST SQUARES PROBLEMS S. GRATTON, A. S. LAWLESS, AND N. K.

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

Numerical solution of Least Squares Problems 1/32

Numerical solution of Least Squares Problems 1/32 Numerical solution of Least Squares Problems 1/32 Linear Least Squares Problems Suppose that we have a matrix A of the size m n and the vector b of the size m 1. The linear least square problem is to find

More information

The Kalman filter is arguably one of the most notable algorithms

The Kalman filter is arguably one of the most notable algorithms LECTURE E NOTES «Kalman Filtering with Newton s Method JEFFREY HUMPHERYS and JEREMY WEST The Kalman filter is arguably one of the most notable algorithms of the 0th century [1]. In this article, we derive

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Linear and Nonlinear Optimization German University in Cairo October 10, 2016 Outline Introduction Gradient descent method Gauss-Newton method Levenberg-Marquardt method Case study: Straight lines have

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

SECTION: CONTINUOUS OPTIMISATION LECTURE 4: QUASI-NEWTON METHODS

SECTION: CONTINUOUS OPTIMISATION LECTURE 4: QUASI-NEWTON METHODS SECTION: CONTINUOUS OPTIMISATION LECTURE 4: QUASI-NEWTON METHODS HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 2005, DR RAPHAEL HAUSER 1. The Quasi-Newton Idea. In this lecture we will discuss

More information

KKT Conditions for Rank-Deficient Nonlinear Least-Square Problems with Rank-Deficient Nonlinear Constraints1

KKT Conditions for Rank-Deficient Nonlinear Least-Square Problems with Rank-Deficient Nonlinear Constraints1 JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 100, No. 1. pp. 145-160, JANUARY 1999 KKT Conditions for Rank-Deficient Nonlinear Least-Square Problems with Rank-Deficient Nonlinear Constraints1

More information

Inverse Problems and Optimal Design in Electricity and Magnetism

Inverse Problems and Optimal Design in Electricity and Magnetism Inverse Problems and Optimal Design in Electricity and Magnetism P. Neittaanmäki Department of Mathematics, University of Jyväskylä M. Rudnicki Institute of Electrical Engineering, Warsaw and A. Savini

More information

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 Petros Koumoutsakos Gerardo Tauriello (Last update: July 27, 2015) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations

Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations Oleg Burdakov a,, Ahmad Kamandi b a Department of Mathematics, Linköping University,

More information

Derivative-Free Trust-Region methods

Derivative-Free Trust-Region methods Derivative-Free Trust-Region methods MTH6418 S. Le Digabel, École Polytechnique de Montréal Fall 2015 (v4) MTH6418: DFTR 1/32 Plan Quadratic models Model Quality Derivative-Free Trust-Region Framework

More information

2 Nonlinear least squares algorithms

2 Nonlinear least squares algorithms 1 Introduction Notes for 2017-05-01 We briefly discussed nonlinear least squares problems in a previous lecture, when we described the historical path leading to trust region methods starting from the

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

2. Quasi-Newton methods

2. Quasi-Newton methods L. Vandenberghe EE236C (Spring 2016) 2. Quasi-Newton methods variable metric methods quasi-newton methods BFGS update limited-memory quasi-newton methods 2-1 Newton method for unconstrained minimization

More information

Keywords: Nonlinear least-squares problems, regularized models, error bound condition, local convergence.

Keywords: Nonlinear least-squares problems, regularized models, error bound condition, local convergence. STRONG LOCAL CONVERGENCE PROPERTIES OF ADAPTIVE REGULARIZED METHODS FOR NONLINEAR LEAST-SQUARES S. BELLAVIA AND B. MORINI Abstract. This paper studies adaptive regularized methods for nonlinear least-squares

More information

Gradient-Based Optimization

Gradient-Based Optimization Multidisciplinary Design Optimization 48 Chapter 3 Gradient-Based Optimization 3. Introduction In Chapter we described methods to minimize (or at least decrease) a function of one variable. While problems

More information

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study International Journal of Mathematics And Its Applications Vol.2 No.4 (2014), pp.47-56. ISSN: 2347-1557(online) Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms:

More information

Iterative Methods for Smooth Objective Functions

Iterative Methods for Smooth Objective Functions Optimization Iterative Methods for Smooth Objective Functions Quadratic Objective Functions Stationary Iterative Methods (first/second order) Steepest Descent Method Landweber/Projected Landweber Methods

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion:

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: Unconstrained Convex Optimization 21 4 Newton Method H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: f(x + p) f(x)+p T f(x)+ 1 2 pt H(x)p ˆf(p) In general, ˆf(p) won

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Cubic regularization of Newton s method for convex problems with constraints

Cubic regularization of Newton s method for convex problems with constraints CORE DISCUSSION PAPER 006/39 Cubic regularization of Newton s method for convex problems with constraints Yu. Nesterov March 31, 006 Abstract In this paper we derive efficiency estimates of the regularized

More information

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem min{f (x) : x R n }. The iterative algorithms that we will consider are of the form x k+1 = x k + t k d k, k = 0, 1,...

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem min{f (x) : x R n }. The iterative algorithms that we will consider are of the form x k+1 = x k + t k d k, k = 0, 1,...

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

March 8, 2010 MATH 408 FINAL EXAM SAMPLE

March 8, 2010 MATH 408 FINAL EXAM SAMPLE March 8, 200 MATH 408 FINAL EXAM SAMPLE EXAM OUTLINE The final exam for this course takes place in the regular course classroom (MEB 238) on Monday, March 2, 8:30-0:20 am. You may bring two-sided 8 page

More information

Algorithms for nonlinear programming problems II

Algorithms for nonlinear programming problems II Algorithms for nonlinear programming problems II Martin Branda Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 Petros Koumoutsakos, Jens Honore Walther (Last update: June 11, 2018) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material (ideas,

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Handout on Newton s Method for Systems

Handout on Newton s Method for Systems Handout on Newton s Method for Systems The following summarizes the main points of our class discussion of Newton s method for approximately solving a system of nonlinear equations F (x) = 0, F : IR n

More information

Lecture 7 Unconstrained nonlinear programming

Lecture 7 Unconstrained nonlinear programming Lecture 7 Unconstrained nonlinear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

Quasi-Newton methods for minimization

Quasi-Newton methods for minimization Quasi-Newton methods for minimization Lectures for PHD course on Numerical optimization Enrico Bertolazzi DIMS Universitá di Trento November 21 December 14, 2011 Quasi-Newton methods for minimization 1

More information

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke, University of Washington Daniel

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector

More information

Introduction to unconstrained optimization - direct search methods

Introduction to unconstrained optimization - direct search methods Introduction to unconstrained optimization - direct search methods Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Structure of optimization methods Typically Constraint handling converts the

More information

Numerical Algorithms as Dynamical Systems

Numerical Algorithms as Dynamical Systems A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive

More information

A Bound-Constrained Levenburg-Marquardt Algorithm for a Parameter Identification Problem in Electromagnetics

A Bound-Constrained Levenburg-Marquardt Algorithm for a Parameter Identification Problem in Electromagnetics A Bound-Constrained Levenburg-Marquardt Algorithm for a Parameter Identification Problem in Electromagnetics Johnathan M. Bardsley February 19, 2004 Abstract Our objective is to solve a parameter identification

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Algorithms for nonlinear programming problems II

Algorithms for nonlinear programming problems II Algorithms for nonlinear programming problems II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

DTIC IC FILE COPM. Laboratory. Stanford, CA V". Systems. Optimization LECTE. Department of Operations Research Stanford University OCT 3 119IM

DTIC IC FILE COPM. Laboratory. Stanford, CA V. Systems. Optimization LECTE. Department of Operations Research Stanford University OCT 3 119IM co IC FILE COPM V". Systems Optimization Laboratory Software Performance on Nonlinear Least-Squares Problems by Christina Fraley TECHNICAL REPORT SOL 88-17 September 1988 DTIC LECTE OCT 3 119IM Department

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

M 2 F g(i,j) = )))))) Mx(i)Mx(j) If G(x) is constant, F(x) is a quadratic function and can be expressed as. F(x) = (1/2)x T Gx + c T x + " (1)

M 2 F g(i,j) = )))))) Mx(i)Mx(j) If G(x) is constant, F(x) is a quadratic function and can be expressed as. F(x) = (1/2)x T Gx + c T x +  (1) Gradient Techniques for Unconstrained Optimization Gradient techniques can be used to minimize a function F(x) with respect to the n by 1 vector x, when the gradient is available or easily estimated. These

More information

The Squared Slacks Transformation in Nonlinear Programming

The Squared Slacks Transformation in Nonlinear Programming Technical Report No. n + P. Armand D. Orban The Squared Slacks Transformation in Nonlinear Programming August 29, 2007 Abstract. We recall the use of squared slacks used to transform inequality constraints

More information

Seminal papers in nonlinear optimization

Seminal papers in nonlinear optimization Seminal papers in nonlinear optimization Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk) December 7, 2006 The following papers are classics in the field. Although many of them cover

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

EA = I 3 = E = i=1, i k

EA = I 3 = E = i=1, i k MTH5 Spring 7 HW Assignment : Sec.., # (a) and (c), 5,, 8; Sec.., #, 5; Sec.., #7 (a), 8; Sec.., # (a), 5 The due date for this assignment is //7. Sec.., # (a) and (c). Use the proof of Theorem. to obtain

More information

A SHIFTED PRIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OPTIMIZATION

A SHIFTED PRIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OPTIMIZATION A SHIFTED RIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OTIMIZATION hilip E. Gill Vyacheslav Kungurtsev Daniel. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-18-1 February 1, 2018

More information

Geometry optimization

Geometry optimization Geometry optimization Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway European Summer School in Quantum Chemistry (ESQC) 211 Torre

More information

Solving Separable Nonlinear Equations Using LU Factorization

Solving Separable Nonlinear Equations Using LU Factorization Western Washington University Western CEDAR Mathematics College of Science and Engineering 03 Solving Separable Nonlinear Equations Using LU Factorization Yun-Qiu Shen Western Washington University, yunqiu.shen@wwu.edu

More information

CONVEXIFICATION SCHEMES FOR SQP METHODS

CONVEXIFICATION SCHEMES FOR SQP METHODS CONVEXIFICAION SCHEMES FOR SQP MEHODS Philip E. Gill Elizabeth Wong UCSD Center for Computational Mathematics echnical Report CCoM-14-06 July 18, 2014 Abstract Sequential quadratic programming (SQP) methods

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Prof. C. F. Jeff Wu ISyE 8813 Section 1 Motivation What is parameter estimation? A modeler proposes a model M(θ) for explaining some observed phenomenon θ are the parameters

More information

Math 273a: Optimization Netwon s methods

Math 273a: Optimization Netwon s methods Math 273a: Optimization Netwon s methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from Chong-Zak, 4th Ed. Main features of Newton s method Uses both first derivatives

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints Klaus Schittkowski Department of Computer Science, University of Bayreuth 95440 Bayreuth, Germany e-mail:

More information

Trajectory-based optimization

Trajectory-based optimization Trajectory-based optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2012 Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 1 / 13 Using

More information

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit I: Data Fitting Lecturer: Dr. David Knezevic Unit I: Data Fitting Chapter I.4: Nonlinear Least Squares 2 / 25 Nonlinear Least Squares So far we have looked at finding a best

More information

An interior-point gradient method for large-scale totally nonnegative least squares problems

An interior-point gradient method for large-scale totally nonnegative least squares problems An interior-point gradient method for large-scale totally nonnegative least squares problems Michael Merritt and Yin Zhang Technical Report TR04-08 Department of Computational and Applied Mathematics Rice

More information

A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION

A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-19-3 March

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

A NOTE ON Q-ORDER OF CONVERGENCE

A NOTE ON Q-ORDER OF CONVERGENCE BIT 0006-3835/01/4102-0422 $16.00 2001, Vol. 41, No. 2, pp. 422 429 c Swets & Zeitlinger A NOTE ON Q-ORDER OF CONVERGENCE L. O. JAY Department of Mathematics, The University of Iowa, 14 MacLean Hall Iowa

More information