Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Size: px
Start display at page:

Download "Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1"

Transcription

1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building

2 Physics 201 p. 2/1 Summary of last lecture Force on a point charge q 0 in the presence of an electric field: F = q 0 E(r)

3 Physics 201 p. 2/1 Summary of last lecture Force on a point charge q 0 in the presence of an electric field: F = q 0 E(r) E(r) can be calculated using either Coulomb s law or Gauss s law.

4 Physics 201 p. 2/1 Summary of last lecture Force on a point charge q 0 in the presence of an electric field: F = q 0 E(r) E(r) can be calculated using either Coulomb s law or Gauss s law. From last semester, a Force does Work. Furthermore, Conservative Force (like e.g. 1/r 2 force) Concept of Potential Energy and Concept of Potential.

5 Physics 201 p. 3/1 Electric Potential Energy Recall that the gravitational force is F g = G m 1 m 2 r 2 and it is a conservative force A potential energy is associated with it.

6 Electric Potential Energy Recall that the gravitational force is F g = G m 1 m 2 r 2 and it is a conservative force A potential energy is associated with it. The work done by gravity: from point A to point B is (positive direction pointing upward): W AB = KE B KE A = U A g U B g = mgh A mgh B Physics 201 p. 3/1

7 Physics 201 p. 4/1 Electric Potential Energy An electric force does work W AB = J in moving a charge q 0 = +2.0µC from A to B. 1) Find the potential energy difference; 2) Find the potential difference between B and A. How does one goes from the work done by an electric force to the potential energy difference?

8 Physics 201 p. 4/1 Electric Potential Energy An electric force does work W AB = J in moving a charge q 0 = +2.0µC from A to B. 1) Find the potential energy difference; 2) Find the potential difference between B and A. How does one goes from the work done by an electric force to the potential energy difference? What is the potential difference?

9 Physics 201 p. 5/1 Electric Potential Energy U e Force on +q: F = q E. Assume a uniform electric field E pointing vertically downward.

10 Physics 201 p. 5/1 Electric Potential Energy U e Force on +q: F = q E. Assume a uniform electric field E pointing vertically downward. Work done by this force in moving the particle from A to B with h A > h B : W AB = q E h A q E h B = KE B KE A

11 Physics 201 p. 5/1 Electric Potential Energy U e Force on +q: F = q E. Assume a uniform electric field E pointing vertically downward. Work done by this force in moving the particle from A to B with h A > h B : W AB = q E h A q E h B = KE B KE A Conservative electric force W AB = q E h A q E h B = KE B KE A = Ue A U e B

12 Physics 201 p. 6/1 Electric Potential Energy

13 Physics 201 p. 7/1 Electric Potential: Electric Potential V = U e q Unit: V = joule/coulomb=volt

14 Physics 201 p. 7/1 Electric Potential: Electric Potential V = U e q Unit: V = joule/coulomb=volt Notice that V is not a vector. It is a scalar

15 Physics 201 p. 7/1 Electric Potential: Electric Potential V = U e q Unit: V = joule/coulomb=volt Notice that V is not a vector. It is a scalar potential difference between B and A is: V B V A = U B e q U A e q = W AB q = E(h A h B ) < 0

16 Physics 201 p. 8/1 More generally: Electric Potential V B V A = E. s where s is the displacement vector pointing from A to B. The positive charge which moves in the direction of the electric field, goes from high to low potential. How about negative charge?

17 Physics 201 p. 8/1 More generally: Electric Potential V B V A = E. s where s is the displacement vector pointing from A to B. The positive charge which moves in the direction of the electric field, goes from high to low potential. How about negative charge? IMPORTANT POINT: As with the gravitational case, only the potential energy and potential difference makes physical sense.

18 Physics 201 p. 9/1 Electric Potential

19 Physics 201 p. 10/1 Electric Potential An electric force does work W AB = J in moving a charge q 0 = +2.0µC from A to B. 1) Find the potential energy difference; 2) Find the potential difference between B and A. U B e U A e = W AB = J < 0. The potential energy is higher at A than at B.

20 Physics 201 p. 10/1 Electric Potential An electric force does work W AB = J in moving a charge q 0 = +2.0µC from A to B. 1) Find the potential energy difference; 2) Find the potential difference between B and A. U B e U A e = W AB = J < 0. The potential energy is higher at A than at B. V B V A = W AB /q = J +2.0µC = 25 V. So V B < V A.

21 Physics 201 p. 11/1 Electric Potential A 12-V battery powers a 60.0 W headlight for one hour. How many electrons have passed through the terminals of the battery during that time? Energy consumed by the headlight in one hour: Energy = Power x time E = 60.0W 3600s = J.

22 Physics 201 p. 12/1 Electric Potential Equal to the change in potential energy of the total number of electrons which pass through the terminals: E = Q V = Q12V = J Q = C.

23 Physics 201 p. 12/1 Electric Potential Equal to the change in potential energy of the total number of electrons which pass through the terminals: E = Q V = Q12V = J Q = C. Each electron carries a charge of magnitude C. The total number of electrons is N = C C =

24 Conservation of Energy Point B has an electric potential that is 25 V greater than that of point A. A particle of mass kg and a charge whose magnitude is C. We will neglect gravity and friction. (a) If the particle has a positive charge and is released from rest at B, what speed v A does the particle have when it arrives at A? (b) If the particle has a negative charge and is released from rest at A, what speed v B does the particle have when it arrives at B? (c) What if the negatively charged particle is released from rest from B? Physics 201 p. 13/1

25 Physics 201 p. 14/1 Conservation of Energy (a) 1 2 mv2 A + qv A = 1 2 mv2 B + qv B. 1 2 mv2 A = q(v B V A ) v A = = 9.1 m/s. 2q(V B V A ) m

26 Physics 201 p. 14/1 Conservation of Energy (a) 1 2 mv2 A + qv A = 1 2 mv2 B + qv B. 1 2 mv2 A = q(v B V A ) v A = = 9.1 m/s. 2q(V B V A ) m (b) A negatively charged particle accelerating from rest from A is the same as a positively charged particle accelerating from rest from B v B = 9.1m/s.

27 Physics 201 p. 14/1 Conservation of Energy (a) 1 2 mv2 A + qv A = 1 2 mv2 B + qv B. 1 2 mv2 A = q(v B V A ) v A = = 9.1 m/s. 2q(V B V A ) m (b) A negatively charged particle accelerating from rest from A is the same as a positively charged particle accelerating from rest from B v B = 9.1m/s. (c) It will never reach B.

28 Physics 201 p. 15/1 Conservation of Energy Another unit of energy: ev or electronvolt. One ev is the change in potential energy of an electron moving a potential difference of one volt.

29 Physics 201 p. 15/1 Conservation of Energy Another unit of energy: ev or electronvolt. One ev is the change in potential energy of an electron moving a potential difference of one volt. 1 ev = J.

30 Physics 201 p. 16/1 Electric Potential of a point charge A charge q 1 = 2.00µC is located at the origin and a charge q 2 = 6.00µC is located at (0, 3.00 m). Find the total electric potential at point P situated at (4.00m, 0). See the figure drawn in class. The electric field of a point charge is not constant. We cannot use the formula derived above.

31 Physics 201 p. 16/1 Electric Potential of a point charge A charge q 1 = 2.00µC is located at the origin and a charge q 2 = 6.00µC is located at (0, 3.00 m). Find the total electric potential at point P situated at (4.00m, 0). See the figure drawn in class. The electric field of a point charge is not constant. We cannot use the formula derived above. So what s the electric potential of a point charge then?

32 Physics 201 p. 17/1 Electric Potential of a point charge E(r) = k q r 2 ˆr (NOT CONSTANT) V B V A = B A E.d s = k q r B k q r A

33 Physics 201 p. 17/1 Electric Potential of a point charge E(r) = k q r 2 ˆr (NOT CONSTANT) V B V A = B A E.d s = k q r B k q r A Boundary condition: V A = 0 when r A is infinite:

34 Physics 201 p. 17/1 Electric Potential of a point charge E(r) = k q r 2 ˆr (NOT CONSTANT) V B V A = B A E.d s = k q r B k q r A Boundary condition: V A = 0 when r A is infinite: V = k q r

35 Physics 201 p. 18/1 Electric Potential of a point charge

36 Physics 201 p. 19/1 Electric Potential of a point charge A charge q 1 = 2.00µC is located at the origin and a charge q 2 = 6.00µC is located at (0, 3.00 m). Find the total electric potential at point P situated at (4.00m, 0). See the figure drawn in class. The individual potentials add like scalars

37 Physics 201 p. 19/1 Electric Potential of a point charge A charge q 1 = 2.00µC is located at the origin and a charge q 2 = 6.00µC is located at (0, 3.00 m). Find the total electric potential at point P situated at (4.00m, 0). See the figure drawn in class. The individual potentials add like scalars The distance between q 1 and P is 4.00 m. The distance between q 2 and P is 5.00 m.

38 Electric Potential of a point charge A charge q 1 = 2.00µC is located at the origin and a charge q 2 = 6.00µC is located at (0, 3.00 m). Find the total electric potential at point P situated at (4.00m, 0). See the figure drawn in class. The individual potentials add like scalars The distance between q 1 and P is 4.00 m. The distance between q 2 and P is 5.00 m. V P = k( q 1 r 1 + q 2 r 2 ) V P = N.m2 C C ( m C 5.00m ) = V. Physics 201 p. 19/1

Physics 1051 Lecture 14. Electric Potential. Physics General Physics II Oscillations, Waves and Magnetism

Physics 1051 Lecture 14. Electric Potential. Physics General Physics II Oscillations, Waves and Magnetism Physics 1051 Lecture 14 Electric Potential Lecture 14 - Contents 20.0 Describing Electric Phenomenon using Electric Potential 20.1 Electric Potential Difference and Electric Potential 20.2 Potential Difference

More information

Electric Fields Part 1: Coulomb s Law

Electric Fields Part 1: Coulomb s Law Electric Fields Part 1: Coulomb s Law F F Last modified: 07/02/2018 Contents Links Electric Charge & Coulomb s Law Electric Charge Coulomb s Law Example 1: Coulomb s Law Electric Field Electric Field Vector

More information

CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL. Sections 1-5

CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL. Sections 1-5 CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL Sections 1-5 Objectives: After completing this unit, you should be able to: Understand an apply the concepts of electric potential energy,

More information

PHYS 1444 Section 003 Lecture #6

PHYS 1444 Section 003 Lecture #6 PHYS 1444 Section 003 Lecture #6 Thursday Sep. 13, 2012 Dr. Andrew Brandt Chapter 23: Electric Potential 1 Electric Potential Energy Concept of energy is very useful solving mechanical problems Conservation

More information

Chapter 20 Electric Potential and Electric potential Energy

Chapter 20 Electric Potential and Electric potential Energy Outline Chapter 20 Electric Potential and Electric potential Energy 20-1 Electric Potential Energy and the Electric Potential 20-2 Energy Conservation 20-3 The Electric Potential of Point Charges 20-4

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9. Electrostatics 1) electric charge: 2 types of electric charge: positive and negative 2) charging by friction: transfer of electrons from one object to another 3) positive object: lack of electrons negative

More information

1.2 Energy of Charged Particles

1.2 Energy of Charged Particles 1.2 Energy of Charged Particles Objective 1: Recall Coulomb s Law which states that the electrostatic force between 2 charged particles is inversely proportional to the square of the distance between them.

More information

Chapter 17. Electric Potential Energy and the Electric Potential

Chapter 17. Electric Potential Energy and the Electric Potential Chapter 17 Electric Potential Energy and the Electric Potential Consider gravity near the surface of the Earth The gravitational field is uniform. This means it always points in the same direction with

More information

Physics 1202: Lecture 3 Today s Agenda

Physics 1202: Lecture 3 Today s Agenda Physics 1202: Lecture 3 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #1: On Masterphysics: due this coming Friday Go to the syllabus

More information

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law.

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law. Prof. Eugene Dunnam Prof. Paul Avery Feb. 6, 007 Exam 1 Solutions 1. A charge Q 1 and a charge Q = 1000Q 1 are located 5 cm apart. The ratio of the electrostatic force on Q 1 to that on Q is: (1) none

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy the electric potential energy of two charges depends on the distance between the charges when two like charges are an infinite distance apart, the potential energy is zero An

More information

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Chapter 16 Electrical Energy Capacitance HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Electrical Potential Reminder from physics 1: Work done by a conservative force, depends only

More information

Phys 102 Lecture 4 Electric potential energy & work

Phys 102 Lecture 4 Electric potential energy & work Phys 102 Lecture 4 Electric potential energy & work 1 Today we will... Learn about the electric potential energy Relate it to work Ex: charge in uniform electric field, point charges Apply these concepts

More information

PHYS 1441 Section 002 Lecture #7

PHYS 1441 Section 002 Lecture #7 PHYS 1441 Section 002 Lecture #7 Monday, Sept. 25, 2017 Chapter 22 One last Gauss Law Example Chapter 23 Electric Potential Electric Potential Energy Electric Potential due to Point Charges Shape of the

More information

Potential from a distribution of charges = 1

Potential from a distribution of charges = 1 Lecture 7 Potential from a distribution of charges V = 1 4 0 X Smooth distribution i q i r i V = 1 4 0 X i q i r i = 1 4 0 Z r dv Calculating the electric potential from a group of point charges is usually

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Work and Energy continued

Work and Energy continued Chapter 6 Work and Energy continued 6.2 The Work-Energy Theorem and Kinetic Energy Chapters 1 5 Motion equations were been developed, that relate the concepts of velocity, speed, displacement, time, and

More information

Chapter 17 Lecture Notes

Chapter 17 Lecture Notes Chapter 17 Lecture Notes Physics 2424 - Strauss Formulas: qv = U E W = Fd(cosθ) W = - U E V = Ed V = kq/r. Q = CV C = κε 0 A/d κ = E 0 /E E = (1/2)CV 2 Definition of electric potential Definition of Work

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

PHYS ST semester Dr. Nadyah Alanazi. Lecture 11

PHYS ST semester Dr. Nadyah Alanazi. Lecture 11 1 PHYS 104 1 ST semester 1439-1440 Dr. Nadyah Alanazi Lecture 11 25.1 Potential Difference and Electric Potential When a test charge q 0 is placed in an electric field E created by some source charge,

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

Common Exam 3, Friday, April 13, :30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8. HW #8 and HW #9: Due tomorrow, April 6 th (Fri)

Common Exam 3, Friday, April 13, :30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8. HW #8 and HW #9: Due tomorrow, April 6 th (Fri) Common Exam 3, Friday, April 13, 2007 8:30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8 Bring calculators (Arrive by 8:15) HW #8 and HW #9: Due tomorrow, April 6 th (Fri) Today. Chapter 8 Hints for HW #9 Quiz

More information

Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks:

Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: What is Voltage anyway? Voltage... Is the energy (in Joules)

More information

Physics 102: Lecture 3 Electric Potential Energy & Electric Potential. Physics 102: Lecture 2, Slide 1

Physics 102: Lecture 3 Electric Potential Energy & Electric Potential. Physics 102: Lecture 2, Slide 1 Physics 102: Lecture 3 Electric Potential Energy & Electric Potential Physics 102: Lecture 2, Slide 1 Overview for Today s Lecture Electric Potential Energy & Work Uniform fields Point charges Electric

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

21.4 Electric Field and Electric Forces

21.4 Electric Field and Electric Forces 21.4 Electric Field and Electric Forces How do charged particles interact in empty space? How do they know the presence of each other? What goes on in the space between them? Body A produces an electric

More information

Lecture 4 Electric Potential and/ Potential Energy Ch. 25

Lecture 4 Electric Potential and/ Potential Energy Ch. 25 Lecture 4 Electric Potential and/ Potential Energy Ch. 5 Review from Lecture 3 Cartoon - There is an electric energy associated with the position of a charge. Opening Demo - Warm-up problems Physlet Topics

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

ELECTRICITY & MAGNETISM CHAPTER 8

ELECTRICITY & MAGNETISM CHAPTER 8 ELECTRICITY & MAGNETISM CHAPTER 8 E & M - Focus Electric Charge & Force Magnetism Current, Voltage & Power Electromagnetism Simple Electrical Circuits Voltage & Current Transformation Electric Charge &

More information

Electrostatics Describe and explain the properties of conductors and insulators

Electrostatics Describe and explain the properties of conductors and insulators Electrostatics 5.1.1 Describe the process of electrification by friction The ancient Greeks found that if amber was rubbed with fur it would attract small objects like hair. If the amber is rubbed long

More information

What You Already Know

What You Already Know What You Already Know Coulomb s law Electric fields Gauss law Electric fields for several configurations Point Line Plane (nonconducting) Sheet (conducting) Ring (along axis) Disk (along axis) Sphere Cylinder

More information

Electric Force and Coulombs Law

Electric Force and Coulombs Law Electric Force and Coulombs Law 1 Coulombs law is an inverse squared law prove this graphically / experimentally 2 NOTE: THIS IS ONLY FOR POINT CHARGES. Schematics I.) +5C 3C II.) Q Q 3 III.) more than

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website: Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Ling @ Fiona Website: http://yslphysics.weebly.com/ Chapter 1: Electrostatics The study of electric charges at rest, the forces between them and the

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Derived copy of Electric Potential Energy: Potential Difference *

Derived copy of Electric Potential Energy: Potential Difference * OpenStax-CNX module: m60491 1 Derived copy of Electric Potential Energy: Potential Difference * Albert Hall Based on Electric Potential Energy: Potential Dierence by OpenStax This work is produced by OpenStax-CNX

More information

Chapter 2. Electric Fields Field Intensity Due to a Point Charge

Chapter 2. Electric Fields Field Intensity Due to a Point Charge Chapter 2 Electric Fields An electric field exists in a region if electrical forces are exerted on charged bodies in that region. The direction of an electric field at a point is the direction in which

More information

Conservation of Energy

Conservation of Energy Conservation of Energy In the past few lectures, we ve explored systems where mechanical energy was conserved We had to apply some pretty specific restrictions to the systems before we could assume mechanical

More information

Algebra Based Physics Electric Field, Potential Energy and Voltage

Algebra Based Physics Electric Field, Potential Energy and Voltage 1 Algebra Based Physics Electric Field, Potential Energy and Voltage 2016 04 19 www.njctl.org 2 Electric Field, Potential Energy and Voltage Click on the topic to go to that section Electric Field *Electric

More information

PHYS 221 General Physics II

PHYS 221 General Physics II PHYS 221 General Physics II Elec. Potential Energy, Voltage, Equipotentials Spring 2015 Assigned Reading: 18.1 18.3 Lecture 4 Review: Gauss Law Last Lecture E q enc o E EAcos Gauss Law Very useful to determine

More information

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts:

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts: Chapter 19 Electric Potential and Electric Field Sunday, January 31, 2010 10:37 PM Key concepts: electric potential electric potential energy the electron-volt (ev), a convenient unit of energy when dealing

More information

How does the total energy of the cart change as it goes down the inclined plane?

How does the total energy of the cart change as it goes down the inclined plane? Experiment 6 Conservation of Energy and the Work-Energy Theorem In this experiment you will explore the principle of conservation of mechanical energy. You will see that gravitational energy can be converted

More information

Physics 112 Homework 2 (solutions) (2004 Fall) Solutions to Homework Questions 2

Physics 112 Homework 2 (solutions) (2004 Fall) Solutions to Homework Questions 2 Solutions to Homework Questions 2 Chapt16, Problem-1: A proton moves 2.00 cm parallel to a uniform electric field with E = 200 N/C. (a) How much work is done by the field on the proton? (b) What change

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 4 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

Section 1: Electric Fields

Section 1: Electric Fields PHY 132 Outline of Lecture Notes i Section 1: Electric Fields A property called charge is part of the basic nature of protons and electrons. Large scale objects become charged by gaining or losing electrons.

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 2 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~alan/

More information

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. Affan Khan LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [WORK, POWER AND ENERGY] CHAPTER NO. 7 A little concept of vector mathematics is applied here

More information

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal =

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal = 8 CHAPTER 7 WORK, ENERGY, AND ENERGY RESOURCES generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the

More information

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test 1 A source of 1.0 µc is 0.030 meters is from a positive test charge of 2.0 µc. (a) What is the force on the test charge? (b) What is the potential energy of the test charge? (c) What is the strength of

More information

. According to the workenergy theorem (Equation 6.3), the work done by the net external force W catapult

. According to the workenergy theorem (Equation 6.3), the work done by the net external force W catapult 1. REASONING The work done by the catapult catapult is one contribution to the work done by the net external force that changes the kinetic energy of the plane. The other contribution is the work done

More information

Handout 3: Electric potential and electric potential energy. Electric potential

Handout 3: Electric potential and electric potential energy. Electric potential Handout 3: Electric potential and electric potential energy Electric potential Consider a charge + fixed in space as in Figure. Electric potential V at any point in space is defined as the work done by

More information

7 ELECTRIC POTENTIAL

7 ELECTRIC POTENTIAL Chapter 7 Electric Potential 285 7 ELECTRIC POTENTIAL Figure 7.1 The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that may be stored and released

More information

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th.

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th. Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 0th. F=ma Electric Force Work, Energy and Power Number 60 50 40 30 0 10 0 17 18 0

More information

Misconceptions in Mechanics

Misconceptions in Mechanics Misconceptions in Mechanics Sharon Tripconey MEI Conference 2014 Sometimes, always or never true? Sometimes, always or never true? Sort the cards into three piles For each of the three piles, order the

More information

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts:

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts: Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, 2010 10:37 PM Key concepts: electric potential electric potential energy the electron-volt (ev), a convenient unit of energy

More information

Electrical Potential Energy and Electric Potential (Chapter 29)

Electrical Potential Energy and Electric Potential (Chapter 29) Electrical Potential Energy and Electric Potential (Chapter 29) A Refresher Course on Gravity and Mechanical Energy Total mechanical energy: E mech = K + U, K= 1 2 mv2,u = potential energy f W = F!" ids

More information

0J2 - Mechanics Lecture Notes 2

0J2 - Mechanics Lecture Notes 2 0J2 - Mechanics Lecture Notes 2 Work, Power, Energy Work If a force is applied to a body, which then moves, we say the force does work. In 1D, if the force is constant with magnitude F, and the body moves

More information

Electric Potential Energy Conservative Force

Electric Potential Energy Conservative Force Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,

More information

Another Method to get a Sine Wave. X = A cos θ V = Acc =

Another Method to get a Sine Wave. X = A cos θ V = Acc = LAST NAME FIRST NAME DATE PER CJ Wave Assignment 10.3 Energy & Simple Harmonic Motion Conceptual Questions 3, 4, 6, 7, 9 page 313 6, 7, 33, 34 page 314-316 Tracing the movement of the mass on the end of

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

What You Already Know

What You Already Know What You Already Know Coulomb s law Electric fields Gauss law Electric fields for several configurations Point Line Plane (nonconducting) Sheet (conducting) Ring (along axis) Disk (along axis) Sphere Cylinder

More information

Electricity and Magnetism. Electric Potential Energy and Voltage

Electricity and Magnetism. Electric Potential Energy and Voltage Electricity and Magnetism Electric Potential Energy and Voltage Work and Potential Energy Recall from Mechanics that E mech = K + U is a conserved quantity for particles that interact via conservative

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Oscillations! (Today: Springs)

Oscillations! (Today: Springs) Oscillations! (Today: Springs) Extra Practice: 5.34, 5.35, C13.1, C13.3, C13.11, 13.1, 13.3, 13.5, 13.9, 13.11, 13.17, 13.19, 13.21, 13.23, 13.25, 13.27, 13.31 Test #3 is this Wednesday! April 12, 7-10pm,

More information

MTE1 results. Mean 75% = 90/120

MTE1 results. Mean 75% = 90/120 MTE1 results Mean 75% = 90/120 Scores available at Learn@UW, your TAs have exams If your score is an F or a D, talk to us and your TAs for suggestions on how to improve From last times Electric charges

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

Version: A. Earth s gravitational field g = 9.81 N/kg Vacuum Permeability µ 0 = 4π 10 7 T m/a

Version: A. Earth s gravitational field g = 9.81 N/kg Vacuum Permeability µ 0 = 4π 10 7 T m/a PHYS 2212 GJ Quiz and Exam Formulæ & Constants Fall 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0

More information

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy

More information

Questions on Electric Fields MS

Questions on Electric Fields MS Questions on Electric Fields MS 1. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B. A Oil drop 2.50 cm B The oil drop has a mass 9.79 x 10 15

More information

Physics 2211 A & B Quiz #4 Solutions Fall 2016

Physics 2211 A & B Quiz #4 Solutions Fall 2016 Physics 22 A & B Quiz #4 Solutions Fall 206 I. (6 points) A pendulum bob of mass M is hanging at rest from an ideal string of length L. A bullet of mass m traveling horizontally at speed v 0 strikes it

More information

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge:

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Practice Exam 1 Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Electric potential due to a point charge: Electric potential energy: Capacitor energy:

More information

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

1. The diagram shows the electric field lines produced by an electrostatic focussing device. 1. The diagram shows the electric field lines produced by an electrostatic focussing device. Which one of the following diagrams best shows the corresponding equipotential lines? The electric field lines

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

b) What is its position when its velocity (magnitude) is largest? When it is at x=0 all the energy is kinetic.

b) What is its position when its velocity (magnitude) is largest? When it is at x=0 all the energy is kinetic. Question 1. The electrostatic force between two charges, Q 1 and F 1 /4 Q 2 a separated by a distance D, is F 1. What is the force between them after they are moved to a distance 2D apart? (Give in terms

More information

Physics 102: Lecture 3 Electric Potential Energy & Electric Potential. Physics 102: Lecture 2, Slide 1

Physics 102: Lecture 3 Electric Potential Energy & Electric Potential. Physics 102: Lecture 2, Slide 1 Physics 102: Lecture 3 Electric Potential Energy & Electric Potential Physics 102: Lecture 2, Slide 1 Overview for Today s Lecture Electric Potential Energy & Work Uniform fields Point charges Electric

More information

Chapters 22/23: Potential/Capacitance Tuesday September 20 th

Chapters 22/23: Potential/Capacitance Tuesday September 20 th Chapters 22/23: Potential/Capacitance Tuesday September 20 th Mini Exam 2 on Thursday: Covers Chs. 21 and 22 (Gauss law and potential) Covers LONCAPA #3 to #6 (due this Wed.) No formula sheet allowed!!

More information

Lecture 11. Impulse/Momentum. Conservation of Momentum. Cutnell+Johnson: Impulse and Momentum

Lecture 11. Impulse/Momentum. Conservation of Momentum. Cutnell+Johnson: Impulse and Momentum Lecture 11 Impulse/Momentum Conservation of Momentum Cutnell+Johnson: 7.1-7.3 Impulse and Momentum We learned about work, which is the force times distance (times the cosine of the angle in between the

More information

Substituting in the values we have here (and converting the mass from grams to kilograms): B = ( )(9.81)

Substituting in the values we have here (and converting the mass from grams to kilograms): B = ( )(9.81) Chapter 27 : Magnetism (version 1) Key concepts: Cross product: A B produces a vector that is perpendicular to the plane formed by A and B, in a direction that can be determined via the right-hand rule

More information

Electric Potential Energy & Voltage. Tesla Envy =jlzeqz4efqa&feature=related

Electric Potential Energy & Voltage. Tesla Envy  =jlzeqz4efqa&feature=related Electric Potential Energy & Voltage Tesla Envy http://www.youtube.com/watch?v =jlzeqz4efqa&feature=related Ch 23 & 24: Electric Force and Field F qq k r 1 2rˆ 12 2 F qe kq Electric Field E due to q : E

More information

Work and Energy Definition of work Examples. Definition of Mechanical Energy. Conservation of Mechanical Energy, Pg 1

Work and Energy Definition of work Examples. Definition of Mechanical Energy. Conservation of Mechanical Energy, Pg 1 Work and Energy Definition of work Examples Work and Energy Today s Agenda Definition of Mechanical Energy Conservation of Mechanical Energy Conservative forces Conservation of Mechanical Energy, Pg 1

More information

Agenda for Today. Elements of Physics II. Conductors and Insulators Movement of charges Conservation of charge Static electricity Electroscope

Agenda for Today. Elements of Physics II. Conductors and Insulators Movement of charges Conservation of charge Static electricity Electroscope Physics 132: Lecture e 5 Elements of Physics II Agenda for Today Conductors and Insulators Movement of charges Conservation of charge Static electricity Electroscope Physics 201: Lecture 1, Pg 1 Problem

More information

Electrostatics Notes 1 Charges and Coulomb s Law

Electrostatics Notes 1 Charges and Coulomb s Law Electrostatics Notes 1 Charges and Coulomb s Law Matter is made of particles which are or charged. The unit of charge is the ( ) Charges are, meaning that they cannot be It is thought that the total charge

More information

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week Today: Work, Kinetic Energy, Potential Energy HW #4 due Thursday, 11:59 p.m. pm No Recitation Quiz this week 1 What is Energy? Mechanical Electromagnetic PHY 11 PHY 13 Chemical CHE 105 Nuclear PHY 555

More information

Professor: Arpita Upadhyaya Physics 131

Professor: Arpita Upadhyaya Physics 131 Physics 131- Fundamentals of Physics for Biologists I Professor: Arpita Upadhyaya Energy Chemical bonding Intermolecular Interactions 1 Physics 131 Quiz 11 60 50 Q 1.1 11 40 30 20 10 0 A B C D 2 18 Q 1.2

More information

In vertical circular motion the gravitational force must also be considered.

In vertical circular motion the gravitational force must also be considered. Vertical Circular Motion In vertical circular motion the gravitational force must also be considered. An example of vertical circular motion is the vertical loop-the-loop motorcycle stunt. Normally, the

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Exam 1--PHYS 102--S14

Exam 1--PHYS 102--S14 Class: Date: Exam 1--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The magnitude of the charge on an electron is approximately: a. 10-23

More information

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

Energy is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena. Energy Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena." David Rose What is energy? Energy makes changes;

More information

Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action at

Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action at Electricity & Magnetism Electric Fields Marline Kurishingal Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action

More information

ELECTROSTATIC FIELDS

ELECTROSTATIC FIELDS ELECTROSTATIC FIELDS Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. A body can become charged if it loses or

More information

Electric Potential Lecture 5

Electric Potential Lecture 5 Chapter 23 Electric Potential Lecture 5 Dr. Armen Kocharian Electrical Potential Energy When a test charge is placed in an electric field, it experiences a force F = q o E The force is conservative ds

More information

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main FOUNDATION STUDIES EXAMINATIONS November 203 PHYSICS Semester Two February Main Time allowed 2 hours for writing 0 minutes for reading This paper consists of 5 questions printed on 0 pages. PLEASE CHECK

More information

Strategies of Studying Physics

Strategies of Studying Physics Strategies of Studying Physics Chin-Sung Lin Strategies of Studying Physics q Use physics words with precision q Know the concepts behind the formulas q Apply dimensional analysis q Develop problem solving

More information

Ch. 16 and 17 Review Problems

Ch. 16 and 17 Review Problems Ch. 16 and 17 Review Problems NAME 1) Is it possible for two negative charges to attract each other? A) Yes, they always attract. B) Yes, they will attract if they are close enough. C) Yes, they will attract

More information