. According to the workenergy theorem (Equation 6.3), the work done by the net external force W catapult

Size: px
Start display at page:

Download ". According to the workenergy theorem (Equation 6.3), the work done by the net external force W catapult"

Transcription

1 1. REASONING The work done by the catapult catapult is one contribution to the work done by the net external force that changes the kinetic energy of the plane. The other contribution is the work done by the thrust force of the plane s engines thrust. According to the workenergy theorem (Equation 6.3), the work done by the net external force catapult + thrust is equal to the change in the kinetic energy. The change in the kinetic energy is the given kinetic energy of J at lift-off minus the initial kinetic energy, which is zero since the plane starts at rest. The work done by the thrust force can be determined from Equation 6.1 [ = (F cos ) s], since the magnitude F of the thrust is N and the magnitude s of the displacement is 87 m. e note that the angle between the thrust and the displacement is 0º, because they have the same direction. In summary, we will calculate catapult from catapult + thrust = KE f KE 0. SOLUTION According to the work-energy theorem, we have catapult + thrust = KE f KE 0 Using Equation 6.1 and noting that KE 0 = 0 J, we can write the work energy theorem as follows: + catapult ( Fcosθ ) s = KE f Solving for catapult gives ( θ ) = KEcos F s catapult f ork done by thrust ork done by thrust = = J.3 10 N cos 0 87 m.5 10 J

2 15. REASONING AND SOLUTION a. The work-energy theorem gives = (1/)mv f (1/)mv o = (1/)( kg)(41 m/s) = 38J b. From the definition of work so = Fs cos 0 F = /s = (38 J)/( m) = N

3 17. SSM REASONING AND SOLUTION The work required to bring each car up to speed is, from the work-energy theorem, = KE f KE 0 = 1 mv f 1 mv 0. Therefore, 1 ( ) B = f 0 = m v v ( kg) (40.0 m/s) 0 m/s = J 1 ( ) B = f 0 = m v v ( kg) (40.0 m/s) 0 m/s = J The additional work required to bring car B up to speed is, therefore, B A = ( J) ( J) = J

4 0. REASONING To find the coefficient of kinetic friction µ k, we need to find the force of kinetic friction f k and the normal force F N (see Equation 4.8, f k = µ k F N ). The normal force and the weight mg of the sled balance, since they are the only two forces acting vertically and the sled does not accelerate in the vertical direction. The force of kinetic friction can be obtained from the work f done by the frictional force, according to Equation 6.1 [ f = (f k cos ) s], where s is the magnitude of the displacement. To find the work, we will employ the work-energy theorem, as given in Equation 6.3 ( = KE f KE 0 ). In this equation is the work done by the net force, but the normal force and the weight balance, so the net force is that due to the pulling force P and the frictional force. As a result = pull + f. SOLUTION According to the work-energy theorem, we have = pull + f = KE f KE 0 Using Equation 6.1 [ = (F cos ) s] to express each work contribution, writing the kinetic 1 energy as mv, and noting that the initial kinetic energy is zero (the sled starts from rest), we obtain 1 ( P cos 0 ) s+ ( f cos180 k ) s = mv pull The angle between the force and the displacement is 0º for the pulling force (it points in the same direction as the displacement) and 180º for the frictional force (it points opposite to the displacement). Equation 4.8 indicates that the magnitude of the frictional force is f k = µ k F N, and we know that the magnitude of the normal force is F N = mg. ith these substitutions the work-energy theorem becomes 1 ( P cos 0 ) s+ ( µ mg cos180 ) s = mv pull k Solving for the coefficient of kinetic friction gives f f ( mg ) s 1 1 mv P cos 0 s 16 kg.0 m/s 4 N 8.0 m µ = = = k cos kg9.80 m/s 8.0 m 0.13

5 . REASONING Since the person has an upward acceleration, there must be a net force acting in the upward direction. The net force ΣF y is related to the acceleration a y by Newton s second law, Σ Fy = may, where m is the mass of the person. This relation will allow us to determine the tension in the cable. The work done by the tension and the person s weight can be found directly from the definition of work, Equation 6.1. SOLUTION a. The free-body diagram at the right shows the two forces that act on the person. Applying Newton s second law, we have T s +y T mg = ma Σ F y y Solving for the magnitude of the tension in the cable yields mg T = m(a y + g) = (79 kg)(0.70 m/s m/s ) = N b. The work done by the tension in the cable is ( θ ) = T s= (6.1) 3 T cos ( N) (cos 0 ) (11 m) = J c. The work done by the person s weight is ( θ ) = mg s = (6.1) 3 cos (79 kg) 9.8 m/s (cos 180 ) (11 m) = J d. The work-energy theorem relates the work done by the two forces to the change in the kinetic energy of the person. The work done by the two forces is = T + : 1 1 T + = mv f mv 0 (6.3) Solving this equation for the final speed of the person gives v = v + + m f 0 T 3 3 = ( 0 m/s) + ( J J) = 4 m / s 79 kg

6 3. REASONING It is useful to divide this problem into two parts. The first part involves the skier moving on the snow. e can use the work-energy theorem to find her speed when she comes to the edge of the cliff. In the second part she leaves the snow and falls freely toward the ground. e can again employ the work-energy theorem to find her speed just before she lands. SOLUTION The drawing at the right shows the three forces that act on the skier as she glides on the snow. The forces are: her weight mg, the normal force F N, and the kinetic frictional force f k. Her displacement is labeled as s. The work-energy theorem, Equation 6.3, is f k 65.0 F N s 5.0 +y = mv mv 1 1 f 0 where is the work done by the net external force that acts on the skier. The work done by each force is given by Equation 6.1, = F cos θ s, so the work-energy theorem becomes mg 1 1 ( mg cos 65.0 ) s + ( f cos 180 ) s + ( F cos 90 ) s = mv mv k N f 0 Since cos 90 = 0, the third term on the left side can be eliminated. The magnitude f k of the kinetic frictional force is given by Equation 4.8 as fk = µ kfn. The magnitude F N of the normal force can be determined by noting that the skier does not leave the surface of the slope, so a y = 0 m/s. Thus, we have that ΣF y = 0, so F mg cos 5.0 = 0 or F = mg cos 5.0 N ΣF y The magnitude of the kinetic frictional force becomes fk = µ kfn = µ kmg cos 5.0 Substituting this result into the work-energy theorem, we find that N. 1 1 ( mg cos 65.0 ) s + ( µ mg cos 5.0 )( cos 180 ) s = mv mv k f 0 Algebraically eliminating the mass m of the skier from every term, setting cos 180 = 1 and v 0 = 0 m/s, and solving for the final speed v f, gives f v = gs cos 65.0 µ cos 5.0 k = 9.80 m/s 10.4 m cos cos 5.0 = 7.01 m/s

7 The drawing at the right shows her displacement s during free fall. Note that the displacement is a vector that starts where she leaves the slope and ends where she touches the ground. The only force acting on her during the free fall is her weight mg. The work-energy theorem, Equation 6.3, is 3.50 m θ s mg = mv mv 1 1 f 0 The work is that done by her weight, so the work-energy theorem becomes 1 1 ( mg cosθ ) s = mv mv f 0 In this expression θ is the angle between her weight (which points vertically downward) and her displacement. Note from the drawing that s cos θ = 3.50 m. Algebraically eliminating the mass m of the skier from every term in the equation above and solving for the final speed v f gives f 0 v = v + cos g s θ = 7.01 m/s m/s 3.50 m = 10.9 m/s

8 6. REASONING The work done by the weight of the basketball is given by Equation 6.1 as = ( F cos θ ) s, where F = mg is the magnitude of the weight, θ is the angle between the weight and the displacement, and s is the magnitude of the displacement. The drawing shows that the weight and displacement are parallel, so that θ = 0. The potential energy of the basketball is given by Equation 6.5 as PE = mgh, whereh is the height of the ball above the ground. SOLUTION a. The work done by the weight of the basketball is mg s ( cos θ ) = F s = mg (cos 0 )(h 0 h f ) = (0.60 kg)(9.80 m/s )(6.1 m 1.5 m) = 7 J b. The potential energy of the ball, relative to the ground, when it is released is PE 0 = mgh 0 = (0.60 kg)(9.80 m/s )(6.1 m) = 36 J (6.5) c. The potential energy of the ball, relative to the ground, when it is caught is PE f = mgh f = (0.60 kg)(9.80 m/s )(1.5 m) = 8.8 J (6.5) d. The change in the ball s gravitational potential energy is PE = PE f PE 0 = 8.8 J 36 J = 7 J e see that the change in the gravitational potential energy is equal to 7 J =, where is the work done by the weight of the ball (see part a).

9 34. REASONING AND SOLUTION The conservation of energy gives Rearranging gives 1 1 mvf + mgh f = mv 0 + mgh0 ( 14.0 m/s) ( 13.0 m/s) hf h0 = = 1.4 m 9.80m/s

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is Chapter 6: Problems 5, 6, 8, 38, 43, 49 & 53 5. ssm Suppose in Figure 6. that +1.1 1 3 J o work is done by the orce F (magnitude 3. N) in moving the suitcase a distance o 5. m. At what angle θ is the orce

More information

Week 4 Homework/Recitation: 9/21/2017 Chapter4: Problems 3, 5, 11, 16, 24, 38, 52, 77, 78, 98. is shown in the drawing. F 2

Week 4 Homework/Recitation: 9/21/2017 Chapter4: Problems 3, 5, 11, 16, 24, 38, 52, 77, 78, 98. is shown in the drawing. F 2 Week 4 Homework/Recitation: 9/1/017 Chapter4: Problems 3, 5, 11, 16, 4, 38, 5, 77, 78, 98. 3. Two horizontal forces, F 1 and F, are acting on a box, but only F 1 is shown in the drawing. F can point either

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously.

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. 5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. The applied forces may cancel so the net force is zero; in such a case,

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

PHYS 101: Solutions to Chapter 4 Home Work

PHYS 101: Solutions to Chapter 4 Home Work PHYS 101: Solutions to Chapter 4 Home ork 3. EASONING In each case, we will appl Newton s second law. emember that it is the net force that appears in the second law. he net force is the vector sum of

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

An Introduction to Forces Identifying Forces. An Introduction to Forces Forces-part 1. Forces are Interactions. What Is a Force? Identifying Forces

An Introduction to Forces Identifying Forces. An Introduction to Forces Forces-part 1. Forces are Interactions. What Is a Force? Identifying Forces An Introduction to s s-part 1 Identify s,, and FBDs-KJF An Introduction to s Identifying s s are Interactions A force is an interaction between 2 objects Touching: Some forces require contact At a distance:

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

In vertical circular motion the gravitational force must also be considered.

In vertical circular motion the gravitational force must also be considered. Vertical Circular Motion In vertical circular motion the gravitational force must also be considered. An example of vertical circular motion is the vertical loop-the-loop motorcycle stunt. Normally, the

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Work and Energy continued

Work and Energy continued Chapter 6 Work and Energy continued 6.2 The Work-Energy Theorem and Kinetic Energy Chapters 1 5 Motion equations were been developed, that relate the concepts of velocity, speed, displacement, time, and

More information

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal =

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal = 8 CHAPTER 7 WORK, ENERGY, AND ENERGY RESOURCES generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the

More information

An Introduction to Forces Forces-part 1. Forces are Interactions

An Introduction to Forces Forces-part 1. Forces are Interactions An Introduction to Forces Forces-part 1 PHYS& 114: Eyres Forces are Interactions A force is an interaction between 2 objects Touching At a distance See the Fundamental Particle Chart (http://www.cpepphysics.org/images/2014-fund-chart.jpg)

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Physics 23 Notes Chapter 6 Part Two

Physics 23 Notes Chapter 6 Part Two Physics 23 Notes Chapter 6 Part Two Dr. Alward Conservation of Energy Object moves freely upward under the influence of Earth only. Its acceleration is a = -g. v 2 = vo 2 + 2ax = vo 2-2g (h-ho) = vo 2-2gh

More information

Physics 1A Lecture 4B. "Fig Newton: The force required to accelerate a fig inches per second. --J. Hart

Physics 1A Lecture 4B. Fig Newton: The force required to accelerate a fig inches per second. --J. Hart Physics 1A Lecture 4B "Fig Newton: The force required to accelerate a fig 39.37 inches per second. --J. Hart Types of Forces There are many types of forces that we will apply in this class, let s discuss

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Mass & Weight, Force, and Friction 10/04/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapters 6.1-6.6? 2 In your own words: What

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers. Chapter 5 Force and Motion Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively A couple of house rules Be on time Switch off mobile phones Put away laptops Being present = Participating actively Het basisvak Toegepaste Natuurwetenschappen http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

Solution of HW4. and m 2

Solution of HW4. and m 2 Solution of HW4 9. REASONING AND SOLUION he magnitude of the gravitational force between any two of the particles is given by Newton's law of universal gravitation: F = Gm 1 m / r where m 1 and m are the

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls?

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls? Chapter 7: Energy Consider dropping a ball. Why does the ball s speed increase as it falls? Viewpoint #1: Force of gravity causes acceleration which causes velocity to change. Viewpoint #2: Force of gravity

More information

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion Ch 6 Using Newton s Laws Applications to mass, weight, friction, air resistance, and periodic motion Newton s 2 nd Law Applied Galileo hypothesized that all objects gain speed at the same rate (have the

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Conceptual Questions and Example Problems from Chapters 5 and 6 Conceptual Question 5.7 An object experiencing a constant

More information

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6. 1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (

More information

LAST NAME FIRST NAME DATE. Rotational Kinetic Energy. K = ½ I ω 2

LAST NAME FIRST NAME DATE. Rotational Kinetic Energy. K = ½ I ω 2 LAST NAME FIRST NAME DATE Work, Energy and Power CJ - Assignment 3 6.5 The Conservation of Mechanical Energy Problems 3, 34, 38, 40 page 190 Work Kinetic Energy Rotational Kinetic Energy W = F d cosθ KE

More information

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant.

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant. Mass & Weight mass how much stuff a body has. Doesn t change. Is responsible for the inertial properties of a body. The greater the mass, the greater the force required to achieve some acceleration: Fnet

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

4.1 Forces. Chapter 4 The Laws of Motion

4.1 Forces. Chapter 4 The Laws of Motion 4.1 Forces Chapter 4 he Laws of Motion 4.2 Newton s First Law it s not the nature of an object to stop, once set in motion, but rather to continue in its original state of motion. An object moves with

More information

ELASTICITY. values for the mass m and smaller values for the spring constant k lead to greater values for the period.

ELASTICITY. values for the mass m and smaller values for the spring constant k lead to greater values for the period. CHAPTER 0 SIMPLE HARMONIC MOTION AND ELASTICITY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. 0. m. (c) The restoring force is given by Equation 0. as F = kx, where k is the spring constant (positive). The graph

More information

Important: This test consists of 15 multiple choice problems, each worth points.

Important: This test consists of 15 multiple choice problems, each worth points. Physics 214 Practice Exam 1 C Fill in on the OPSCAN sheet: 1) Name 2) Student identification number 3) Exam number as 01 4) Sign the OPSCAN sheet Important: This test consists of 15 multiple choice problems,

More information

Types of Force. Example. F gravity F friction F applied F air resistance F normal F spring F magnetism F tension. Contact/ Non-Contact

Types of Force. Example. F gravity F friction F applied F air resistance F normal F spring F magnetism F tension. Contact/ Non-Contact Types of Force Example Contact/ Non-Contact F gravity F friction F applied F air resistance F normal F spring F magnetism F tension Force Diagrams A force diagram, is a sketch in which all the forces acting

More information

Chapter 4. 4 Forces and Newton s Laws of Motion. Forces and Newton s Laws of Motion

Chapter 4. 4 Forces and Newton s Laws of Motion. Forces and Newton s Laws of Motion Chapter 4 Forces and Newton s Laws of Motion PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 4 Forces and Newton s Laws of Motion Slide 4-2 Slide 4-3 1 Slide 4-4 Weight is

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 1 - Dynamics Notes Name 1 Equations of Motion Vectors and Scalars (Revision of National 5) It is possible to split up quantities in physics into two distinct

More information

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity

More information

Physics 2514 Lecture 34

Physics 2514 Lecture 34 Physics 2514 Lecture 34 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/13 Information Information needed for the exam Exam will be in the same format as the practice

More information

PHYS 131 MIDTERM October 31 st, 2008

PHYS 131 MIDTERM October 31 st, 2008 PHYS 131 MIDTERM October 31 st, 2008 The exam comprises two parts: 8 short-answer questions, and 4 problems. Calculators are allowed, as well as a formula sheet (one-side of an 8½ x 11 sheet) of your own

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Pre-Comp Review Questions- 8 th Grade

Pre-Comp Review Questions- 8 th Grade Pre-Comp Review Questions- 8 th Grade Section 1- Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s. Temperature K Fahrenheit Length

More information

AP Q1 Practice Questions Kinematics, Forces and Circular Motion

AP Q1 Practice Questions Kinematics, Forces and Circular Motion AP Q1 Practice Questions Kinematics, Forces and Circular Motion Q1 1999B1. (REDUCED 9 mins) The Sojourner rover vehicle shown in the sketch above was used to explore the surface of Mars as part of the

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Recap: Energy Accounting

Recap: Energy Accounting Recap: Energy Accounting Energy accounting enables complex systems to be studied. Total Energy = KE + PE = conserved Even the simple pendulum is not easy to study using Newton s laws of motion, as the

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction Chapter 4 The Laws of Motion 1. Force 2. Newton s Laws 3. Applications 4. Friction 1 Classical Mechanics What is classical Mechanics? Under what conditions can I use it? 2 Sir Isaac Newton 1642 1727 Formulated

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 8. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 8. Home Page. Title Page. Page 1 of 35. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 8 Page 1 of 35 Midterm 1: Monday October 5th 2014 Motion in one, two and three dimensions Forces and Motion

More information

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

GOZO COLLEGE. Half Yearly Examinations for Secondary Schools FORM 3 PHYSICS TIME: 1h 30min. Energy and Work W = Fs E (or W) = Pt. W = mg.

GOZO COLLEGE. Half Yearly Examinations for Secondary Schools FORM 3 PHYSICS TIME: 1h 30min. Energy and Work W = Fs E (or W) = Pt. W = mg. GOZO COLLEGE Track2 Half Yearly Examinations for Secondary Schools 2013 FORM 3 PHYSICS TIME: 1h 30min Name: Class: Answer all questions. All working must be shown. The use of a calculator is allowed. Where

More information

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics Holt Physics Chapter 8 Rotational Equilibrium and Dynamics Apply two equal and opposite forces acting at the center of mass of a stationary meter stick. F 1 F 2 F 1 =F 2 Does the meter stick move? F ext

More information

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant? 1. A 0.50-kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25

More information

P F = ma Newton's Laws Hmk

P F = ma Newton's Laws Hmk Dyn Page 1 P11-3.2 - F = ma Newton's Laws Hmk What is the force required to accelerate a 12 kg object at 5 m/s squared? What is the force required to accelerate a 17 kg object at 3 m/s squared? What is

More information

Physics 1100: 2D Kinematics Solutions

Physics 1100: 2D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Physics 1100: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The initial velocity

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

Name: Class: Date: d. none of the above

Name: Class: Date: d. none of the above Name: Class: Date: H Phys quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration? a. speed b. inertia

More information

Chapter 4 DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION

Chapter 4 DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION Chapter 4 DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on the third

More information

UNIT 4 MOMENTUM & IMPULSE

UNIT 4 MOMENTUM & IMPULSE UNIT 4 UNIT 4 MOMENTUM & IMPULSE IMPULSE-MOMENTUM THEOREM Remember, means final initial p = p f p i v = v f v i J = F( t) = p = m v = (mv f mv i ) The impulse, J, that acts on an object is equal to the

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Worksheet #05 Kinetic Energy-Work Theorem

Worksheet #05 Kinetic Energy-Work Theorem Physics Summer 08 Worksheet #05 June. 8, 08. A 0-kg crate is pulled 5 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.0 m/s. (a) Draw

More information

Physics 2010 Work and Energy Recitation Activity 5 (Week 9)

Physics 2010 Work and Energy Recitation Activity 5 (Week 9) Physics 2010 Work and Energy Recitation Activity 5 (Week 9) Name Section Tues Wed Thu 8am 10am 12pm 2pm 1. The figure at right shows a hand pushing a block as it moves through a displacement Δ! s. a) Suppose

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy 6.1 Work Done by a Constant Force W = Fs 1 N m = 1 joule ( J) 6.1 Work Done by a Constant Force W = ( F cosθ )s cos0 = 1 cos90 = 0 cos180 = 1 6.1 Work Done by a Constant Force

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

Name: Class: Date: Fall 2012 Physics Quiz 4--Introduction to Forces

Name: Class: Date: Fall 2012 Physics Quiz 4--Introduction to Forces Name: Class: Date: ID: A Fall 2012 Physics Quiz 4--Introduction to Forces Please do not write on these pages. MC: 1pt each + FR 6pt each = 50 points possible. Multiple Choice Identify the choice that best

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information