(Round up to the nearest inch.)

Size: px
Start display at page:

Download "(Round up to the nearest inch.)"

Transcription

1 Assignment 10 Problem 5.46 LRFD First, select the lightest weight W14 column. Use the recommended design value for K for the pinned-fixed support condition specified (ref. Commentary, Appendix 7, AISC Table C-A-7.1, p ). Compute the column effective length KL using the recommended design value for K. Compute the LRFD factored load. P u = 1.2 D L Using AISC Table 4-1, select the lightest W14 section that has a value of φ c P n for the computed effective length KL that is no less than the value computed for P u. You will need to interpolate between the rows to determine the value of φ c P n. Next, design the column base plate. From Table 1-1 of the AISC Manual, list the pertinent section properties for the selected column section (d, b f ). Determine the base plate area using the following equation (φ c = 0.65). A 1 = P u /[φ c 0.85 f c (A 2 /A 1 ) 1/2 ] (A 2 /A 1 ) 1/2 = 1.0 since A 2 is said to be approximately the same size as the column base plate Check the minimum required area (A 1 ) min for the base plate. - A 1 may not be less than the depth of the column times its flange width (i.e. d x b f ). If (A 1 ) min = d b f > required A 1 (calculated above), use (A 1 ) min as the area of the base plate. Otherwise, use A 1 as the area of the base plate. Compute the base plate dimensions B and N. - Since this is a square base pate B = N. B = N = (A 1 ) 1/2 (Round up to the nearest inch.) Check the bearing strength φ c P p of the concrete using the following equation. φ c P p = φ c 0.85 f c A 1 (A 2 /A 1 ) 1/2 φ c = 0.65 f c = the specified concrete compression strength A 1 = B x N (based on the rounded dimensions determined above). (A 2 /A 1 ) 1/2 = 1.0 Compare the bearing strength of the concrete with the factored column load P u. You should find that φ c P p > P u. Compute the required base plate thickness using the following equation. t min = l (2 P u /0.9 F y B N) 1/2 (Round up to the nearest quarter of an inch.) l = max (m. n, or λn ) (i.e. l is the largest of the values of m, n, or n ) m = (N 0.95 d)/2 n = (B b f )/2 Page 1 of 6

2 n = ¼ (d b f ) 1/2 λ = 1 B = N = rounded dimensions of the base plate determined previously F y = the minimum specified yield strength of the A36 steel used in the base plate (cf. AISC Table 2-4) Specify the final base plate dimensions. Use the following format: PL B x N x t (A36) ASD First, select the lightest weight W14 column. Use the recommended design value for K for the pinned-fixed support condition specified (ref. Commentary, Appendix 7, AISC Table C-A-7.1, p ). Compute the column effective length KL using the recommended design value for K. Compute the ASD critical load combination. P a = D + L Using AISC Table 4-1, select the lightest W14 section that has a value of P n /Ω c for the computed effective length KL that is no less than the value computed for P a. You will need to interpolate between the rows to determine the value of P n /Ω c. Next, design the column base plate. From Table 1-1 of the AISC Manual, list the pertinent section properties for the selected column section (d, b f ). Determine the base plate area using the following equation (Ω c = 2.31). A 1 = Ω c P a /[0.85 f c (A 2 /A 1 ) 1/2 ] (A 2 /A 1 ) 1/2 = 1.0 since A 2 is said to be approximately the same size as the column base plate Check the minimum required area (A 1 ) min for the base plate. - A 1 may not be less than the depth of the column times its flange width (i.e. d x b f ). If (A 1 ) min = d b f > required A 1 (calculated above), use (A 1 ) min as the area of the base plate. Otherwise, use A 1 as the area of the base plate. Compute the base plate dimensions B and N. - Since this is a square base pate B = N. B = N = (A 1 ) 1/2 (Round up to the nearest inch.) Check the bearing strength P p /Ω c of the concrete using the following equation. P p /Ω c = (1/Ω c ) [0.85 f c A 1 (A 2 /A 1 ) 1/2 ] Ω c =2.31 f c = the specified concrete compression strength A 1 = B x N (based on the rounded dimensions determined above). (A 2 /A 1 ) 1/2 = 1.0 Compare the bearing strength of the concrete with the critical column load combination P a. You should find that P p /Ω c > P a. Page 2 of 6

3 Compute the required base plate thickness using the following equation. t min = l (3.33 P a /F y B N) 1/2 (Round up to the nearest quarter of an inch.) l = max (m. n, or λn ) (i.e. l is the largest of the values of m, n, or n ) m = (N 0.95 d)/2 n = (B b f )/2 n = ¼ (d b f ) 1/2 λ = 1 B = N = rounded dimensions of the base plate determined previously F y = the minimum specified yield strength of the A36 steel used in the base plate (cf. AISC Table 2-4) Specify the final base plate dimensions. Use the following format: PL B x N x t (A36) Problem 5.50 LRFD Compute the LRFD factored load. P u = 1.2 D L Using AISC Table 4-11, select the lightest angle that has a value of φ c P n for the given effective length KL that is no less than the value computed for P u. This angle will be checked to determine if it has adequate load bearing capacity to satisfy the provisions of Specification Section E5. From Table 1-7 of the AISC Manual, list the pertinent section properties for the selected angle section (A and r x ). Check the ratio b/t to determine if Section E4 or E5 must be used. If b/t > 20, Section E4 is to be used, otherwise Section E5 will be used. b = the length of the angle leg t = the angle thickness You should find the b/t ratio less than 20, and Section E5 must be used. Compute the actual slenderness ratio KL x /r x and compare with the limiting value of 80. Then compute the value of the effective slenderness ratio KL/r that will be used to compute F e from Equation E3-4. If KL x /r x 80, then use Equation E5-1 to determine the effective slenderness ratio KL/r. If KL x /r x > 80, then use Equation E5-2 to determine the effective slenderness ratio KL/r. Compute F e using Equation E3-4. Determine whether Equation E3-2 or E3-3 is the appropriate equation to use in determining F cr by comparing effective slenderness ratio KL/r with the limiting value 4.71(E/F y ) 1/2. If KL/r 4.71(E/F y ) 1/2, then use Equation E3-2 to compute F cr. If KL/r > 4.71(E/F y ) 1/2, then use Equation E3-3 to compute F cr. Page 3 of 6

4 Compute the nominal strength P n of the single angle column by using the following equation. P n = F cr A g A g = the area for the single angle taken from AISC Table 1-7 Compute the LRFD design strength φ c P n and compare with the LRFD factored load P u. If φ c P n P u, then the selected single angle column section is adequate. If φ c P n < P u, then the selected single angle column section is not adequate. A larger angle section should be selected and checked following the procedure outlined above. Specify the final selection. ASD Compute the ASD critical load combination. P a = D + L Using AISC Table 4-11, select the lightest angle that has a value of P n /Ω c for the given effective length KL that is no less than the value computed for P a. This angle will be checked to determine if it has adequate load bearing capacity to satisfy the provisions of Specification Section E5. From Table 1-7 of the AISC Manual, list the pertinent section properties for the selected angle section (A and r x ). Check the ratio b/t to determine if Section E4 or E5 must be used. If b/t > 20, Section E4 is to be used, otherwise Section E5 will be used. b = the length of the angle leg t = the angle thickness You should find the b/t ratio less than 20, and Section E5 must be used. Compute the actual slenderness ratio KL x /r x and compare with the limiting value of 80. Then compute the value of the effective slenderness ratio KL/r that will be used to compute F e from Equation E3-4. If KL x /r x 80, then use Equation E5-1 to determine the effective slenderness ratio KL/r. If KL x /r x > 80, then use Equation E5-2 to determine the effective slenderness ratio KL/r. Compute F e using Equation E3-4. Determine whether Equation E3-2 or E3-3 is the appropriate equation to use in determining F cr by comparing effective slenderness ratio KL/r with the limiting value 4.71(E/F y ) 1/2. If KL/r 4.71(E/F y ) 1/2, then use Equation E3-2 to compute F cr. If KL/r > 4.71(E/F y ) 1/2, then use Equation E3-3 to compute F cr. Compute the nominal strength of the single angle column by using the following equation. P n = F cr A g Page 4 of 6

5 A g = the area for the single angle taken from AISC Table 1-7 Compute the ASD allowable strength P n /Ω c and compare with the ASD critical load combination P a. If P n /Ω c P a, then the selected single angle column section is adequate. If P n /Ω c < P a, then the selected single angle column section is not adequate. A larger angle section should be selected and checked following the procedure outlined above. Specify the final selection. Problem 5.54 From Table 1-8 of the AISC Manual, list the pertinent section properties for the given WT6 x 22.5 column member (i.e. A, t f, b f /2t f, d/t w, I x, r x, y, I y, r y, and J). Check for slender elements using AISC Table B4.1a. For the flange, use Case 1. Compare b f /2t f with the limiting value of 0.56(E/F y ) 1/2. - You should find that the flange is not slender. For the stem, use Case 4. Compare d/t w with the limiting value of 0.75(E/F y ) 1/2. - You should find that the stem is not slender. Determine the nominal strength of the column for flexural buckling using Specification Section E3. Determine the controlling slenderness ratio: compute KL x /r x and KL y /r y. K = 1.0 KL x = KL y = the given effective length r x, r y = values taken from AISC Table 1-8 You should find that KL x /r x is the larger value and controls. Since KL x /r x is the controlling slenderness ratio, compute F e (more specifically F ex ) using Equation E3-4. E = 29,000 ksi KL/r = KL x /r x (as previously determined) Determine whether Equation E3-2 or E3-3 is the appropriate equation to use in determining F cr by comparing KL x /r x with the limiting value 4.71(E/F y ) 1/2. - If KL x /r x 4.71(E/F y ) 1/2, then use Equation E3-2 to compute F cr. - If KL x /r x > 4.71(E/F y ) 1/2, then use Equation E3-3 to compute F cr. Next, determine the nominal strength of the column for flexural-torsional buckling using Specification Section E4. Ultimately, Equation E4-2 will be used to compute F cr once values for F cry, F crz, and H are determined. Compute F ey using Equation E Use the value for KL y /r y that was previously determined. Page 5 of 6

6 - The value F ey will be used as the value for F e in either Equation E3-2 or E3-3, whichever equation is determined appropriate. Determine whether Equation E3-2 or E3-3 is the appropriate equation to use in determining F cr (more specifically F cry ) by comparing KL y /r y with the limiting value 4.71(E/F y ) 1/2. - If KL y /r y 4.71(E/F y ) 1/2, then use Equation E3-2 to compute F cr (more specifically F cry ). - If KL y /r y > 4.71(E/F y ) 1/2, then use Equation E3-3 to compute F cr (more specifically F cry ). Determine F crz. - Compute r o 2 : r o 2 = x o 2 + y o 2 + (I x + I y )/A g Equation E4-11 x o = 0 (The shear center of the tee is located at the intersection of the stem and the flange.) y o = y - t f /2 (Values for y and t f are taken from AISC Table 1-8.) I x, I y = values taken from AISC Table 1-8 A g = area of the WT6 x 22.5 (AISC Table 1-8) - Compute H using Equation E Compute F crz using Equation E4-3. G = 11,200 ksi (Specification Section E4, listed after Equation E4-9) J, A g = values taken from AISC Table 1-8 Compute F cr using Equation E4-2. Compare the two values of F cr computed for flexural buckling and flexural-torsional buckling. The nominal strength of the column P n is based on the smaller of the two values determined for F cr for flexural buckling and flexural-torsional buckling. Compute the nominal strength of the column using the following equation. P n = F cr A g F cr = the smaller of the two values previously determined A g = the area for the WT6 x 22.5 taken from AISC Table 1-8 Compute the LRFD design strength (φ c P n ) and the ASD allowable strength (P n /Ω c ), φ c = 0.90 and Ω c = Note: These values should compare favorably with the values in AISC Table 4-7. Page 6 of 6

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

2010 NASCC / Structures Congress Orlando, Florida May 13, 2010

2010 NASCC / Structures Congress Orlando, Florida May 13, 2010 2010 NASCC / Structures Congress Orlando, Florida May 13, 2010 Load Transfer in Composite Construction (Chapter I of the 2010 AISC Specification) William P. Jacobs, V Stanley D. Lindsey & Associates Atlanta,

More information

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted Errata posted 8-16-2017 Revisions are shown in red. Question 521, p. 47: Question 521 should read as follows: 521. The W10 22 steel eam (Fy = 50 ksi) shown in the figure is only raced at the center of

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Structural Design and Material Properties of Steel Presented by: Civil Engineering Academy Advantages 1. High strength per unit length resulting in smaller dead

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4).

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4). SUMMARY FOR COMPRESSION MEMBERS Columns with Pinned Supports Step 1: Step : Determine the factored design loads (AISC/LRFD Specification A4). From the column tables, determine the effective length KL using

More information

DNV DESIGN. POU_Rect - Design Report Page 1 of 11

DNV DESIGN. POU_Rect - Design Report Page 1 of 11 DNV DESIGN Page 1 of 11 Details Code Details Code DNV 2.7-1 2006 with AISC 360-10 ASD Description This is the 2006 edition of the DNV Standard for Certification No 2.7-1, which defines minimum technical

More information

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member Local Buckling MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE V Dr. Jason E. Charalamides Local Buckling in Columns Buckling is not to e viewed only as failure of the entire memer

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday) FALL 2013 lecture

More information

Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1

Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1 Current Date: 08-Dec-13 7:05 PM Units system: SI File name: E:\ram\1\1.cnx\ Microsoft Steel connections Detailed report Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[

More information

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez NYIT Instructors: Alfred Sanabria and Rodrigo Suarez Massive stone columns, used from Stonehenge to Ancient Greece were stabilized by their own work With steel and concrete technology columns have become

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

THROUGH PLATE-TO-ROUND HSS CONNECTIONS

THROUGH PLATE-TO-ROUND HSS CONNECTIONS THROUGH PLATE-TO-ROUND HSS CONNECTIONS by Jeffrey A. Packer 1 1 Bahen/Tanenbaum Professor of Civil Engineering, University of Toronto, Ontario, Canada Design recommendations for longitudinal and transverse

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges FHWA Bridge Design Guidance No. 1 Revision Date: July 21, 2008 Load Rating Evaluation of Gusset Plates in Truss Bridges By Firas I. Sheikh Ibrahim, PhD, PE Part B Gusset Plate Resistance in Accordance

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION CALCULATION FOR SHEAR CONNECTION 8.xmcd 1 of 30 I. DESIGN DATA AND LOAD ( LRFD - AISC 14th Edition ) COLUMN

More information

DES140: Designing for Lateral-Torsional Stability in Wood Members

DES140: Designing for Lateral-Torsional Stability in Wood Members DES140: Designing for Lateral-Torsional Stability in Wood embers Welcome to the Lateral Torsional Stability ecourse. 1 Outline Lateral-Torsional Buckling Basic Concept Design ethod Examples In this ecourse,

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

Torsional Analysis of

Torsional Analysis of Steel Design Guide Series Torsional Analysis of Structured Steel Members Steel Design Guide Series Torsional Analysis of Structural Steel Members Paul A. Seaburg, PhD, PE Head, Department of Architectural

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

the Steel Construction Manual

the Steel Construction Manual A Beginner s Guide to the Steel Construction Manual An introduction to designing steel structures using the AISC Steel Construction Manual, 13 th edition. By T. Bart Quimby, P.E., Ph.D. Owner & Principal

More information

WRAP-AROUND GUSSET PLATES

WRAP-AROUND GUSSET PLATES WRAP-AROUND GUSSET PLATES Where a horizontal brae is loated at a beam-to-olumn intersetion, the gusset plate must be ut out around the olumn as shown in Figure. These are alled wrap-around gusset plates.

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

Direct Strength Method (DSM) Design Guide

Direct Strength Method (DSM) Design Guide Direct Strength Method (DSM) Design Guide DESIGN GUIDE CFXX-X January, 6 Committee on Specifications for the Design of Cold-Formed Steel Structural Members American Iron and Steel Institute Preface The

More information

Hilti North America Installation Technical Manual Technical Data MI System Version

Hilti North America Installation Technical Manual Technical Data MI System Version MIC-S10-AH-L 179517-1 Hilti North America Installation Technical Manual Technical Data MI System Version 1. 08.017 Terms of common cooperation / Legal disclaimer The product technical data published in

More information

Hilti North America Installation Technical Manual Technical Data MI System Version

Hilti North America Installation Technical Manual Technical Data MI System Version MIC-SA-MAH 174671 Hilti North America Installation Technical Manual Technical Data MI System Version 1. 08.017 Terms of common cooperation / Legal disclaimer The product technical data published in these

More information

Project data Project name Project number Author Description Date 26/04/2017 Design code AISC dome anchor. Material.

Project data Project name Project number Author Description Date 26/04/2017 Design code AISC dome anchor. Material. Project data Project name Project number Author Description Date 26/04/2017 Design code AISC 360-10 Material Steel A36, A529, Gr. 50 Concrete 4000 psi dome anchor Connection Name Description Analysis Design

More information

The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members

The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members Bucknell University Bucknell Digital Commons Honors Theses Student Theses 2013 The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members Shengduo Du sd034@bucknell.edu

More information

Appendix. A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus

Appendix. A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus Appendix A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus r = radius of gyration = I/A J = polar moment of inertia Z p = polar section modulus Circle R D

More information

Abstract Block shear is a mode of failure in which a steel member fails in tension along one plane and shear on a

Abstract Block shear is a mode of failure in which a steel member fails in tension along one plane and shear on a Abstract Block shear is a mode of failure in which a steel member fails in tension along one plane and shear on a perpendicular plane along the fasteners. The design process for block shear has been at

More information

It s a bird it s a plane it s Super Table! F y = 50 ksi F u = 65 ksi ASD LRFD ASD LRFD

It s a bird it s a plane it s Super Table! F y = 50 ksi F u = 65 ksi ASD LRFD ASD LRFD It s a bird it s a plane it s Super Table! steelwise ONE-STOP SHOP BY ABBAS AMINMANSOUR, PhD WHAT IF THERE WAS a table that could be directly used for designing tension members, compression members, flexural

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 8 CHAPTER 2 LITERATURE REVIEW 2.1 GENERAL A brief review of the research carried out during the past years related to the behaviour of bolted steel angle tension members is presented herewith. Literature

More information

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at Unbraced Column Verification Example AISC Design Examples AISC 3 th Edition IP Steel is available for purchase onle at www.asdipsoft.com H-9 Example H.4 W-Shape Subject to Combed Axial Compression and

More information

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach)

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) RESEARCH REPORT RP18- August 018 Committee on Specifications

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson Singly Symmetric Combination Section Crane Girder Design Aids by Patrick C. Johnson PCJohnson@psu.edu The Pennsylvania State University Department of Civil and Environmental Engineering University Park,

More information

Second Order Analysis In the previous classes we looked at a method that determines the load corresponding to a state of bifurcation equilibrium of a perfect frame by eigenvalye analysis The system was

More information

CHAPTER II EXPERIMENTAL INVESTIGATION

CHAPTER II EXPERIMENTAL INVESTIGATION CHAPTER II EXPERIMENTAL INVESTIGATION 2.1 SCOPE OF TESTING The objective of this research is to determine the force distribution between the column web and stiffener when the column flanges are subjected

More information

Example 4: Design of a Rigid Column Bracket (Bolted)

Example 4: Design of a Rigid Column Bracket (Bolted) Worked Example 4: Design of a Rigid Column Bracket (Bolted) Example 4: Design of a Rigid Column Bracket (Bolted) Page : 1 Example 4: Design of a Rigid Column Bracket (Bolted) Determine the size of the

More information

TRANSVERSE PLATE-TO-SQUARE/RECTANGULAR HSS CONNECTIONS

TRANSVERSE PLATE-TO-SQUARE/RECTANGULAR HSS CONNECTIONS TRANSVERSE PLATE-TO-SQUARE/RECTANGULAR HSS CONNECTIONS by Jeffrey A. Packer 1 1 Bahen/Tanenbaum Professor of Civil Engineering, University of Toronto, Ontario, Canada Some of the common types of plate-to-rectangular

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

Chapter 9: Column Analysis and Design

Chapter 9: Column Analysis and Design Chapter 9: Column Analysis and Design Introduction Columns are usually considered as vertical structural elements, but they can be positioned in any orientation (e.g. diagonal and horizontal compression

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

Appendix K Design Examples

Appendix K Design Examples Appendix K Design Examples Example 1 * Two-Span I-Girder Bridge Continuous for Live Loads AASHTO Type IV I girder Zero Skew (a) Bridge Deck The bridge deck reinforcement using A615 rebars is shown below.

More information

PERFORATED METAL DECK DESIGN

PERFORATED METAL DECK DESIGN PERFORATED METAL DECK DESIGN with Commentary Prepared By: L.D. Luttrell, Technical Advisor Steel Deck Institute November 18, 2011 Copyright 2011 All rights reserved P.O. Box 25 Fox River Grove, IL 60021

More information

Comparison of AISI Specification Methods for Members with Single Intermediate Longitudinal Stiffeners

Comparison of AISI Specification Methods for Members with Single Intermediate Longitudinal Stiffeners Missouri University of Science and Technology Scholars' Mine AISI-Specifications for the Design of Cold-Formed Steel Structural Members Wei-Wen Yu Center for Cold-Formed Steel Structures 7-1-006 Comparison

More information

Improved Flexural Design Provisions for I-Shaped Members and Channels

Improved Flexural Design Provisions for I-Shaped Members and Channels Improved Flexural Design Provisions for I-Shaped Members and Channels DONALD W. WHITE Donald W. White is Associate Professor, Structural Engineering, Mechanics and Materials, Georgia Institute of Technology,

More information

host structure (S.F.D.)

host structure (S.F.D.) TABLE 00.4 FBC Typical Mansard Beam [AAF] Allowable Span of Mansard Screen Enclosure Self-Mating Beams in accordance with requirements of Table 00.4 (and the 005 Aluminum Design Manual) using 6005T5 alloy:

More information

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams University of Alberta Department of Civil & Environmental Engineering Master of Engineering Report in Structural Engineering Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

More information

5 Compression Members

5 Compression Members 5 Compression Members 5.1 GENERAL REMARKS Similar to the heavy hot-rolled steel sections, thin-walled cold-formed steel compression members can be used to carry a compressive load applied through the centroid

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

Steel Design. Notation: a A A b A e

Steel Design. Notation: a A A b A e Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S 1. P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S Helical foundation pile includes a lead and extension(s). The lead section is made of a central steel

More information

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading General Information Mechanical Anchors General Information Power-Stud + SD1 Wedge Expansion Anchor Product Description The Power-Stud+ SD1 anchor is a fully threaded, torque-controlled, wedge expansion

More information

Towards The. Design of Super Columns. Prof. AbdulQader Najmi

Towards The. Design of Super Columns. Prof. AbdulQader Najmi Towards The Design of Super Columns Prof. AbdulQader Najmi Description: Tubular Column Square or Round Filled with Concrete Provided with U-Links welded to its Walls as shown in Figure 1 Compression Specimen

More information

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual) 1 / 8 Geometry beam span L 40 ft Steel Wide Flange Beam: beam spacing s beam 10 ft F y 50 ksi construction live load LL construc 20 psf row 148 live load LL 150 psf unit weight of concrete UW conc 145

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members research report Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEARCH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural

More information

Design of Shear Tab Connections for Gravity and Seismic Loads

Design of Shear Tab Connections for Gravity and Seismic Loads June 2005 Design of Shear Tab Connections for Gravity and Seismic Loads By Abolhassan Astaneh-Asl, Ph.D., P.E. Professor University of California, Berkeley (A copy of this report can be downloaded for

More information

Advanced Analysis of Steel Structures

Advanced Analysis of Steel Structures Advanced Analysis of Steel Structures Master Thesis Written by: Maria Gulbrandsen & Rasmus Petersen Appendix Report Group B-204d M.Sc.Structural and Civil Engineering Aalborg University 4 th Semester Spring

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006 Job No. Sheet 1 of 6 Rev B, Route de Limours Tel : (0)1 0 85 5 00 Fax : (0)1 0 5 75 8 Revised by MEB Date April 006 DESIGN EXAMPLE 6 BOLTED JOINT A 0 0 angle loaded in tension is to be connected to a gusset

More information

Beam Design and Deflections

Beam Design and Deflections Beam Design and Deflections tation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight Aweb = area of the web of

More information

APPENDIX A Thickness of Base Metal

APPENDIX A Thickness of Base Metal APPENDIX A Thickness of Base Metal For uncoated steel sheets, the thickness of the base metal is listed in Table A.1. For galvanized steel sheets, the thickness of the base metal can be obtained by subtracting

More information

Minimum-weight design of built-up wideflange

Minimum-weight design of built-up wideflange Mimum-weight design of built-up wideflange steel sections Yousef A. Al-Salloum Department of Civil Engeerg, Kg Said University, P. O. Box 800, Riyadh 11421, Saudi Arabia Email: ysalloum@ksu.edu.sa Abstract

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel 5.3 Local buckling Local buckling is an extremely important facet of cold formed steel sections on account of the fact that the very thin elements used will invariably buckle before yielding. Thinner the

More information

Chapter 8: Bending and Shear Stresses in Beams

Chapter 8: Bending and Shear Stresses in Beams Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sulpture By Rihard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Strutures of the Everyday) FALL 2018 leture

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Review of Energy Dissipation of Compression Members in Concentrically Braced Frames

Review of Energy Dissipation of Compression Members in Concentrically Braced Frames ISSN 1520-295X Review of Energy Dissipation of Compression Members in Concentrically Braced Frames by Kangmin Lee and Michel Bruneau University at Buffalo, State University of New York Department of Civil,

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

The plastic moment capacity of a composite cross-section is calculated in the program on the following basis (BS 4.4.2):

The plastic moment capacity of a composite cross-section is calculated in the program on the following basis (BS 4.4.2): COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA SEPTEMBER 2002 COMPOSITE BEAM DESIGN BS 5950-90 Technical Note Composite Plastic Moment Capacity for Positive Bending This Technical Note describes

More information

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram - Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Investigate the capacity for the irregular

More information

Elastic Buckling Behavior of Beams ELASTIC BUCKLING OF BEAMS

Elastic Buckling Behavior of Beams ELASTIC BUCKLING OF BEAMS Elastic Buckling Behavior of Beams CE579 - Structural Stability and Design ELASTIC BUCKLING OF BEAMS Going back to the original three second-order differential equations: 3 Therefore, z z E I v P v P 0

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

CIV 207 Winter For practice

CIV 207 Winter For practice CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions

More information

County: Any Design: BRG Date: 9/2007 Hwy: Any Ck Dsn: BRG Date: 9/2007. For prestr. beams, assume 12" top flange, therefore take 4" from CL Gird.

County: Any Design: BRG Date: 9/2007 Hwy: Any Ck Dsn: BRG Date: 9/2007. For prestr. beams, assume 12 top flange, therefore take 4 from CL Gird. County: Any Design: BRG Date: 9/2007 Hwy: Any Ck Dsn: BRG Date: 9/2007 SLAB DESIGN EXAMPLE Design: Using AASHTO LRFD Bridge Design Specifications - 4 th Ed. and TxDOT LRFD Bridge Design Manual 8" Slab

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

Biaxial Analysis of General Shaped Base Plates

Biaxial Analysis of General Shaped Base Plates Biaxial Analysis of General Shaped Base Plates R. GONZALO ORELLANA 1 Summary: A linear model is used for the contact stresses calculation between a steel base plate and a concrete foundation. It is also

More information

MODULE F: SIMPLE CONNECTIONS

MODULE F: SIMPLE CONNECTIONS MODULE F: SIMPLE CONNECTIONS This module of CIE 428 covers the following subjects Connector characterization Failure modes of bolted shear connections Detailing of bolted connections Bolts: common and

More information

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7.

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7. PROFILE SIZES: BEAM : UB254X146X43 D b = 259.60 mm W b = 147.30 mm T b = 12.70 mm t wb = 7.30 mm r b = 7.60 mm COLUMN : UC254X254X73 D C = 254.00 mm W c = 254.00 mm T C = 14.20 mm t wc = 8.60 mm r C =

More information

Steel Cross Sections. Structural Steel Design

Steel Cross Sections. Structural Steel Design Steel Cross Sections Structural Steel Design PROPERTIES OF SECTIONS Perhaps the most important properties of a beam are the depth and shape of its cross section. There are many to choose from, and there

More information

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB 1 of 18 SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB Description:Detailed Report 17 2 of 18 I. DESIGN DATA AND LOADS (ASD-14th Edition) COLUMN PROPERTIES: W14X90 -

More information

51st Annual Transmission & Substation Design & Operation Symposium DEVELOPMENT OF ANALYTICAL METHODS FOR SPLICED LEG MEMBERS

51st Annual Transmission & Substation Design & Operation Symposium DEVELOPMENT OF ANALYTICAL METHODS FOR SPLICED LEG MEMBERS 51st Annual Transmission & Substation Design & Operation Symposium DEVELOPMENT OF ANALYTICAL METHODS FOR SPLICED LEG MEMBERS Youngmin You, Ph.D., P.E. Engineer Lower Colorado River Authority (LCRA) September

More information

Direct Strength Method for Steel Deck

Direct Strength Method for Steel Deck issouri University of Science and Technology Scholars ine AISI-Specifications for the Design of Cold-Formed Steel Structural embers Wei-Wen Yu Center for Cold-Formed Steel Structures 1-1-2015 Direct Strength

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Behavior and Design of Angle Column

Behavior and Design of Angle Column Behavior and Design o Angle Column Ricardo Junqueira Justiniano Instituo Superior Técnico, Universidade de Lisboa Abstract This thesis presents a study on the behavior and design o short to medium single

More information