Numerical solution of RANS equations. Numerical solution of RANS equations

Size: px
Start display at page:

Download "Numerical solution of RANS equations. Numerical solution of RANS equations"

Transcription

1 Convection linearization - Newton (Quasi-Newton) - Picard Discretization - Finite-differences - Finite-volume - Galerkin (Finite-elements,...) Solution of the algebraic systems of equations - Segregated - Coupled Linear solver - Usually iterative - Gauss-Seidel, Bi-CGSTAB, GMReS - Multigrid 2

2 Flow over a flat plate Re L = k-ω BSL,2 2,3 k-ω Wilcox 2,3 p= /h 3 Flow over a flat plate 2.8 Re L = k-ω BSL 2,3 2,3 k-ω Wilcox 2,3 p= /h 4

3 Flow over a flat plate Re L = k-ω BSL 2,3 2,3 k-ω Wilcox p= 2.0 p= /h 5 Flow over a flat plate Re L = ,3 p=.3 k-ω TNT, /h 6

4 Flow over a flat plate Re L = p=.8 p=.3 k-ω TNT 2, /h 7 Flow over a flat plate.6.58 Re L = p=.9 p=.3 k-ω TNT 2, /h 8

5 Flow over a flat plate Re L =0 7 Spalart & Allmaras p=.3 p=.7 Mν t p=.4 p=. KSKL p=.6 p= /h 9 Flow over a flat plate Re L = Spalart & Allmaras p=.5 p=.9 Mν t,2,2 KSKL p=.4 p= /h 0

6 Flow over a flat plate.58 Re L = Spalart & Allmaras p=.4 p=.9 Mν t p=.0 p=.4 KSKL p=.6 p= /h Flow over a flat plate Modelo C f 20 (ν t ) inlet =0.0ν (ν t ) inlet =ν (ν t ) inlet =0ν Blasius C f =0.370(log 0 Re x ) C f =(2log 0 Re x -0.65) -2.3 C f =0.455/(log(0.06Re x )) 2 Experimental, k =0.009U 2 Experimental, k =0.03U 2 Experimental, k =0.06U Re x 2

7 Flow over a flat plate ITTC 57 Schoenherr Grigson Katsui et al. SST k-ω log(rn) 3 4

8 5 6

9 7 3.6 k-ω ah+bh 2 Model Rn=4, /h 8

10 0.8 k-ω Model Rn=4,6 0 6 C P /h 9.55 Model Rn=2, p= /h 20

11 0.3 k-ω p=.6 Model Rn=2, C P /h 2 Cp: Model Rn=4,6 0 6 Cp: Rn=2,

12 Rn=4,6 0 6 Model Rn=2, U x : Model Z/Lpp Rn=4, Y/Lpp 24

13 U x : Model Z/Lpp Rn=2, Y/Lpp U Model z/l PP Rn=4, y/l PP 26

14 0-0.0 U Model z/l PP Rn=2, y/l PP 27 U x U x z= l PP z=-0.029l PP Model U x 0.5 z= l PP U x U x U x Experimental G G2 G3 G4 z= l PP z= l PP z=-0.058l PP y/l PP Rn=4,

15 0.6 k-ω ah 2 +bh Model 0.56 W f /h Wake fraction Rn=4, k-ω p= Model W f Rn=2, /h Wake fraction 30

16 3 in turbulent flow + Hydrodynamically smooth hr < 5 Fully rough hr+ = uτ hr ν hr+ > C f hr x hr 0.9 RL 0.7 RL = L L 2 L 32

17 Model testing is performed with hydrodynamically smooth surfaces Full scale ships have rough surfaces Extrapolation procedures include the roughness effects in the correlation allowance 33 Non-uniform roughness of a given hull is converted to an equivalent sand-grain roughness (defined by a single parameter, ) Such conversion is a fundamental unsolved problem that we have not addressed 34

18 Empirical correlations use the average roughness height, h M, (also single parameter) to quantify roughness effects (50µm recommended for clean ships) According to Schultz (2007) h M =50µm =30µm 0.2h M 35 Several proposals available in the open literature for the inclusion of sand-grain roughness effects in eddy-viscosity turbulence models Present research performed for the SST two-equation k-ω model 36

19 Sand-grain roughness effects may be included with or without wall functions boundary conditions Wilcox (2006) proposal includes only a change in the ω wall boundary condition Extra damping function in the limiter of the eddy-viscosity, (Hellsten, 997) 37 Calculations performed for 0 300µm Three test cases:. Tanker (model and full scale) 2. Container ship (model and full scale) 3. Car carrier (full scale) Sets of 6 grids (4 0 6 to cells for =) 38

20 No gravity waves (double body) Selected convergence criteria guarantees that the iterative error is negligible when compared with the discretization error Numerical uncertainty estimated for functional quantities with a least squares version of the GCI 39 H-O grids Tanker Container ship 40

21 Numerical uncertainty =0 p=.8 /L=30µm p= 2.0 /L=50µm p * =2 /L=75µm p * =2 /L=00µm p=.9 X X X X X X X /h /L=50µm p= 0.9 /L=200µm p * =2 /L=250µm p * =2 /L=300µm p * =2 Tanker C P =0 p=.5 /L=30µm p=.5 /L=50µm p=.6 /L=75µm p=.6 /L=00µm p=.6 X + + X X /h /L=50µm p=.6 /L=200µm p=.6 /L=250µm p=.7 /L=300µm + X + X + X + X Friction resistance, Pressure resistance, C P Numerical uncertainty =0 ah+bh 2 /L=30µm p= 0.6 /L=50µm /L=75µm /L=00µm X X X /h /L=50µm p= 4.0 /L=200µm p * =2 /L=250µm p= 2.0 /L=300µm p=.9 + X Container ship X X X C P =0 ah+bh 2 /L=30µm ah+bh 2 /L=50µm ah+bh 2 /L=75µm ah+bh 2 /L=00µm ah+bh 2 X + + X X /h /L=50µm ah+bh 2 /L=200µm ah+bh 2 /L=250µm ah+bh 2 /L=300µm + X + X + X + X Friction resistance, Pressure resistance, C P 42

22 Reynolds number based on the roughness height, R hr 43 / ( =0).5 Tanker, Rn= Tanker, Rn= Container ship, Rn= Container ship, Rn= Car carrier, Rn= Friction resistance, / ( =0) Tanker, Rn= Tanker, Rn= Container ship, Rn= Container ship, Rn= Car carrier, Rn= h R ( µm) R = hru ν 44

23 Pressure resistance, C P.5 Tanker, Rn= Tanker, Rn= Container ship, Rn= Container ship, Rn= Car carrier, Rn= Tanker, Rn= Tanker, Rn= Container ship, Rn= Container ship, Rn= Car carrier, Rn= C P /C P ( =0).3.2. C P /C P ( =0) h R ( µm) R = hru ν 45 Wake fraction, W f W f /W f ( =0).5 Tanker, Rn= Tanker, Rn= Container ship, Rn= Container ship, Rn= Car carrier, Rn= W f /W f ( =0) Tanker, Rn= Tanker, Rn= Container ship, Rn= Container ship, Rn= Car carrier, Rn= ( µm) R = hru ν 46

24 Non-dimensional roughness height, + 47 Comparison with empirical correlations Bowden-Davison Townsin et al Himeno Wright C F C C C F F F 0 3 h = 05 L PP 3 3 h M 0 = 44 LPP 3 hm 0 8 RL L = PP R 3 L M hm B T 0 =.03 3 RL 3 T 48

25 Comparison with empirical correlations h M (µm) Bowden and Davison Townsin et al. Himeno Wright C V numerical, tanker C V numerical, container ship C V numerical, car carrier (µm) 49 Comparison with empirical correlations h M U /ν Bowden and Davison Townsin et al. Himeno Wright C V numerical, tanker C V numerical, container ship C V numerical, car carrier U /ν 50

26 Series 60 inviscid flow `h / L;Y/L;V3 viscous (model) `h / L;Y/L;V3 viscous (ship) `h / L;Y/L;V3 experiments (model) `h / L;Y/L;V3 y / L pp = z / L pp Dyna Tanker inviscid z;y/l;v3 flow viscous z;y/l;v3 (model) viscous z;y/l;v3 (ship) experiments z;y/l;v3 (model) y / L pp =

27 53 54

On the Influence of the Iterative Error in the Numerical Uncertainty of Ship Viscous Flow Calculations

On the Influence of the Iterative Error in the Numerical Uncertainty of Ship Viscous Flow Calculations 26 th Symposium on Naval Hydrodynamics Rome, Italy, 17-22 September 26 On the Influence of the Iterative Error in the Numerical Uncertainty of Ship Viscous Flow Calculations L. Eça (Instituto Superior

More information

Calculation of the Flow around the KVLCC2M Tanker

Calculation of the Flow around the KVLCC2M Tanker Calculation of the Flow around the KVLCC2M Tanker L. Eça 1, M. Hoekstra 2 and S.L. Toxopeus 2 1 Instituto Superior Técnico, Portugal 2 Maritime Research Institute, Netherlands SUMMARY The flow around the

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Turbulent Boundary Layers: Roughness Effects

Turbulent Boundary Layers: Roughness Effects 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 19 2.20 - Marine Hydrodynamics Lecture 19 Turbulent Boundary Layers: Roughness Effects So far, we have assumed a hydraulically smooth surface. In practice,

More information

The effect of geometric parameters on the head loss factor in headers

The effect of geometric parameters on the head loss factor in headers Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

BOUNDARY LAYER FLOWS HINCHEY

BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER PHENOMENA When a body moves through a viscous fluid, the fluid at its surface moves with it. It does not slip over the surface. When a body moves at high speed,

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

CFD calculation of convective heat transfer coefficients and validation Laminar and Turbulent flow

CFD calculation of convective heat transfer coefficients and validation Laminar and Turbulent flow CFD calculation of convective heat transfer coefficients and validation Laminar and Turbulent flow Subtask 3: Boundary Conditions by Adam Neale M.A.Sc. Student Concordia University Dominique Derome Concordia

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

compression corner flows with high deflection angle, for example, the method cannot predict the location

compression corner flows with high deflection angle, for example, the method cannot predict the location 4nd AIAA Aerospace Sciences Meeting and Exhibit 5-8 January 4, Reno, Nevada Modeling the effect of shock unsteadiness in shock-wave/ turbulent boundary layer interactions AIAA 4-9 Krishnendu Sinha*, Krishnan

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

SG Turbulence models for CFD

SG Turbulence models for CFD SG2218 2012 Turbulence models for CFD Stefan Wallin Linné FLOW Centre Dept of Mechanics, KTH Dept. of Aeronautics and Systems Integration, FOI There are no simple turbulent flows Turbulent boundary layer:

More information

Verification of Calculations: an Overview of the Lisbon Workshop

Verification of Calculations: an Overview of the Lisbon Workshop Verification of Calculations: an Overview of the Lisbon Workshop L. Eça IST, Instituto Superior Técnico, Lisbon, Portugal M. Hoekstra Maritime Research Institute Netherlands, Wageningen, The Netherlands.

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Simulations for Enhancing Aerodynamic Designs

Simulations for Enhancing Aerodynamic Designs Simulations for Enhancing Aerodynamic Designs 2. Governing Equations and Turbulence Models by Dr. KANNAN B T, M.E (Aero), M.B.A (Airline & Airport), PhD (Aerospace Engg), Grad.Ae.S.I, M.I.E, M.I.A.Eng,

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

Computation for the Backward Facing Step Test Case with an Open Source Code

Computation for the Backward Facing Step Test Case with an Open Source Code Computation for the Backward Facing Step Test Case with an Open Source Code G.B. Deng Equipe de Modélisation Numérique Laboratoire de Mécanique des Fluides Ecole Centrale de Nantes 1 Rue de la Noë, 44321

More information

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 Derivation of Navier-Stokes Equation 1 The total stress tensor

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

A VERIFICATION AND VALIDATION EXERCISE FOR THE FLOW OVER A BACKWARD FACING STEP. L. Eça, G. Vaz and M. Hoekstra

A VERIFICATION AND VALIDATION EXERCISE FOR THE FLOW OVER A BACKWARD FACING STEP. L. Eça, G. Vaz and M. Hoekstra V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal,14-17 June 2010 A VERIFICATION AND VALIDATION EXERCISE FOR THE FLOW OVER A

More information

VERIFICATION AND VALIDATION OF RESISTANCE AND PROPULSION COMPUTATION

VERIFICATION AND VALIDATION OF RESISTANCE AND PROPULSION COMPUTATION VERIFICATION AND VALIDATION OF RESISTANCE AND PROPULSION COMPUTATION G. Deng, A. Leroyer, E. Guilmineau, P. Queutey, M. Visonneau & J. Wackers (ECN-LHEEA,CNRS, France) A. del Toro Llorens (Spanish Institution

More information

R. SHAYMAA ABDUL MUTTALEB ALHASHIMI

R. SHAYMAA ABDUL MUTTALEB ALHASHIMI www.semargroups.org, www.ijsetr.com ISSN 2319-8885 Vol.02,Issue.15, November-2013, Pages:1682-1687 CFD Modeling of Flow over Ogee Spillway by Using Different Turbulence DR. SHAYMAA ABDUL MUTTALEB ALHASHIMI

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Elliptic relaxation for near wall turbulence models

Elliptic relaxation for near wall turbulence models Elliptic relaxation for near wall turbulence models J.C. Uribe University of Manchester School of Mechanical, Aerospace & Civil Engineering Elliptic relaxation for near wall turbulence models p. 1/22 Outline

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-2016-226 Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Emre Sazak

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

COMPARATIVE STUDY BETWEEN FLOWS AROUND SPHERE AND POD USING FINITE VOLUME METHOD

COMPARATIVE STUDY BETWEEN FLOWS AROUND SPHERE AND POD USING FINITE VOLUME METHOD Journal of Naval Architecture and Marine Engineering June, 2011 DOI: 10.3329/jname.v8i1.7388 http://www.bangljol.info COMPARATIVE STUDY BETWEEN FLOWS AROUND SPHERE AND POD USING FINITE VOLUME METHOD M.

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

EXPERIMENTAL DETERMINATION OF THE ROUGHNESS FUNCTIONS OF MARINE COATINGS Y. K.

EXPERIMENTAL DETERMINATION OF THE ROUGHNESS FUNCTIONS OF MARINE COATINGS Y. K. EXPERIMENTAL DETERMINATION OF THE ROUGHNESS FUNCTIONS OF MARINE COATINGS Y. K. Demirel 1, O. Turan 1, A. Incecik 1, S. Day 1, H. I. Fang 2, S. Downie 2, S. M. Olsen 3 1 Department of Naval Architecture,

More information

Mt Introduction. 2. Governing gphysics. 3. Decomposition of resistance. 4. Similarity laws and scaling

Mt Introduction. 2. Governing gphysics. 3. Decomposition of resistance. 4. Similarity laws and scaling 1. Introduction 2. Governing gphysics 3. Decomposition of resistance 4. Similarity laws and scaling Mt 527 Importance of proper power-speed prediction Resistance, prop. efficiency, power Wake field Experimental,

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

Resolving the dependence on free-stream values for the k-omega turbulence model

Resolving the dependence on free-stream values for the k-omega turbulence model Resolving the dependence on free-stream values for the k-omega turbulence model J.C. Kok Resolving the dependence on free-stream values for the k-omega turbulence model J.C. Kok This report is based on

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Copyright 2003 by the American Institute of Aeronautics and Astronautics Inc. All rights reserved

Copyright 2003 by the American Institute of Aeronautics and Astronautics Inc. All rights reserved 1 ISABE29-1225 COMPUTATION OF SECOND-ORDER SENSITIVITIES OF THE TOTAL PRESSURE LOSSES FUNCTIONAL IN CASCADE FLOWS T. Zervogiannis, D.I. Papadimitriou and K.C. Giannakoglou National Technical University

More information

Computational Fluid Dynamics Validation of Buoyant Turbulent Flow Heat Transfer

Computational Fluid Dynamics Validation of Buoyant Turbulent Flow Heat Transfer Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 2013 Computational Fluid Dynamics Validation of Buoyant Turbulent Flow Heat Transfer Jared M. Iverson Utah

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Friction Resistance of Ship. Chugoku Marine Paints, Nace Pusan Oct 2008

Friction Resistance of Ship. Chugoku Marine Paints, Nace Pusan Oct 2008 Friction Resistance of Ship Drag for Ships Air Drag Form Drag Wave Drag Frictional Drag BC LNG Cont Friction Drag Active Module to friction drag Micro bubble Polymer Riblet Elasticity modulus Contact angle

More information

This thesis is submitted for evaluation at Ålesund University College.

This thesis is submitted for evaluation at Ålesund University College. MASTER THESIS TITLE: Scale effect on the wake field of a Single Screw Ship CANDIDATE NAME: Yue Ding Candidate No. 2110 DATE: COURSE CODE: COURSE TITLE: RESTRICTION: 29/05/2015 IP501909 MSc thesis, discipline

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh Fluid Mechanics Chapter 9 Surface Resistance Dr. Amer Khalil Ababneh Wind tunnel used for testing flow over models. Introduction Resistances exerted by surfaces are a result of viscous stresses which create

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2016 IJSRSET Volume 2 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna

More information

Application of turbulence. models to high-lift airfoils. By Georgi Kalitzin

Application of turbulence. models to high-lift airfoils. By Georgi Kalitzin Center for Turbulence Research Annual Research Briefs 997 65 Application of turbulence models to high-lift airfoils By Georgi Kalitzin. Motivation and objectives Accurate prediction of the ow over an airfoil

More information

RANS Solutions Using High Order Discontinuous Galerkin Methods

RANS Solutions Using High Order Discontinuous Galerkin Methods RANS Solutions Using High Order Discontinuous Galerkin Methods Ngoc Cuong Nguyen, Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 2139, U.S.A. We present a practical

More information

Uncertainty Quantification of Turbulence Model Closure Coefficients on Openfoam and Fluent for Mildly Separated Flows

Uncertainty Quantification of Turbulence Model Closure Coefficients on Openfoam and Fluent for Mildly Separated Flows Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Spring 5-19-2017 Uncertainty Quantification

More information

M E 320 Professor John M. Cimbala Lecture 38

M E 320 Professor John M. Cimbala Lecture 38 M E 320 Professor John M. Cimbala Lecture 38 Today, we will: Discuss displacement thickness in a laminar boundary layer Discuss the turbulent boundary layer on a flat plate, and compare with laminar flow

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

On the advanced extrapolation method for a new type of podded propulsor via CFD simulations and model measurements

On the advanced extrapolation method for a new type of podded propulsor via CFD simulations and model measurements Fifth International Symposium on Marine Propulsors smp 17, Espoo, Finland, June 2017 On the advanced extrapolation method for a new type of podded propulsor via CFD simulations and model measurements Tomi

More information

ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK

ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, -4 8 ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK Javier García*,

More information

Journal of Ship Research

Journal of Ship Research Journal of Ship Research, Vol. 53, No. 4, December 009, pp. 179 198 Journal of Ship Research Model- and Full-Scale URANS Simulations of Athena Resistance, Powering, Seakeeping, and 5415 Maneuvering Shanti

More information

Mostafa Momen. Project Report Numerical Investigation of Turbulence Models. 2.29: Numerical Fluid Mechanics

Mostafa Momen. Project Report Numerical Investigation of Turbulence Models. 2.29: Numerical Fluid Mechanics 2.29: Numerical Fluid Mechanics Project Report Numerical Investigation of Turbulence Models Mostafa Momen May 2015 Massachusetts Institute of Technology 1 Numerical Investigation of Turbulence Models Term

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Turbulence modelling. Sørensen, Niels N. Publication date: Link back to DTU Orbit

Turbulence modelling. Sørensen, Niels N. Publication date: Link back to DTU Orbit Downloaded from orbit.dtu.dk on: Dec 19, 2017 Turbulence modelling Sørensen, Niels N. Publication date: 2010 Link back to DTU Orbit Citation (APA): Sørensen, N. N. (2010). Turbulence modelling. Paper presented

More information

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1

More information

Lecture-4. Flow Past Immersed Bodies

Lecture-4. Flow Past Immersed Bodies Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i Turbulence Modeling Cuong Nguyen November 05, 2005 1 Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1)

More information

THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT

THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT S. S. Zilitinkevich 1,2,3, I. Mammarella 1,2, A. Baklanov 4, and S. M. Joffre 2 1. Atmospheric Sciences,, Finland 2. Finnish

More information

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient):

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient): 8. TURBULENCE MODELLING 1 SPRING 2019 8.1 Eddy-viscosity models 8.2 Advanced turbulence models 8.3 Wall boundary conditions Summary References Appendix: Derivation of the turbulent kinetic energy equation

More information

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model Hybrid RANS Method Based on an Explicit Algebraic Reynolds Stress Model Benoit Jaffrézic, Michael Breuer and Antonio Delgado Institute of Fluid Mechanics, LSTM University of Nürnberg bjaffrez/breuer@lstm.uni-erlangen.de

More information

A combined application of the integral wall model and the rough wall rescaling-recycling method

A combined application of the integral wall model and the rough wall rescaling-recycling method AIAA 25-299 A combined application of the integral wall model and the rough wall rescaling-recycling method X.I.A. Yang J. Sadique R. Mittal C. Meneveau Johns Hopkins University, Baltimore, MD, 228, USA

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

MEC-E2001 Ship Hydrodynamics. Prof. Z. Zong Room 213a, K3, Puumiehenkuja 5A, Espoo

MEC-E2001 Ship Hydrodynamics. Prof. Z. Zong Room 213a, K3, Puumiehenkuja 5A, Espoo MEC-E2001 Ship Hydrodynamics Prof. Z. Zong zhi.zong@aalto.fi Room 213a, K3, Puumiehenkuja 5A, 02510 Espoo Teacher: Prof. Z. Zong, zhi.zong@aalto.fi Room 213a, K3, Puumiehenkuja 5A, 02510 Espoo Teaching

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

Viscous-flow calculations for bare hull DARPA SUBOFF submarine at incidence

Viscous-flow calculations for bare hull DARPA SUBOFF submarine at incidence International Shipbuilding Progress 55 (2008) 227 251 227 DOI 10.3233/ISP-2008-0048 IOS Press Viscous-flow calculations for bare hull DARPA SUBOFF submarine at incidence Serge Toxopeus Maritime Research

More information

Fluid Mechanics. Spring 2009

Fluid Mechanics. Spring 2009 Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

More information

Lecture 7 Boundary Layer

Lecture 7 Boundary Layer SPC 307 Introduction to Aerodynamics Lecture 7 Boundary Layer April 9, 2017 Sep. 18, 2016 1 Character of the steady, viscous flow past a flat plate parallel to the upstream velocity Inertia force = ma

More information

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

More information

Chapter 1: Basic Concepts

Chapter 1: Basic Concepts What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms

More information

Configuration Aerodynamics. Viscous Drag Predictions

Configuration Aerodynamics. Viscous Drag Predictions Phase II, High Speed Research Airframe Program Contract NAS 1-20220 Configuration Aerodynamics Task 32, WBS 4.3.1.1: Summary Report Viscous Drag Predictions Coordinating Responsibility: The Boeing Company

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Computational study of flow around a simplified car body

Computational study of flow around a simplified car body Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 1207 1217 www.elsevier.com/locate/jweia Computational study of flow around a simplified car body Emmanuel Guilmineau Laboratoire de Mécanique

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Heat Transfer Enhancement Through Perforated Fin

Heat Transfer Enhancement Through Perforated Fin IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 72-78 www.iosrjournals.org Heat Transfer Enhancement Through Perforated Fin Noaman Salam, Khan Rahmatullah,

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information