MEC-E2001 Ship Hydrodynamics. Prof. Z. Zong Room 213a, K3, Puumiehenkuja 5A, Espoo

Size: px
Start display at page:

Download "MEC-E2001 Ship Hydrodynamics. Prof. Z. Zong Room 213a, K3, Puumiehenkuja 5A, Espoo"

Transcription

1 MEC-E2001 Ship Hydrodynamics Prof. Z. Zong Room 213a, K3, Puumiehenkuja 5A, Espoo

2 Teacher: Prof. Z. Zong, Room 213a, K3, Puumiehenkuja 5A, Espoo Teaching assistant: Ms Yan Dongni, Room 213a, K3, Puumiehenkuja 5A, Espoo Lecture: , 2017, 8:15-10, Tue & Thur, R008/202 Exercises: ,2017, 10:15-12:00 Thur, R008/202 Model tests at VTT ( , & ) Examinations: 12.12,2017, 9:00-12:00 Tue, R008/202

3 a) Frictional resistance b) Viscous pressure resistance c) Wave-making resistance d) Eddy resistance e) Appendix resistance f) Air resistance g) Added resistance and others 1. Types of Resistances Phenomena descriptions

4 Topic: Types of Resistance After this part, you can explain How many types of resistances. How each resistance component is generated How to describe the dominant resistance component in dimensionless numbers. Resistance category. Additional reading Matusiak, Jerzy (2008). Short Introduction to Ship Resistance and Propulsion. Section 2.6. (English lecture notes in Noppa) Matusiak, Jerzy (2010). Laivan kulkuvastus, M-289, Section 2.4. and Chapter 4 (Finnish lecture notes in Noppa) Lecture- ship hydrodynamics 4

5 General When a ship moves forward through the water at a constant velocity V, it experiences a resistance or drag. Resistance or drag is the retarding force acting on a body that moves through a fluid. It acts opposite to the relative motion of the body. Buoyancy Resistance (drag) Thrust Weight 5

6 (a) Frictional resistance R f Even plate experiences resistance as fluid flows over it. Arising from viscosity It gives rise to drag force to any object moving through a fluid or equivalently, when a fluid flows past an object. 6

7 (a) Frictional resistance R f Boundary layer and main flow The flow can be divided into two regions (Prandtl, ): Boundary layer: The region near the wall where the movement of the flow is controlled by the frictional resistance Main flow: The other region outside the above is not affected by the friction (and can be assumed to be ideal fluid flow). Lecture- ship hydrodynamics 7

8 (a) Frictional resistance R f Flow in a boundary layer Laminar flow The fluid travels smoothly. Flow properties (e.g. velocity, pressure) at each point in the fluid remain constant. Turbulent flow Unsteady. The fluid undergoes irregular fluctuations and mixing. Formation of vortices. Where does the transition occur? If smooth surface, around Re = cr 6 Depends on the surface roughness. Lecture- ship hydrodynamics 8

9 (a) Frictional resistance R f Boundary layer thickness δ: laminar vs turbulence Laminar Turbulence d = n x d Re 0.2 x Re x = = x V x Re x 2 4 u y æ yö æ yö = 2-2ç + ç V d èd ø èd ø u V æ yö = ç èd ø 1/7 Lecture- ship hydrodynamics 9

10 (a) Frictional resistance R f Boundary layer thickness δ: laminar vs turbulence The boundary layer thickness is smaller in laminar than in turbulent flow. Lecture- ship hydrodynamics 10

11 (a) Frictional resistance R f Local shear stress at wall can be expressed roughly du t = 0 µ 2µ y = d V ( x) d = x Re x and the resistance per unit width of plate of length L D L = òt 0dx= r Re 2 V L Frictional Resistance Coefficient (laminar): L Re L = Frictional Resistance Coefficient (turbulent): U L n C C f f º D 1 2 ru 2 L = 1.33 Re D º = ru L ReL Lecture- ship hydrodynamics L

12 (a) Frictional resistance R f Frictional coefficient in laminar and turbulent flow They seldom used in ship hydrodynamics Lecture- ship hydrodynamics 12

13 (a) Frictional resistance R f Example Estimate Full scale: Ratio of the boundary layer thickness at midship and the length of the ship: δ S /L S Model scale: Ratio of the boundary layer thickness at midship and the length of the model: δ M /L M Case parameters Ship: L S = 100m, V S = 20kn OR your own ship. Model: L M = 4m. Lecture- ship hydrodynamics 13

14 (b) Viscous Pressure Resistance R vp 14

15 (b) Viscous Pressure Resistance R vp Pressure distribution is not fore-aft symmetric, resulting in pressure difference. Its integration along the surface is viscous pressure resistance Lecture- ship hydrodynamics 15

16 (b) Viscous Pressure Resistance R vp Lecture- ship hydrodynamics 16

17 (b) Viscous Pressure Resistance R vp 17

18 (b) Viscous Pressure Resistance R vp 18

19 (c) Wave-making resistance R W Widely exists behind ship and even a duck. Observable long behind. First studied by Load Kelvin in 1860s. 19

20 (c) Wave-making resistance R W Diverging waves Wave crest Transverse waves diverging waves on each side of the ship with their crests inclined at an angle to the direction of motion transverse waves with curved crests intersecting the centreline at right angles. 20

21 (c) Wave-making resistance R W The angle of the divergent waves to the centreline is arcsin» The waves move with the ship so the length of the transverse waves must correspond to this speed w = gk 2 l = 2 pv / g 2 p l =,V = k l T 21

22 (c) Wave-making resistance R W u There is no such thing as free lunch. u Waves are generated by consuming energy. Consumed energy is resistance which must be opposed by the propulsor if the ship is not to slow down. RW = 1 rga 4 2 u A submerged body near the surface will also cause waves and they become negligible at depths a little over half the body length. 22

23 (c) Wave-making resistance R W Kelvin derived single moving pressure point (1869) 1 1 G( x -x, y -h, z -z ) = - + 4pr 4p 2 k + k sec q 0 ( z+ e 2 k - k sec q 0 p / 2 {- ik[ ( x -x)cosq + ( y -h) q ]} Re ò ò exp sin 2 k z ) -p / 2 0 dkdq 23

24 (c) Wave-making resistance R W Mitchell (1898) thin ship theory R = P 2rg 6 pv 4 p / 2 ò -p / 2 ( P 2 + Q iq = - ik cosq L / 2 + ò ò 5 )sec qdq -T -L / 2 f exp x Bow and stern are important B/L controls resistance [ kz + ikx cosq ] dq 24

25 (d) Eddy resistance u Where there are rapid changes of section the flow breaks away from the hull and eddies are created. u Examples of eddy creators: Transom stern, stern frames, appendages such as the bilge keels, rudders and so on. 25

26 (e) Appendix resistance u Appendages include rudders, bilge keels, shaft brackets and bossings, and stabilizers. u Appendage resistance can be obtained by testing appendages separately and scaling to the ship. 26

27 (e) Appendix resistance 27

28 (f) Air resistance R AA The ship actually moves at the same time through two fluids, water and air, with widely different density. While the lower part of the hull is moving through water, the upper part is moving through air. Like moving in the water, the upper part of the ship moving in the air is also subject to the same types of forces (dynamic pressures and tangential stresses). Because r a << r w, the air resistance is usually much smaller than the water resistance, except for those aerostatic support of hydrodynamic support crafts. 28

29 (f) Air resistance R AA Work at the National Physical Laboratory (Shearer and Lynn, ) introduced the concept of an ahead resistance coefficient (ARC) defined by: ARC = fore and aft component of wind resistance 1 2 R T 2 rv A Where V A is the relative velocity and A C is the transverse cross section area. 29

30 (h) Added resistance and others Resistance in waves Resistance in restricted waters Wind Two ships are close 30

31 Summary Wave-making resistancer F Total resistance Total resistance Viscous resistancer E Frictional resistancer G Residuary resistancer I Viscous pressure resistancer HE Frictional resistancer G Viscous pressure resistancer HE Wave-making resistancer F Hull resistance Total resistance in calm water Appendage resistance Note: water resistance is the dominant factor in determining the speed. 31

32 Summary 32

33 Summary Example: Importance of different components Tanker Fn=0.15 Container Fn=0.24 Trawler Fn=0.34 Hydroplane Fn=1.5 Friction (flat plate) Effectof theform Effect ofsurface roughness Waveresistance Air resistance Resistance due to appendages

34 34

MEC-E2001 Ship Hydrodynamics. Prof. Z. Zong Room 213a, K3, Puumiehenkuja 5A, Espoo

MEC-E2001 Ship Hydrodynamics. Prof. Z. Zong Room 213a, K3, Puumiehenkuja 5A, Espoo MEC-E2001 Ship Hydrodynamics Prof. Z. Zong zhi.zong@aalto.fi Room 213a, K3, Puumiehenkuja 5A, 02510 Espoo Teacher: Prof. Z. Zong, zhi.zong@aalto.fi Room 213a, K3, Puumiehenkuja 5A, 02510 Espoo Teaching

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Teaching sessions week 40

Teaching sessions week 40 Teaching sessions week 40 Monday 28 September Lecture: Introduction to propulsion. Momentum theory of propeller action. Friday 2 October Lecture: Screw propeller Introduction of Marine Hydrodynamics 1

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh Fluid Mechanics Chapter 9 Surface Resistance Dr. Amer Khalil Ababneh Wind tunnel used for testing flow over models. Introduction Resistances exerted by surfaces are a result of viscous stresses which create

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Welcome to the Ship Resistance Predictor! The total calm water resistance is given by:

Welcome to the Ship Resistance Predictor! The total calm water resistance is given by: Welcome to the Ship Resistance Predictor! What does this Excel Sheet do? This Excel sheet helps you calculate the Total Calm Water Resistance for a Ship at a given forward speed It also calculates from

More information

Lecture-4. Flow Past Immersed Bodies

Lecture-4. Flow Past Immersed Bodies Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 35 Boundary Layer Theory and Applications Welcome back to the video course on fluid

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Study of the hydrodynamic flow around a 70m sailing boat for powering, wave pattern and propeller efficiency prediction

Study of the hydrodynamic flow around a 70m sailing boat for powering, wave pattern and propeller efficiency prediction Study of the hydrodynamic flow around a 70m sailing boat for powering, wave pattern and propeller efficiency prediction Romain Baudson Supervisor: Prof. Dario Boote (UNIGE) External Reviewer: Prof. Pierre

More information

Day 24: Flow around objects

Day 24: Flow around objects Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Ship Resistance And Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras

Ship Resistance And Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Ship Resistance And Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Lecture - 14 Ship Resistance Prediction Methods II We have been discussing about resistance

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Resistance Resistance Test

ITTC Recommended Procedures Testing and Extrapolation Methods Resistance Resistance Test -0- Page 1 of 11 CONTENTS 1. PURPOSE OF PROCEDURE. PARAMETERS.1 Data Reduction Equations. Definition of ariables 3. DESCRIPTION OF PROCEDURE 3.1 Model and Installation 3.1.1 Model 3.1. Test condition 3.1.3

More information

7.2 Ship Drive Train and Power

7.2 Ship Drive Train and Power 7.2 Ship Drive Train and Power Ship Drive Train System EHP Engine Reduction Gear Bearing Seals Strut Screw THP BHP SHP DHP Ship Drive Train and Power EHP Engine Reduction Gear Bearing Seals Strut Screw

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

BOUNDARY LAYER FLOWS HINCHEY

BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER PHENOMENA When a body moves through a viscous fluid, the fluid at its surface moves with it. It does not slip over the surface. When a body moves at high speed,

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible

More information

FLOW SEPARATION. Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc.

FLOW SEPARATION. Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc. FLOW SEPARATION Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc. (Form Drag, Pressure Distribution, Forces and Moments, Heat And Mass Transfer, Vortex Shedding)

More information

DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM

DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM Brian Cuneo Thomas McKenney Morgan Parker ME 555 Final Report April 19, 2010 ABSTRACT This study develops an optimization algorithm to explore

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG 1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

CHAPTER 6 Fluids Engineering. SKMM1922 Introduction of Mechanical Engineering

CHAPTER 6 Fluids Engineering. SKMM1922 Introduction of Mechanical Engineering CHAPTER 6 Fluids Engineering SKMM1922 Introduction of Mechanical Engineering Chapter Objectives Recognize the application of fluids engineering to such diverse fields as microfluidics, aerodynamics, sports

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Fluid: Air and water are fluids that exert forces on the human body.

Fluid: Air and water are fluids that exert forces on the human body. Fluid: Air and water are fluids that exert forces on the human body. term fluid is often used interchangeably with the term liquid, from a mechanical perspective, Fluid: substance that flows when subjected

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

UNIT 4 FORCES ON IMMERSED BODIES. Lecture-01

UNIT 4 FORCES ON IMMERSED BODIES. Lecture-01 1 UNIT 4 FORCES ON IMMERSED BODIES Lecture-01 Forces on immersed bodies When a body is immersed in a real fluid, which is flowing at a uniform velocity U, the fluid will exert a force on the body. The

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Mt Introduction. 2. Governing gphysics. 3. Decomposition of resistance. 4. Similarity laws and scaling

Mt Introduction. 2. Governing gphysics. 3. Decomposition of resistance. 4. Similarity laws and scaling 1. Introduction 2. Governing gphysics 3. Decomposition of resistance 4. Similarity laws and scaling Mt 527 Importance of proper power-speed prediction Resistance, prop. efficiency, power Wake field Experimental,

More information

Model-Ship Correlation Method in the Mitsubishi Experimental Tank

Model-Ship Correlation Method in the Mitsubishi Experimental Tank Model-Ship Correlation Method in the Mitsubishi Experimental Tank By Kaname Taniguchi*, Member Summary The model-ship correlation method which is developed and used in the Mitsubishi Experimental Tank

More information

4.2 Concepts of the Boundary Layer Theory

4.2 Concepts of the Boundary Layer Theory Advanced Heat by Amir Faghri, Yuwen Zhang, and John R. Howell 4.2 Concepts of the Boundary Layer Theory It is difficult to solve the complete viscous flow fluid around a body unless the geometry is very

More information

Chapter 1: Basic Concepts

Chapter 1: Basic Concepts What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

Numerical Analysis of Unsteady Open Water Characteristics of Surface Piercing Propeller

Numerical Analysis of Unsteady Open Water Characteristics of Surface Piercing Propeller Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 2013 Numerical Analysis of Unsteady Open Water Characteristics of Surface Piercing Propeller Kohei Himei

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Lecture 7. Turbulence

Lecture 7. Turbulence Lecture 7 Content Basic features of turbulence Energy cascade theory scales mixing Basic features of turbulence What is turbulence? spiral galaxies NGC 2207 and IC 2163 Turbulent jet flow Volcano jet flow

More information

Empirical Co - Relations approach for solving problems of convection 10:06:43

Empirical Co - Relations approach for solving problems of convection 10:06:43 Empirical Co - Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal

More information

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

ME 144: Heat Transfer Introduction to Convection. J. M. Meyers

ME 144: Heat Transfer Introduction to Convection. J. M. Meyers ME 144: Heat Transfer Introduction to Convection Introductory Remarks Convection heat transfer differs from diffusion heat transfer in that a bulk fluid motion is present which augments the overall heat

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS

Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS WEEK Four Lecture 6 VELOCITY DISTRIBUTION Joe Wheaton FOR TODAY, YOU SHOULD HAVE READ 1 LET S GET ON WITH IT TODAY S PLAN VELOCITY DISTRIBUTIONS

More information

M E 320 Professor John M. Cimbala Lecture 38

M E 320 Professor John M. Cimbala Lecture 38 M E 320 Professor John M. Cimbala Lecture 38 Today, we will: Discuss displacement thickness in a laminar boundary layer Discuss the turbulent boundary layer on a flat plate, and compare with laminar flow

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

developed at "Dunarea de Jos" University of Galati Presented by: BENZOHRA Abdelmalek

developed at Dunarea de Jos University of Galati Presented by: BENZOHRA Abdelmalek Master Thesis presented in partial fulfillment of the requirements for the double degree: Advanced Master in Naval Architecture conferred by University of Liege "Master of Sciences in Applied Mechanics,

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Use of CFD techniques to improve the energetic efficiency of a hull form with particular reference to bulbous bows

Use of CFD techniques to improve the energetic efficiency of a hull form with particular reference to bulbous bows Use of CFD techniques to improve the energetic efficiency of a hull form with particular reference to bulbous bows BOUZID Tawfiq EMSHIP Erasmus Mundus Master Course in Integrated Advanced Ship Design Ref.

More information

6. Basic basic equations I ( )

6. Basic basic equations I ( ) 6. Basic basic equations I (4.2-4.4) Steady and uniform flows, streamline, streamtube One-, two-, and three-dimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4140 Ship Dynamics (P) Lecture 9 Loads Where is this lecture on the course? Design Framework Lecture 5: Equations of Motion Environment Lecture 6: Strip Theory

More information

Deliverable D.6.1. Application of CFD tools to the development of a novel propulsion concept

Deliverable D.6.1. Application of CFD tools to the development of a novel propulsion concept TRIple Energy Saving by Use of CRP, CLT and PODded Propulsion Grant Agreement Number: 265809 Call identifier: FP7-SST-2010-RTD-1 Theme SST.2010.1.1-2.: Energy efficiency of ships WP 1 Deliverable D.6.1

More information

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Turbulence Instability

Turbulence Instability Turbulence Instability 1) All flows become unstable above a certain Reynolds number. 2) At low Reynolds numbers flows are laminar. 3) For high Reynolds numbers flows are turbulent. 4) The transition occurs

More information

Unit operations of chemical engineering

Unit operations of chemical engineering 1 Unit operations of chemical engineering Fourth year Chemical Engineering Department College of Engineering AL-Qadesyia University Lecturer: 2 3 Syllabus 1) Boundary layer theory 2) Transfer of heat,

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Lecture 7 Boundary Layer

Lecture 7 Boundary Layer SPC 307 Introduction to Aerodynamics Lecture 7 Boundary Layer April 9, 2017 Sep. 18, 2016 1 Character of the steady, viscous flow past a flat plate parallel to the upstream velocity Inertia force = ma

More information

Recap: Static Fluids

Recap: Static Fluids Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

ICE CLASS REGULATIONS 2008 (FINNISH-SWEDISH ICE CLASS RULES)

ICE CLASS REGULATIONS 2008 (FINNISH-SWEDISH ICE CLASS RULES) Finnish Maritime Administration BULLETIN 10/10.12.2008 ICE CLASS REGULATIONS 2008 (FINNISH-SWEDISH ICE CLASS RULES) The Finnish Maritime Administration has, by a decision of 8 December 2008, issued the

More information

/01/04: Morrison s Equation SPRING 2004 A. H. TECHET

/01/04: Morrison s Equation SPRING 2004 A. H. TECHET 3.4 04/0/04: orrison s Equation SPRING 004 A.. TECET. General form of orrison s Equation Flow past a circular cylinder is a canonical problem in ocean engineering. For a purely inviscid, steady flow we

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

Figure 34: Coordinate system for the flow in open channels.

Figure 34: Coordinate system for the flow in open channels. OE466 redging Processes 5. SCOUR 5.. Steady uniform flow in open channels This chapter is written with a view to bottom scour. The main outcome is the scour velocity as a function of the particle diameter.

More information

Stream line, turbulent flow and Viscosity of liquids - Poiseuille s Method

Stream line, turbulent flow and Viscosity of liquids - Poiseuille s Method Stream line, turbulent flow and Viscosity of liquids - Poiseuille s Method Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

Convective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay

Convective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Convective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Module No.# 01 Lecture No. # 41 Natural Convection BLs So far we have considered

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Lecture 6 Friction. Friction Phenomena Types of Friction

Lecture 6 Friction. Friction Phenomena Types of Friction Lecture 6 Friction Tangential forces generated between contacting surfaces are called friction forces and occur to some degree in the interaction between all real surfaces. whenever a tendency exists for

More information

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004 13.01 ydrodynamics for Ocean Engineers Prof. A.. Techet Fall 004 Morrison s Equation 1. General form of Morrison s Equation Flow past a circular cylinder is a canonical problem in ocean engineering. For

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M. Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Scalo Prof. Vlachos

More information

Calculation of the Flow around the KVLCC2M Tanker

Calculation of the Flow around the KVLCC2M Tanker Calculation of the Flow around the KVLCC2M Tanker L. Eça 1, M. Hoekstra 2 and S.L. Toxopeus 2 1 Instituto Superior Técnico, Portugal 2 Maritime Research Institute, Netherlands SUMMARY The flow around the

More information

11. SIMILARITY SCALING

11. SIMILARITY SCALING 11. SIMILARITY SCALING In Section 10 we introduced a non-dimensional parameter called the Lundquist number, denoted by S. This is just one of many non-dimensional parameters that can appear in the formulations

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

FLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL

FLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL FLUID MECHANICS Gaza Chapter CHAPTER 44 Motion of Fluid Particles and Streams Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce concepts necessary to analyze fluids in motion. Identify differences

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

ITTC Recommended Procedures and Guidelines Testing and Extrapolation Methods Propulsion, Performance Propulsion Test

ITTC Recommended Procedures and Guidelines Testing and Extrapolation Methods Propulsion, Performance Propulsion Test 7.5- Page 1 of 13 Table of Contents... 2 1. PURPOSE OF PROCEDURE... 2 2. PARAMETERS... 2 2.1 Data Reduction Equations... 2 2.2 Definition of Variables... 3 3. DESCRIPTION OF PROCEDURE... 3 3.1 Model and

More information

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

SHIP BUOYANCY AND STABILITY. Lecture 03 Ship initial stability

SHIP BUOYANCY AND STABILITY. Lecture 03 Ship initial stability SHIP BUOYANCY AND STABILITY Lecture 3 Ship initial stability 1 Literature J. Matusiak: Laivan kelluvuus ja vakavuus Biran A. B., Ship Hydrostatics and Stability, 23 J. Matusiak: Short Introduction to Ship

More information

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Session 7 Stability of Damaged Ships Numerical Simulation of Progressive Flooding and Capsize Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Qiuxin Gao and Dracos

More information

Innovative Ship and Offshore Plant Design

Innovative Ship and Offshore Plant Design 017-1-7 Lecture Note of Innovative Ship and Offshore Plant Design Innovative Ship and Offshore Plant Design Part I. Ship Design h. 6 esistance Prediction Spring 017 Myung-Il oh Department of Naval rchitecture

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V When the mass m of the control volume remains nearly constant, the first term of the Eq. 6 8 simply becomes mass times acceleration since 39 CHAPTER 6 d(mv ) CV m dv CV CV (ma ) CV Therefore, the control

More information

Fluid Mechanics. Spring 2009

Fluid Mechanics. Spring 2009 Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

More information

Research on Prediction of Ship Manoeuvrability

Research on Prediction of Ship Manoeuvrability Journal of Shipping and Ocean Engineering 8 (08 30-35 doi 0.765/59-5879/08.0.004 D DAVID PUBLISHING Research on Prediction of Ship Manoeuvrability CUI Jian, WU Zixin and CHEN Weimin Shanghai Ship and Shipping

More information