Estimation Theory Chapter 3

Size: px
Start display at page:

Download "Estimation Theory Chapter 3"

Transcription

1 stimatio Theory Chater 3

2 Likelihood Fuctio Higher deedece of data PDF o ukow arameter results i higher estimatio accuracy amle : If ˆ If large, W, Choose  P  small,  W POOR GOOD i Oly data samle Data PDFas a fuctio of ukow aramter likelihood fuctio i e i :

3 Likelihood Fuctio P 3 Small oise ose variace a More deedece o P 3 3 Large oise variace 3

4 Likelihood Fuctio P i =3 vs is the robability likelihood of observig =3 whe is the true value If σ =/3 => robability ~ for >4 sice most likely values of are 3 3σ =,4 Cocetratio of P i =3 restricts ossible values of PDF Cocetratio Parameter ccuracy

5 PDF Curvature To measure the sharess of the PDF, use curvature l P defied d by for Gaussia df s σ ote:, curvature icreases. Var ˆ Var l P I geeral, - - is a l P ote: tosimlify otatio, we deotep by P Curvature radom variable

6 Therefore, to measure l P Scalar CRLB Theorem PDF Curvature PDF curvature we use l P If PDF P satisfies mild regularity coditios, the the variace of ay ubiased lso, If Var ˆ ad oly if l l P I g estimator ˆ satisfies l P true value of ote : eectatio is w.r.t. where is determiistic

7 is satisfied for some fuctios g ad I, a estimator ca be foud that attais CRLB. That estimator is ˆ g ad the miimum variace is / I amle: Problem : Fid MVU W WG with Variace roach : Comute CRLB, e estimator If satisfyig CRLB boud,,,..., - of if estimator it eists ca be foud the we have MVU!

8 amle Cot d e / P / l P l  Var Var

9 but amle Cot d is Ubiased d has variace is MVU! What if we did ot recall that had these roerties? From CRLB Theorem, but lp lp equality hld holds iff I g

10 CRLB satisfies boud Var ˆ I o variac e ad as eected. Summary: CRLB Theorem ot oly gives us a lower boud o variace of ay ubiased estimator but also fids the estimator if it eisits that attais the lower boud

11 fficiet stimator stimator that attais Cramer Rao lower boud o variace termed as FFICIT it makes efficiet use of data VR VR ˆ ˆ ˆ efficiet & MVU ˆ MVU but ot efficiet

12 amle Phase stimatio estimate kow, f,,,.. - : f Cos W e f Cos cos l f P si cos f f si f

13 amle Cot d si4 si f f cos l f P cos4 cos f f cos l - f P f 4 cos f

14 amle Cot d cos4 cos4 f f But cos4 f cos4 f for f var ˆ Boud decreases as SR See roblem 3.7 i SK ot ear or / ercise : Comute CRLB for estimatig, fo, or oise variace for this eamle icreases

15 Fisher Iformatio CRLBdecreasesasSR icreases ad/or icreasesas eected. Doesefficiet estimator eist? MVU? Wedefie Do t Kow l P I - ote: I see remark o, ca t factorize l P Whe CRLB is attaied, estimator variace is recirocal of Fisher iformatio as thefisher Iformatio below dditivefor ideedet observatios whe Iformatio icreases variace ucertaity decreases

16 Fisher Iformatio Matri l l P P l, l P P l P l l P P I the each for df are also idetically distributed same observatios If i I the for each, df i I

17 s Fisher Iformatio Matri l P i -, for IID case CRLB What haes for erfectly ad artially- correlated data samles? See Problem 3.9 i SK Remark : l P I Usually easier to use the origial roof soo squarig icreases owers while differetiatio decreases owers form

18 Geeral CRLB for Sigals i WG Geeral CRLB for Sigals i WG W S,,,... - WG o Deeds W S P e S l S S P S The oly deedece of o the ukow arameter is through S

19 Geeral CRLB for Sigals i WG l S S S P l S P ˆ Var Var S chage result i more accurate estimators for their ukow their ukow arameters that chage more raidly as Sigals aramters

20 amle : If S S Var Var Try also for the hase eamle ote that the imortat asect of a sigal its rate of chage with here is

21 Trasformatio of Parameters CRLB to estimate g where df is arameteri zed by ad g. is some trasforma tio o liear i geeral g Var ˆ l quality is achieved iff l where I I θ ˆ g l g Proof soo

22 l DC L l i WG amle: DC Level i WG W 4 ˆ for CRLB g g deeds o! 4 l Var g  for.is efficiet was ˆ from revious slide? o rove usig theorem for efficiet, is distributed as

23 Var ot eve ubiased! I geeralefficiecy destroyed by o liear trasformatio. Maitaiedover liear affie trasformatios

24 ffie Trasformatios ˆ efficiet a ˆ b efficiet for sice a ˆ b a ˆ Var a ˆ b a b Var ˆ g a l a b CRLB b ow, we are ready to rove the CRLB Theorem

25 Proof of Scalar Cramer-Rao Lower B d CRLB Th Boud CRLB Theorem ˆ ˆ : stimator Ubiased give : g g stimate Objetive d l l : Coditio Regularity d ˆ g l d d d d key ste. itegratio ad atio differeti of order e iterchag ca we as log as hold always will coditio regularity Hece,

26 Proof cot., w.r.t. of sides both atig by differeti ow g d ˆ g l g d l ˆ d l g d l ˆ Sice l d, Sice Re Coditio gularity

27 Proof cot. ow let us cosider Cauchy - Schwarz iequality y fuctio form : w ghd w g d. for w with equality iff w h g c h for costat 'c'. Comare with vector form :.y d y Let, w g ˆ l h

28 Proof cot. iequality to, Schwarz Cauchy ly d l d. ˆ g ˆ var 3 l g ˆ var l regularity coditio l ow, w.r.t. By differetiatig d l d l

29 Proof cot. l l - from 3 ad 4 varˆ g l - l l l d l 4 d lterative form of Fisher Iformatio

30 Proof cot. ˆ l g h iff occurs quality 5 ˆ l g if, I articular c g c. w.r.t. 5 ate differeti c determie To 5 c l l ˆ c c l c c l - I l c

31 Proof for Geeral g quality i Cauchy-Schwartz iff l l Iθ ˆ g Multily 6 by ˆ g & take eectatios l ˆ g Usig g Iθ var ˆ Iθ ˆ g

32 From 6 g Proof for Geeral l I θ g I θ ˆ g l g I θ ---8 From 7 ad 8 varˆ g l

33 of MVU estimator Fid -,,, ~ G, w : with varies MVU estimator variace where amle e. MVU estimator of Fid / What if we are tryig to estimate the stadard deviatio of the oise? l l l l deviatio of the oise Is there a efficiet estimator i this case?? l 4 MVU & fficiet 4 ^ ^ 4 g I o deeds which var ˆ var ad ˆ 4

34 CRLB for Vector Parameter ssume Var ˆ i where I I is ˆ T roof i SK aedi 3B UBISD I I ii ii ij l l i i geeral j symmetricad ositive - defiite Fisher Iformatio Matri hece ivertible

35 Fisher Iformatio Matri for Sigal i WG g W S. -,,,... WG Deeds S e P WG o Deeds S P e l P i i S S P l l l j i j i j i S S P S S S S P j i j i

36 amle, ~ where g.4 : SK 3.6 G w w amle / T e -,,, l l l l l l l radom! 4 l &

37 amle cot l I 4 but ot i geeral case i this diagoal 4 4 ^ ˆ var CRLB for joit estimatio of the arameters is same as CRLB for searate estimatio assumig the other arameter is kow 4 var

38 Fittig Lie amle: had B. DC Level W B g B WG first I To Fid CRLB comute B l l I B l l I B B

39 amle Cot d amle Cot d B e l B l B B l B

40 amle Cot d l amle Cot d l l B l B B always, why? l B I

41 amle Cot d 6 But I 6 why? - symmetric lways I - 6

42 amle Cot d Var ˆ I Var Bˆ I Observatios : Var Var ow, Var Recall for W for Questio : Comute CRLB for data samles k, k+,... k+ where k is a iteger See Prob. 3. for geeral roof

43 more estimate we as decrease ot ca CRLB ˆ task difficult more arameters more estimate we as decrease ot ca CRLB 3 6 Bˆ CRLB Â CRLB lso, or S i chage large B causes i chage slight is Reaso estimate. easier to B is S or i S chage large i B causes B B S B B B

44 more sesitive to chages i B tha to o oise =,B= =B= =,B= =B= 3 4

45 amle.57 amle :SK 3.4 & where, -,,, cos o o f w f ca be show that It o T o o f f f cos cos It ca be show that, o o I do calculatio ad submit et class si cos, o o I si

46 amle cot. By usig i It i ca I be the i var ˆ where, i followig idetities si 4f o cos 4 f o show that show for i them!,, ad f ot ear or /. fter iversio, we get varfˆ SR o Blows u for = why? - var ˆ Questio : how do these bouds comare to those Of sigle-arameter ad two arameter estimatio?

47 CRLB Theorem- Vector Parameter C ˆ as ˆ covariace matri of Deote Z Y 3 If T Z ˆ ˆ ˆ ˆ ˆ C T ˆ ˆ Z Y Z Y ˆ ˆ ˆ ˆ Vector Row Colum Vector

48 Var ˆ Covˆ Cov, Ŷ Y Covˆ Cov, Ẑ Z Covˆ,Ŷ VarŶ CovŶ, Ẑ ˆ ˆ ˆ ˆ ˆ Cov, Z CovY, Z VarZ If PDF satisfies regularity coditios, the C ˆ I is POSITIV SMIDFIIT. valuate I at true value of. ubiased estimator attais CRLB iff l I g ote : regularity coditio imlies, from quatio *, that efficiet estimator is ubiased *

49 for some g ad I. That efficiet i adhece MVU estimator is ˆ g ad its covariace PLTIO is a ad matri is C ˆ I ositive semidefiite matri if T for all T C I articular, ˆ I let... th i PLC it is symmetric T e i

50 But e T i ei ii e T i C C - I θ e θˆ θˆ ii Var ˆ i I i θ I θ as before ii ii ow, cosider l GRDIT θ

51 l l For equality i CRLB to hold, we require l θ I g θˆ ˆ is efficiet θ

52 Remarks CRLB theorem ca be alied wheever is available. I articular, it is directly alicable to all additive-oise models where it is easy to write oise eed ot be i.i.d. or zero-mea Gaussia Key ste is to write dow the eressio for y geeral -dimesioal oise df

53 Revisitig MPL o Vector CRLB l Lie Fittig l l l B B ˆ B θˆ-θ Iθ ˆ 6 B B θ θ Iθ 6 ˆ Verify it is bi d ubiased

54 MPL Cot d Bˆ 6 Verify it is ubiased ot obvious! This eamle is a secial case of Liear Model Chater 4

55 oucemets HW : Chater 3 : from SK 3., 3.5,3.7,3.,3. Review roblems : 3.4, 3.9, 3.3 Sectios ot covered i Chater 3 : 3.8,3.9,3.,3. ecet amle 3.4

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation ECE 645: Estimatio Theory Sprig 2015 Istructor: Prof. Staley H. Cha Maximum Likelihood Estimatio (LaTeX prepared by Shaobo Fag) April 14, 2015 This lecture ote is based o ECE 645(Sprig 2015) by Prof. Staley

More information

Chapter 7 Maximum Likelihood Estimate (MLE)

Chapter 7 Maximum Likelihood Estimate (MLE) Chapter 7 aimum Likelihood Estimate (LE) otivatio for LE Problems:. VUE ofte does ot eist or ca t be foud . BLUE may ot be applicable ( Hθ w) Solutio: If the PDF

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Berli Che Deartmet of Comuter Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Referece: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chater 5 & Teachig Material Itroductio

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

13.1 Shannon lower bound

13.1 Shannon lower bound ECE598: Iformatio-theoretic methods i high-dimesioal statistics Srig 016 Lecture 13: Shao lower boud, Fao s method Lecturer: Yihog Wu Scribe: Daewo Seo, Mar 8, 016 [Ed Mar 11] I the last class, we leared

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Chapter 18: Sampling Distribution Models

Chapter 18: Sampling Distribution Models Chater 18: Samlig Distributio Models This is the last bit of theory before we get back to real-world methods. Samlig Distributios: The Big Idea Take a samle ad summarize it with a statistic. Now take aother

More information

Classification of DT signals

Classification of DT signals Comlex exoetial A discrete time sigal may be comlex valued I digital commuicatios comlex sigals arise aturally A comlex sigal may be rereseted i two forms: jarg { z( ) } { } z ( ) = Re { z ( )} + jim {

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

Lecture 6 Ecient estimators. Rao-Cramer bound.

Lecture 6 Ecient estimators. Rao-Cramer bound. Lecture 6 Eciet estimators. Rao-Cramer boud. 1 MSE ad Suciecy Let X (X 1,..., X) be a radom sample from distributio f θ. Let θ ˆ δ(x) be a estimator of θ. Let T (X) be a suciet statistic for θ. As we have

More information

THE INTEGRAL TEST AND ESTIMATES OF SUMS

THE INTEGRAL TEST AND ESTIMATES OF SUMS THE INTEGRAL TEST AND ESTIMATES OF SUMS. Itroductio Determiig the exact sum of a series is i geeral ot a easy task. I the case of the geometric series ad the telescoig series it was ossible to fid a simle

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

( ) = is larger than. the variance of X V

( ) = is larger than. the variance of X V Stat 400, sectio 6. Methods of Poit Estimatio otes by Tim Pilachoski A oit estimate of a arameter is a sigle umber that ca be regarded as a sesible value for The selected statistic is called the oit estimator

More information

tests 17.1 Simple versus compound

tests 17.1 Simple versus compound PAS204: Lecture 17. tests UMP ad asymtotic I this lecture, we will idetify UMP tests, wherever they exist, for comarig a simle ull hyothesis with a comoud alterative. We also look at costructig tests based

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

ECE534, Spring 2018: Final Exam

ECE534, Spring 2018: Final Exam ECE534, Srig 2018: Fial Exam Problem 1 Let X N (0, 1) ad Y N (0, 1) be ideedet radom variables. variables V = X + Y ad W = X 2Y. Defie the radom (a) Are V, W joitly Gaussia? Justify your aswer. (b) Comute

More information

Recursive Updating Fixed Parameter

Recursive Updating Fixed Parameter Recursive Udatig Fixed Parameter So far we ve cosidered the sceario where we collect a buch of data ad the use that (ad the rior PDF) to comute the coditioal PDF from which we ca the get the MAP, or ay

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

Created by T. Madas SERIES. Created by T. Madas

Created by T. Madas SERIES. Created by T. Madas SERIES SUMMATIONS BY STANDARD RESULTS Questio (**) Use stadard results o summatios to fid the value of 48 ( r )( 3r ). 36 FP-B, 66638 Questio (**+) Fid, i fully simplified factorized form, a expressio

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

Statistics Definition: The science of assembling, classifying, tabulating, and analyzing data or facts:

Statistics Definition: The science of assembling, classifying, tabulating, and analyzing data or facts: 8. Statistics Statistics Defiitio: The sciece of assemblig, classifyig, tabulatig, ad aalyzig data or facts: Descritive statistics The collectig, grouig ad resetig data i a way that ca be easily uderstood

More information

ECE534, Spring 2018: Solutions for Problem Set #2

ECE534, Spring 2018: Solutions for Problem Set #2 ECE534, Srig 08: s for roblem Set #. Rademacher Radom Variables ad Symmetrizatio a) Let X be a Rademacher radom variable, i.e., X = ±) = /. Show that E e λx e λ /. E e λx = e λ + e λ = + k= k=0 λ k k k!

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Crytograhy ad Comuter Security Notes 16 (rev. 1 Professor M. J. Fischer November 3, 2008 68 Legedre Symbol Lecture Notes 16 ( Let be a odd rime,

More information

ENGI 4421 Discrete Probability Distributions Page Discrete Probability Distributions [Navidi sections ; Devore sections

ENGI 4421 Discrete Probability Distributions Page Discrete Probability Distributions [Navidi sections ; Devore sections ENGI 441 Discrete Probability Distributios Page 9-01 Discrete Probability Distributios [Navidi sectios 4.1-4.4; Devore sectios 3.4-3.6] Chater 5 itroduced the cocet of robability mass fuctios for discrete

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

( θ. sup θ Θ f X (x θ) = L. sup Pr (Λ (X) < c) = α. x : Λ (x) = sup θ H 0. sup θ Θ f X (x θ) = ) < c. NH : θ 1 = θ 2 against AH : θ 1 θ 2

( θ. sup θ Θ f X (x θ) = L. sup Pr (Λ (X) < c) = α. x : Λ (x) = sup θ H 0. sup θ Θ f X (x θ) = ) < c. NH : θ 1 = θ 2 against AH : θ 1 θ 2 82 CHAPTER 4. MAXIMUM IKEIHOOD ESTIMATION Defiitio: et X be a radom sample with joit p.m/d.f. f X x θ. The geeralised likelihood ratio test g.l.r.t. of the NH : θ H 0 agaist the alterative AH : θ H 1,

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

John H. J. Einmahl Tilburg University, NL. Juan Juan Cai Tilburg University, NL

John H. J. Einmahl Tilburg University, NL. Juan Juan Cai Tilburg University, NL Estimatio of the margial exected shortfall Laures de Haa, Poitiers, 202 Estimatio of the margial exected shortfall Jua Jua Cai Tilburg iversity, NL Laures de Haa Erasmus iversity Rotterdam, NL iversity

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Unit 5. Hypersurfaces

Unit 5. Hypersurfaces Uit 5. Hyersurfaces ================================================================= -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist. Topic 5 [44 marks] 1a (i) Fid the rage of values of for which eists 1 Write dow the value of i terms of 1, whe it does eist Fid the solutio to the differetial equatio 1b give that y = 1 whe = π (cos si

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

B = B is a 3 4 matrix; b 32 = 3 and b 2 4 = 3. Scalar Multiplication

B = B is a 3 4 matrix; b 32 = 3 and b 2 4 = 3. Scalar Multiplication MATH 37 Matrices Dr. Neal, WKU A m matrix A = (a i j ) is a array of m umbers arraged ito m rows ad colums, where a i j is the etry i the ith row, jth colum. The values m are called the dimesios (or size)

More information

2. The volume of the solid of revolution generated by revolving the area bounded by the

2. The volume of the solid of revolution generated by revolving the area bounded by the IIT JAM Mathematical Statistics (MS) Solved Paper. A eigevector of the matrix M= ( ) is (a) ( ) (b) ( ) (c) ( ) (d) ( ) Solutio: (a) Eigevalue of M = ( ) is. x So, let x = ( y) be the eigevector. z (M

More information

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ), Cofidece Iterval Estimatio Problems Suppose we have a populatio with some ukow parameter(s). Example: Normal(,) ad are parameters. We eed to draw coclusios (make ifereces) about the ukow parameters. We

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Rank tests and regression rank scores tests in measurement error models

Rank tests and regression rank scores tests in measurement error models Rak tests ad regressio rak scores tests i measuremet error models J. Jurečková ad A.K.Md.E. Saleh Charles Uiversity i Prague ad Carleto Uiversity i Ottawa Abstract The rak ad regressio rak score tests

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts Basics of Iferece Lecture 21: Sta230 / Mth230 Coli Rudel Aril 16, 2014 U util this oit i the class you have almost exclusively bee reseted with roblems where we are usig a robability model where the model

More information

Chapter 5. Estimation Theory and Applications. References:

Chapter 5. Estimation Theory and Applications. References: Chapter 5 stimatio heory ad pplicatios Refereces: S.M.Kay, Fudametals of Statistical Sigal Processig: stimatio heory, Pretice all, 993 stimatio heory ad pplicatios pplicatio reas. Radar Radar system trasmits

More information

SOLUTION FOR HOMEWORK 7, STAT np(1 p) (α + β + n) + ( np + α

SOLUTION FOR HOMEWORK 7, STAT np(1 p) (α + β + n) + ( np + α SOLUTION FOR HOMEWORK 7, STAT 6331 1 Exerc733 Here we just recall that MSE(ˆp B ) = p(1 p) (α + β + ) + ( p + α 2 α + β + p) 2 The you plug i α = β = (/4) 1/2 After simplificatios MSE(ˆp B ) = 4( 1/2 +

More information

Output Analysis and Run-Length Control

Output Analysis and Run-Length Control IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

More information

Homework for 2/3. 1. Determine the values of the following quantities: a. t 0.1,15 b. t 0.05,15 c. t 0.1,25 d. t 0.05,40 e. t 0.

Homework for 2/3. 1. Determine the values of the following quantities: a. t 0.1,15 b. t 0.05,15 c. t 0.1,25 d. t 0.05,40 e. t 0. Name: ID: Homework for /3. Determie the values of the followig quatities: a. t 0.5 b. t 0.055 c. t 0.5 d. t 0.0540 e. t 0.00540 f. χ 0.0 g. χ 0.0 h. χ 0.00 i. χ 0.0050 j. χ 0.990 a. t 0.5.34 b. t 0.055.753

More information

Probability and Statistics

Probability and Statistics ICME Refresher Course: robability ad Statistics Staford Uiversity robability ad Statistics Luyag Che September 20, 2016 1 Basic robability Theory 11 robability Spaces A probability space is a triple (Ω,

More information

Random Signals and Noise Winter Semester 2017 Problem Set 12 Wiener Filter Continuation

Random Signals and Noise Winter Semester 2017 Problem Set 12 Wiener Filter Continuation Radom Sigals ad Noise Witer Semester 7 Problem Set Wieer Filter Cotiuatio Problem (Sprig, Exam A) Give is the sigal W t, which is a Gaussia white oise with expectatio zero ad power spectral desity fuctio

More information

Lecture 16: UMVUE: conditioning on sufficient and complete statistics

Lecture 16: UMVUE: conditioning on sufficient and complete statistics Lecture 16: UMVUE: coditioig o sufficiet ad complete statistics The 2d method of derivig a UMVUE whe a sufficiet ad complete statistic is available Fid a ubiased estimator of ϑ, say U(X. Coditioig o a

More information

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED MATH 47 / SPRING 013 ASSIGNMENT : DUE FEBRUARY 4 FINALIZED Please iclude a cover sheet that provides a complete setece aswer to each the followig three questios: (a) I your opiio, what were the mai ideas

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

x = Pr ( X (n) βx ) =

x = Pr ( X (n) βx ) = Exercise 93 / page 45 The desity of a variable X i i 1 is fx α α a For α kow let say equal to α α > fx α α x α Pr X i x < x < Usig a Pivotal Quatity: x α 1 < x < α > x α 1 ad We solve i a similar way as

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

Time series models 2007

Time series models 2007 Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Solutios to problem sheet 1, 2007 Exercise 1.1 a Let Sc = E[Y c 2 ]. The This gives Sc = EY 2 2cEY + c 2 ds dc = 2EY + 2c = 0

More information

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can.

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can. Mathematics H104 A. Ogus Fall, 004 Fial Solutios 1. (5ts) Defie the followig terms. Be as recise as you ca. (a) (3ts) A ucoutable set. A ucoutable set is a set which ca ot be ut ito bijectio with a fiite

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis Lecture 10: Factor Aalysis ad Pricipal Compoet Aalysis Sam Roweis February 9, 2004 Whe we assume that the subspace is liear ad that the uderlyig latet variable has a Gaussia distributio we get a model

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Songklanakarin Journal of Science and Technology SJST R1 Teerapabolarn

Songklanakarin Journal of Science and Technology SJST R1 Teerapabolarn Soglaaari Joural of Sciece ad Techology SJST--.R Teeraabolar A No-uiform Boud o Biomial Aroimatio to the Beta Biomial Cumulative Distributio Fuctio Joural: Soglaaari Joural of Sciece ad Techology For Review

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information