Random Signals and Noise Winter Semester 2017 Problem Set 12 Wiener Filter Continuation

Size: px
Start display at page:

Download "Random Signals and Noise Winter Semester 2017 Problem Set 12 Wiener Filter Continuation"

Transcription

1 Radom Sigals ad Noise Witer Semester 7 Problem Set Wieer Filter Cotiuatio Problem (Sprig, Exam A) Give is the sigal W t, which is a Gaussia white oise with expectatio zero ad power spectral desity fuctio S WW ht u t u t T, give i the figure: ht N W t is passed through the filter T t Let us deote by X t the output of the filter, amely: X t W t* ht a Fid the expectatio of the process X t b Fid the autocorrelatio fuctio of X t, c Draw RXX XX R We would like to predict the future of the process from observig its mometary value a For X t X t from, fid the optimal MMSE estimator of b What is the achieved mea squared error? 3 Now, we would like to predict the future of the process from observig its mometary value ad a additioal value from the past a For, D, fid the optimal MMSE estimator of pair of samples X t, X t D X t from the b Are there values of D for which the estimators from sectio ad 3 are idetical? If so, what are they? Explai your aswer

2 A bright egieer foud the optimal estimator of X t from all the samples from the past together: X t t t 4 For what values of is this estimator: a idetical to the estimator from sectio? Explai! b idetical to the estimator from sectio 3? Explai! There is o eed to fid the estimator Problem : Two JWSS radom processes, autocorrelatio ad cross-correlatio fuctios N, R N, R N, N spectrums S S, S, respectively N, N N, N N t N t are give, each with expectatio zero, R ad Fid the optimal liear estimator that uses all the sample sigal N t : Write dow the optimal Nˆ t ht t N t H dt Now, it is give that N t V t g t N t V t g t, where process with expectatio zero ad spectrum: S V a The frequecy resposes of the filters are give by: G, G Explai why ideed N t Nt calculate S S, S N, N N, N V t is a WSS, are JWSS with expectatio zero ad 3 Calculate the estimator you foud i sectio ad its mea squared error 4 For what values of the parameters, is the estimatio error zero? Prove mathematically ad explai ituitively 5 For what values of the parameters, is the estimatio error maximal? What is the estimator i this case ad what is the estimatio error?

3 Problem 3: Give is a discrete-time WSS Gaussia radom process, X, with expectatio X ad autocorrelatio fuctio RX k Let us assume the sigal Y X Z is give, where ad idepedet of Z is Gaussia white oise with expectatio zero, PSD S e X What is the optimal MMSE estimator of X from Y? What is the optimal MMSE estimator of X from Y? Z Z Problem 4: Give is a discrete-time WSS radom process SX e, show i the figure, ad it is give that oise with PSD N, idepedet of X SX e X with expectatio zero ad PSD Y X Z, where Z is white A Calculate RX k Calculate the optimal liear estimator of X from Y, ad the mea squared error, as a fuctio of the delay Fid the value of for which the error is miimal ad explai the behavior of the error as a fuctio of 3 Calculate the mea squared error of the optimal liear estimator of X from Y, Y 5 4 Fid the optimal filter for estimatig X from Y squared error ad calculate its mea 5 Compare the errors of the estimators from sectios,3,4

4 Problem 5: Two idepedet WSS Gaussia radom processes X[ ], Z[ ], are give The two processes have zero expectatio ad the followig Power Spectral Desities:, Z, SX e S e We are iterested i calculatig X [ ] out of Y[ ] X[ ] Z[ ] Are X [ ] ad Y [] JWSS? Calculate the optimal MMSE estimator of the process X [ ] from the process Y [] 3 What is the mea squared error (MSE) of the estimator from sectio? We defie the processes ' [ ] Y X [ ] Z [ ] '' ad Y 4 Are X [ ] ad Y '' [ ] JWSS? ' [ ] Y [ ] 5 What is the optimal estimator (ot ecessarily LTI) of the process X [ ] from the process 6 Are X [ ] ad Y '' [ ]? Y ' [ ] JWSS? 7 What is the optimal estimator (ot ecessarily LTI) of the process X [ ] from the process Y ' [ ]? Problem 6: Give are three idepedet radom processes Xt, () N () t ad N () t The three processes are statioary, with expectatio zero ad spectrums S X, S ad S, respectively Also a RV P is give, idepedet of the three processes Xt, () N () t ad N () t, with the followig distributio: w p p P p w p p where p is costat

5 N t Y t P X t N t X t P Y t P X t N t N t Show that the three processes Xt, () Y() t ad Y () t are JWSS i pairs (meaig that each pair of them is JWSS) ˆX t, which is the optimal liear MMSE estimator of the process Calculate Xt () from the process Y() t 3 Calculate ˆX t, which is the optimal liear MMSE estimator of the process Xt () from the process Y () t We ow defie a ew estimator ( t) X ( t) Xˆ ( t) Xˆ ( t) Xˆ ( t) Xˆ t ad the estimatio error 4 Show that the cross-correlatio betwee () t ad ay oe of the two processes Y() t, Y () t is zero 5 Deduce that X ˆ () t is the optimal liear estimator of the process Xtfrom () both processes t Y t Y t t,

6 Wieer Process Problem 7: (based o a questio from a exam) t X is Wieer radom process with parameter Let us defie costat times t,t, ad assume t t We will ow defie the radom variable (for a real costat c): Y X t c X t Fid a costat c such that Y will be idepedet of the sample X t Let us ow cosider two more samples of the process: X t X 3, t that: t t t t3 Based o the costat c foud i sectio : a Is Y idepedet of X t 3? b Is Y idepedet of X t?, such Problem 8: W t is Wieer radom process with parameter We defie its sig process t sigw t Y Calculate Yt expectatio ad autocorrelatio fuctios Express your aswer usig Q-fuctio Q e Prove that R t, t t, t Y 3 Prove that t, t lim R Y t x dx

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.34 Discrete Time Sigal Processig Fall 24 BACKGROUND EXAM September 3, 24. Full Name: Note: This exam is closed

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS AAEC/ECON 5126 FINAL EXAM: SOLUTIONS SPRING 2015 / INSTRUCTOR: KLAUS MOELTNER This exam is ope-book, ope-otes, but please work strictly o your ow. Please make sure your ame is o every sheet you re hadig

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Question1 Multiple choices (circle the most appropriate one):

Question1 Multiple choices (circle the most appropriate one): Philadelphia Uiversity Studet Name: Faculty of Egieerig Studet Number: Dept. of Computer Egieerig Fial Exam, First Semester: 2014/2015 Course Title: Digital Sigal Aalysis ad Processig Date: 01/02/2015

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Chapter 10 Advanced Topics in Random Processes

Chapter 10 Advanced Topics in Random Processes ery Stark ad Joh W. Woods, Probability, Statistics, ad Radom Variables for Egieers, 4th ed., Pearso Educatio Ic.,. ISBN 978--3-33-6 Chapter Advaced opics i Radom Processes Sectios. Mea-Square (m.s.) Calculus

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

ECE534, Spring 2018: Final Exam

ECE534, Spring 2018: Final Exam ECE534, Srig 2018: Fial Exam Problem 1 Let X N (0, 1) ad Y N (0, 1) be ideedet radom variables. variables V = X + Y ad W = X 2Y. Defie the radom (a) Are V, W joitly Gaussia? Justify your aswer. (b) Comute

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 6 9/23/203 Browia motio. Itroductio Cotet.. A heuristic costructio of a Browia motio from a radom walk. 2. Defiitio ad basic properties

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Ch3 Discrete Time Fourier Transform

Ch3 Discrete Time Fourier Transform Ch3 Discrete Time Fourier Trasform 3. Show that the DTFT of [] is give by ( k). e k 3. Determie the DTFT of the two sided sigal y [ ],. 3.3 Determie the DTFT of the causal sequece x[ ] A cos( 0 ) [ ],

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data.

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data. 17 3. OLS Part III I this sectio we derive some fiite-sample properties of the OLS estimator. 3.1 The Samplig Distributio of the OLS Estimator y = Xβ + ε ; ε ~ N[0, σ 2 I ] b = (X X) 1 X y = f(y) ε is

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2017

SCORE. Exam 2. MA 114 Exam 2 Fall 2017 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

Created by T. Madas SERIES. Created by T. Madas

Created by T. Madas SERIES. Created by T. Madas SERIES SUMMATIONS BY STANDARD RESULTS Questio (**) Use stadard results o summatios to fid the value of 48 ( r )( 3r ). 36 FP-B, 66638 Questio (**+) Fid, i fully simplified factorized form, a expressio

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Lecture 6 Ecient estimators. Rao-Cramer bound.

Lecture 6 Ecient estimators. Rao-Cramer bound. Lecture 6 Eciet estimators. Rao-Cramer boud. 1 MSE ad Suciecy Let X (X 1,..., X) be a radom sample from distributio f θ. Let θ ˆ δ(x) be a estimator of θ. Let T (X) be a suciet statistic for θ. As we have

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise) Lecture 22: Review for Exam 2 Basic Model Assumptios (without Gaussia Noise) We model oe cotiuous respose variable Y, as a liear fuctio of p umerical predictors, plus oise: Y = β 0 + β X +... β p X p +

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

Solution of Linear Constant-Coefficient Difference Equations

Solution of Linear Constant-Coefficient Difference Equations ECE 38-9 Solutio of Liear Costat-Coefficiet Differece Equatios Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa Solutio of Liear Costat-Coefficiet Differece Equatios Example: Determie

More information

Probability and Statistics Estimation Chapter 7 Section 3 Estimating p in the Binomial Distribution

Probability and Statistics Estimation Chapter 7 Section 3 Estimating p in the Binomial Distribution Probability ad Statistics Estimatio Chapter 7 Sectio 3 Estimatig p i the Biomial Distributio Essetial Questio: How are cofidece itervals used to determie the rage for the value of p? Studet Objectives:

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Additional Notes on Power Series

Additional Notes on Power Series Additioal Notes o Power Series Mauela Girotti MATH 37-0 Advaced Calculus of oe variable Cotets Quick recall 2 Abel s Theorem 2 3 Differetiatio ad Itegratio of Power series 4 Quick recall We recall here

More information

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

PH 411/511 ECE B(k) Sin k (x) dk (1)

PH 411/511 ECE B(k) Sin k (x) dk (1) Fall-26 PH 4/5 ECE 598 A. La Rosa Homework-2 Due -3-26 The Homework is iteded to gai a uderstadig o the Heiseberg priciple, based o a compariso betwee the width of a pulse ad the width of its spectral

More information

Lecture 23: Minimal sufficiency

Lecture 23: Minimal sufficiency Lecture 23: Miimal sufficiecy Maximal reductio without loss of iformatio There are may sufficiet statistics for a give problem. I fact, X (the whole data set) is sufficiet. If T is a sufficiet statistic

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220 ECE 564/645 - Digital Commuicatio Systems (Sprig 014) Fial Exam Friday, May d, 8:00-10:00am, Marsto 0 Overview The exam cosists of four (or five) problems for 100 (or 10) poits. The poits for each part

More information

TAMS24: Notations and Formulas

TAMS24: Notations and Formulas TAMS4: Notatios ad Formulas Basic otatios ad defiitios X: radom variable stokastiska variabel Mea Vätevärde: µ = X = by Xiagfeg Yag kpx k, if X is discrete, xf Xxdx, if X is cotiuous Variace Varias: =

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

DISTRIBUTION LAW Okunev I.V.

DISTRIBUTION LAW Okunev I.V. 1 DISTRIBUTION LAW Okuev I.V. Distributio law belogs to a umber of the most complicated theoretical laws of mathematics. But it is also a very importat practical law. Nothig ca help uderstad complicated

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

Chapter 2. Simulation Techniques. References:

Chapter 2. Simulation Techniques. References: Simulatio Techiques Refereces: Chapter 2 S.M.Kay, Fudametals of Statistical Sigal Processig: Estimatio Theory, Pretice Hall, 993 C.L.Nikias ad M.Shao, Sigal Processig with Alpha-Stable Distributio ad Applicatios,

More information

Carleton College, Winter 2017 Math 121, Practice Final Prof. Jones. Note: the exam will have a section of true-false questions, like the one below.

Carleton College, Winter 2017 Math 121, Practice Final Prof. Jones. Note: the exam will have a section of true-false questions, like the one below. Carleto College, Witer 207 Math 2, Practice Fial Prof. Joes Note: the exam will have a sectio of true-false questios, like the oe below.. True or False. Briefly explai your aswer. A icorrectly justified

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes. Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (

More information

Test of Statistics - Prof. M. Romanazzi

Test of Statistics - Prof. M. Romanazzi 1 Uiversità di Veezia - Corso di Laurea Ecoomics & Maagemet Test of Statistics - Prof. M. Romaazzi 19 Jauary, 2011 Full Name Matricola Total (omial) score: 30/30 (2 scores for each questio). Pass score:

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

CS/ECE 715 Spring 2004 Homework 5 (Due date: March 16)

CS/ECE 715 Spring 2004 Homework 5 (Due date: March 16) CS/ECE 75 Sprig 004 Homework 5 (Due date: March 6) Problem 0 (For fu). M/G/ Queue with Radom-Sized Batch Arrivals. Cosider the M/G/ system with the differece that customers are arrivig i batches accordig

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence. Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

More information

6.041/6.431 Spring 2009 Final Exam Thursday, May 21, 1:30-4:30 PM.

6.041/6.431 Spring 2009 Final Exam Thursday, May 21, 1:30-4:30 PM. 6.041/6.431 Sprig 2009 Fial Exam Thursday, May 21, 1:30-4:30 PM. Name: Recitatio Istructor: Questio Part Score Out of 0 2 1 all 18 2 all 24 3 a 4 b 4 c 4 4 a 6 b 6 c 6 5 a 6 b 6 6 a 4 b 4 c 4 d 5 e 5 7

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

Machine Learning Assignment-1

Machine Learning Assignment-1 Uiversity of Utah, School Of Computig Machie Learig Assigmet-1 Chadramouli, Shridhara sdhara@cs.utah.edu 00873255) Sigla, Sumedha sumedha.sigla@utah.edu 00877456) September 10, 2013 1 Liear Regressio a)

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

EE Midterm Test 1 - Solutions

EE Midterm Test 1 - Solutions EE35 - Midterm Test - Solutios Total Poits: 5+ 6 Bous Poits Time: hour. ( poits) Cosider the parallel itercoectio of the two causal systems, System ad System 2, show below. System x[] + y[] System 2 The

More information

Math 128A: Homework 1 Solutions

Math 128A: Homework 1 Solutions Math 8A: Homework Solutios Due: Jue. Determie the limits of the followig sequeces as. a) a = +. lim a + = lim =. b) a = + ). c) a = si4 +6) +. lim a = lim = lim + ) [ + ) ] = [ e ] = e 6. Observe that

More information

1the 1it is said to be overdamped. When 1, the roots of

1the 1it is said to be overdamped. When 1, the roots of Homework 3 AERE573 Fall 08 Due 0/8(M) ame PROBLEM (40pts) Cosider a D order uderdamped system trasfer fuctio H( s) s ratio 0 The deomiator is the system characteristic polyomial P( s) s s (a)(5pts) Use

More information

Probability and Statistics

Probability and Statistics Probability ad Statistics Cotets. Multi-dimesioal Gaussia radom variable. Gaussia radom process 3. Wieer process Why we eed to discuss Gaussia Process The most commo Accordig to the cetral limit theorem,

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Statistics for Applications Fall Problem Set 7

Statistics for Applications Fall Problem Set 7 18.650. Statistics for Applicatios Fall 016. Proble Set 7 Due Friday, Oct. 8 at 1 oo Proble 1 QQ-plots Recall that the Laplace distributio with paraeter λ > 0 is the cotiuous probaλ bility easure with

More information

University of California, Los Angeles Department of Statistics. Practice problems - simple regression 2 - solutions

University of California, Los Angeles Department of Statistics. Practice problems - simple regression 2 - solutions Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 00C Istructor: Nicolas Christou EXERCISE Aswer the followig questios: Practice problems - simple regressio - solutios a Suppose y,

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information