Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization

Size: px
Start display at page:

Download "Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization"

Transcription

1 Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization John Duchi

2 Outline I Motivation 1 Uniform laws of large numbers 2 Loss minimization and data dependence II Uniform laws of large numbers III Bounded di erences 1 Martingales 2 Martingale concentration 3 Functions with bounded di erences IV Rademacher complexities 1 Bounded di erences in loss minimization 2 Symmetrization 3 Rademacher complexity V Examples 1 Binary classification 2 Multiclass classification

3 Standard recipe In machine learning problem (say of predicting y 2Y from x 2X) 1 Choose data representation for x and parameter space (said di erently, hypothesis class H) 2 Choose loss function ` 3 Given sample (X 1,Y 1 ),...,(X n,y n ),minimize 1 n nx `( ;(X i,y i )). i=1 What is actual goal? Minimize risk/expected loss L( ) :=E[`( ;(X, Y ))] or L(h) :=E[`(h;(X, Y ))]

4 Does ML work? Fixed : b n 2 argmin 2 bl n ( ) where b L n ( ) := 1 n bl n ( )! L( ) nx `( ;(X i,y i )) i=1 But b n depends on data. Example: Failure when X i iid N(0,Id ), Y i? X i, =R d

5 Does ML work? Definition (Uniform law of large numbers) sup 2 bl n ( ) L( ) p! 0 More generally, a collection of functions F, f : X!R, satisfies ULLN if 1 nx p f(x i ) E[f(X)]! 0. n sup f2f i=1 Consequence for risk minimization

6 One picture of ULLNs Covering idea (come back later)

7 Bounded di erences and martingales Definition (Martingales) Let X 1,X 2,... be random vectors and Z 1,Z 2,... be a sequence of random variables. Then {X n } is a martingale sequence adapted to {Z n } if i X i is a function of Z 1,Z 2,...,Z i ii E[X i Z 1,...,Z i 1 ]=X i 1. Example: independent sums

8 Concentration of martingales Definition (Martingale di erences) Let {X i } be a martingale adapted to {Z i } and define D i = X i X i 1.Then{D i } is a martingale di erence sequence Example: independent sums Definition (Sub-gaussian martingale) D i is a 2 -sub-gaussian martingale di erence if E[e D i Z 1:i 1 ] apple e for all 2 R

9 Azuma-Hoe ding inequality If D i is a 2 -sub-gaussian martingale di erence sequence, for t 0! nx t 2 P D i t apple exp 2n 2 i=1! nx t 2 P D i apple t apple exp 2n 2 i=1

10 Doob martingales Let X 1,...,X n 2X be a sequence of independent random variables and f : X n! R. TheDoob martingale di erence is D i := E[f(X 1:n ) X 1:i ] E[f(X 1:n ) X 1:i 1 ] Remark: look at expectations and sums

11 Concentration of functions with bounded di erences A function f : X n! R has bounded di erences if f(x 1:i 1,x i,x i+1:n ) f(x 1:i 1,x 0 i,x i+1:n ) apple c i for all i and x, x 0 Theorem (McDiarmid s or bounded-di erences inequality) Let f satisfy bounded di erences and X i be independent RVs. Then! 2t 2 P ( f(x 1:n ) E[f(X 1:n )] t) apple exp kck 2 2

12 Proof of McDiarmid s inequality

13 Bounded di erences in risk minimization Let ` : X![a, b]. Then sup 2 bl n ( ) L( ) =sup 2 1 n nx `( ; X i ) i=1 L( ) satisfies bounded di erences

14 From probability to expectation Corollary Let ` : X!R take values in [a, b]. Then apple P sup 2 bl n ( ) L( ) E sup 2 bl n ( ) L( ) + t apple exp 2nt 2 (b a) 2

15 Symmetrization Proposition (Symmetrization inequality) Let F be a collection of f : X!Rand X 1,...,X n be independent. Then " # " nx nx E (f(x i ) E[f(X i )]) apple 2E " i f(x i ) sup f2f i=1 sup f2f i=1 # where " i 2 { 1, 1} are i.i.d. random signs

16 Rademacher complexity Let x 1,...,x n 2X be arbitrary and F a collection of f : X!R. The empirical Rademacher complexity of F on x 1:n is " # nx br n (F) :=E " i f(x i ) sup f2f where " i 2 { 1, 1} are i.i.d. random signs. The Rademacher complexity of F is h i R n (F) :=E brn (F) i=1 where expectation is over X 1,...,X n

17 Rademacher complexity and losses Theorem (Concentration and Rademacher complexity) Let F := {`(, ) 2 } (viewed as functions on X )and `(, x) 2 [a, b]. Then P 9 2 s.t. Ln b ( ) L( ) 2R n (F)+t apple exp 2nt 2 (b a) 2

18 Rademacher complexity of norm balls (`2)

19 Rademacher complexity of norm balls (`1)

20 Properties of Rademacher complexity (1) Containment: if F Hthen b R n (F) apple b R n (H) (2) Convex hulls: b Rn (F) = b R n (Conv(F)) = b R n (absconv(f)) (3) Single functions: b Rn ({f}) apple 1 p n kfk L 2 (P n ) (4) Sums of function classes: br n (F 1 + F F k ) apple P k i=1 b R n (F i ) (5) Contraction [Ledoux & Talagrand, Thm. 4.12]: if : R! R is L -Lipschitz and (0) = 0, then br n ( F) apple 2L b R n (F)

21 Example: margin-based classification Setting: Data (X, Y ) 2 R d { 1, 1} where `( ;(x, y)) = (y T x) for : R! R, non-increasing

22 Margin-based classification and generalization Theorem Assume that is c -Lipschitz, that kxk 2 apple b X and k k 2 apple b. Then with probability at least 1,forall 2 " r # L( ) apple L b L b X b n ( )+O(1) p log 1 + p (0). n n

23 Proof of margin-based classifiers

24 Multiclass classification Consider k-class classification problem, = 1 2 k 2 R d k Let margin s = T x 2 R k, loss : R k! R of form for some labeling matrix y `( ; x, y) = ( y s)= ( y T x)

25 Multiclass margin-based losses 1. Multiclass logistic 2. Multiclass hinge/svm

26 Additional comments

27 Reading and bibliography 1. M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3: , S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of some recent advances. ESAIM: Probability and Statistics, 9: , S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: a Nonasymptotic Theory of Independence. Oxford University Press, 2013

Concentration inequalities and tail bounds

Concentration inequalities and tail bounds Concentration inequalities and tail bounds John Duchi Outline I Basics and motivation 1 Law of large numbers 2 Markov inequality 3 Cherno bounds II Sub-Gaussian random variables 1 Definitions 2 Examples

More information

Fast Rates for Estimation Error and Oracle Inequalities for Model Selection

Fast Rates for Estimation Error and Oracle Inequalities for Model Selection Fast Rates for Estimation Error and Oracle Inequalities for Model Selection Peter L. Bartlett Computer Science Division and Department of Statistics University of California, Berkeley bartlett@cs.berkeley.edu

More information

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh Generalization Bounds in Machine Learning Presented by: Afshin Rostamizadeh Outline Introduction to generalization bounds. Examples: VC-bounds Covering Number bounds Rademacher bounds Stability bounds

More information

Concentration, self-bounding functions

Concentration, self-bounding functions Concentration, self-bounding functions S. Boucheron 1 and G. Lugosi 2 and P. Massart 3 1 Laboratoire de Probabilités et Modèles Aléatoires Université Paris-Diderot 2 Economics University Pompeu Fabra 3

More information

Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence

Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence Chao Zhang The Biodesign Institute Arizona State University Tempe, AZ 8587, USA Abstract In this paper, we present

More information

Time Series Prediction & Online Learning

Time Series Prediction & Online Learning Time Series Prediction & Online Learning Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values. earthquakes.

More information

Concentration inequalities and the entropy method

Concentration inequalities and the entropy method Concentration inequalities and the entropy method Gábor Lugosi ICREA and Pompeu Fabra University Barcelona what is concentration? We are interested in bounding random fluctuations of functions of many

More information

Stochastic Optimization

Stochastic Optimization Introduction Related Work SGD Epoch-GD LM A DA NANJING UNIVERSITY Lijun Zhang Nanjing University, China May 26, 2017 Introduction Related Work SGD Epoch-GD Outline 1 Introduction 2 Related Work 3 Stochastic

More information

Foundations of Machine Learning

Foundations of Machine Learning Introduction to ML Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu page 1 Logistics Prerequisites: basics in linear algebra, probability, and analysis of algorithms. Workload: about

More information

Outline. Martingales. Piotr Wojciechowski 1. 1 Lane Department of Computer Science and Electrical Engineering West Virginia University.

Outline. Martingales. Piotr Wojciechowski 1. 1 Lane Department of Computer Science and Electrical Engineering West Virginia University. Outline Piotr 1 1 Lane Department of Computer Science and Electrical Engineering West Virginia University 8 April, 01 Outline Outline 1 Tail Inequalities Outline Outline 1 Tail Inequalities General Outline

More information

OXPORD UNIVERSITY PRESS

OXPORD UNIVERSITY PRESS Concentration Inequalities A Nonasymptotic Theory of Independence STEPHANE BOUCHERON GABOR LUGOSI PASCAL MASS ART OXPORD UNIVERSITY PRESS CONTENTS 1 Introduction 1 1.1 Sums of Independent Random Variables

More information

Rademacher Complexity Bounds for Non-I.I.D. Processes

Rademacher Complexity Bounds for Non-I.I.D. Processes Rademacher Complexity Bounds for Non-I.I.D. Processes Mehryar Mohri Courant Institute of Mathematical ciences and Google Research 5 Mercer treet New York, NY 00 mohri@cims.nyu.edu Afshin Rostamizadeh Department

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

IEOR 265 Lecture 3 Sparse Linear Regression

IEOR 265 Lecture 3 Sparse Linear Regression IOR 65 Lecture 3 Sparse Linear Regression 1 M Bound Recall from last lecture that the reason we are interested in complexity measures of sets is because of the following result, which is known as the M

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

Generalization error bounds for classifiers trained with interdependent data

Generalization error bounds for classifiers trained with interdependent data Generalization error bounds for classifiers trained with interdependent data icolas Usunier, Massih-Reza Amini, Patrick Gallinari Department of Computer Science, University of Paris VI 8, rue du Capitaine

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU10701 11. Learning Theory Barnabás Póczos Learning Theory We have explored many ways of learning from data But How good is our classifier, really? How much data do we

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Adaptive Sampling Under Low Noise Conditions 1

Adaptive Sampling Under Low Noise Conditions 1 Manuscrit auteur, publié dans "41èmes Journées de Statistique, SFdS, Bordeaux (2009)" Adaptive Sampling Under Low Noise Conditions 1 Nicolò Cesa-Bianchi Dipartimento di Scienze dell Informazione Università

More information

AN INEQUALITY FOR TAIL PROBABILITIES OF MARTINGALES WITH BOUNDED DIFFERENCES

AN INEQUALITY FOR TAIL PROBABILITIES OF MARTINGALES WITH BOUNDED DIFFERENCES Lithuanian Mathematical Journal, Vol. 4, No. 3, 00 AN INEQUALITY FOR TAIL PROBABILITIES OF MARTINGALES WITH BOUNDED DIFFERENCES V. Bentkus Vilnius Institute of Mathematics and Informatics, Akademijos 4,

More information

Generalization bounds

Generalization bounds Advanced Course in Machine Learning pring 200 Generalization bounds Handouts are jointly prepared by hie Mannor and hai halev-hwartz he problem of characterizing learnability is the most basic question

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms 南京大学 尹一通 Martingales Definition: A sequence of random variables X 0, X 1,... is a martingale if for all i > 0, E[X i X 0,...,X i1 ] = X i1 x 0, x 1,...,x i1, E[X i X 0 = x 0, X 1

More information

Rademacher Bounds for Non-i.i.d. Processes

Rademacher Bounds for Non-i.i.d. Processes Rademacher Bounds for Non-i.i.d. Processes Afshin Rostamizadeh Joint work with: Mehryar Mohri Background Background Generalization Bounds - How well can we estimate an algorithm s true performance based

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Hamming Cube and Other Stuff

Hamming Cube and Other Stuff Hamming Cube and Other Stuff Sabrina Sixta Tuesday, May 27, 2014 Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, 2014 1 / 12 Table of Contents Outline 1 Definition of a Hamming cube 2 Properties

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Some Statistical Properties of Deep Networks

Some Statistical Properties of Deep Networks Some Statistical Properties of Deep Networks Peter Bartlett UC Berkeley August 2, 2018 1 / 22 Deep Networks Deep compositions of nonlinear functions h = h m h m 1 h 1 2 / 22 Deep Networks Deep compositions

More information

STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION

STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION Tong Zhang The Annals of Statistics, 2004 Outline Motivation Approximation error under convex risk minimization

More information

Entropy and Ergodic Theory Lecture 15: A first look at concentration

Entropy and Ergodic Theory Lecture 15: A first look at concentration Entropy and Ergodic Theory Lecture 15: A first look at concentration 1 Introduction to concentration Let X 1, X 2,... be i.i.d. R-valued RVs with common distribution µ, and suppose for simplicity that

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Learning Weighted Automata

Learning Weighted Automata Learning Weighted Automata Joint work with Borja Balle (Amazon Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Weighted Automata (WFAs) page 2 Motivation Weighted automata (WFAs): image

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 12: Weak Learnability and the l 1 margin Converse to Scale-Sensitive Learning Stability Convex-Lipschitz-Bounded Problems

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory Problem set 1 Due: Monday, October 10th Please send your solutions to learning-submissions@ttic.edu Notation: Input space: X Label space: Y = {±1} Sample:

More information

A Simple Algorithm for Learning Stable Machines

A Simple Algorithm for Learning Stable Machines A Simple Algorithm for Learning Stable Machines Savina Andonova and Andre Elisseeff and Theodoros Evgeniou and Massimiliano ontil Abstract. We present an algorithm for learning stable machines which is

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

A Large Deviation Bound for the Area Under the ROC Curve

A Large Deviation Bound for the Area Under the ROC Curve A Large Deviation Bound for the Area Under the ROC Curve Shivani Agarwal, Thore Graepel, Ralf Herbrich and Dan Roth Dept. of Computer Science University of Illinois Urbana, IL 680, USA {sagarwal,danr}@cs.uiuc.edu

More information

Classification Logistic Regression

Classification Logistic Regression Classification Logistic Regression Machine Learning CSE546 Kevin Jamieson University of Washington October 16, 2016 1 THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS 2 Weather prediction

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Does Unlabeled Data Help?

Does Unlabeled Data Help? Does Unlabeled Data Help? Worst-case Analysis of the Sample Complexity of Semi-supervised Learning. Ben-David, Lu and Pal; COLT, 2008. Presentation by Ashish Rastogi Courant Machine Learning Seminar. Outline

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability 2002-2003 Week 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary

More information

Convex optimization COMS 4771

Convex optimization COMS 4771 Convex optimization COMS 4771 1. Recap: learning via optimization Soft-margin SVMs Soft-margin SVM optimization problem defined by training data: w R d λ 2 w 2 2 + 1 n n [ ] 1 y ix T i w. + 1 / 15 Soft-margin

More information

Computational Learning Theory - Hilary Term : Learning Real-valued Functions

Computational Learning Theory - Hilary Term : Learning Real-valued Functions Computational Learning Theory - Hilary Term 08 8 : Learning Real-valued Functions Lecturer: Varun Kanade So far our focus has been on learning boolean functions. Boolean functions are suitable for modelling

More information

Linear, Binary SVM Classifiers

Linear, Binary SVM Classifiers Linear, Binary SVM Classifiers COMPSCI 37D Machine Learning COMPSCI 37D Machine Learning Linear, Binary SVM Classifiers / 6 Outline What Linear, Binary SVM Classifiers Do 2 Margin I 3 Loss and Regularized

More information

Online Learning: Random Averages, Combinatorial Parameters, and Learnability

Online Learning: Random Averages, Combinatorial Parameters, and Learnability Online Learning: Random Averages, Combinatorial Parameters, and Learnability Alexander Rakhlin Department of Statistics University of Pennsylvania Karthik Sridharan Toyota Technological Institute at Chicago

More information

Online Learning for Time Series Prediction

Online Learning for Time Series Prediction Online Learning for Time Series Prediction Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values.

More information

1 Examples and basic results

1 Examples and basic results We should start with administrative stu Instructor: Michael Damron mdamron at indiana dot edu 35 Rawles Hall 8-855-8670 grading based on attendance o ce hours: by appointment Text: Concentration inequalities:

More information

The Rademacher Cotype of Operators from l N

The Rademacher Cotype of Operators from l N The Rademacher Cotype of Operators from l N SJ Montgomery-Smith Department of Mathematics, University of Missouri, Columbia, MO 65 M Talagrand Department of Mathematics, The Ohio State University, 3 W

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

Synthesis of Maximum Margin and Multiview Learning using Unlabeled Data

Synthesis of Maximum Margin and Multiview Learning using Unlabeled Data Synthesis of Maximum Margin and Multiview Learning using Unlabeled Data Sandor Szedma 1 and John Shawe-Taylor 1 1 - Electronics and Computer Science, ISIS Group University of Southampton, SO17 1BJ, United

More information

0.1 Uniform integrability

0.1 Uniform integrability Copyright c 2009 by Karl Sigman 0.1 Uniform integrability Given a sequence of rvs {X n } for which it is known apriori that X n X, n, wp1. for some r.v. X, it is of great importance in many applications

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM

DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM Due: Monday, April 11, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

A Note on Extending Generalization Bounds for Binary Large-Margin Classifiers to Multiple Classes

A Note on Extending Generalization Bounds for Binary Large-Margin Classifiers to Multiple Classes A Note on Extending Generalization Bounds for Binary Large-Margin Classifiers to Multiple Classes Ürün Dogan 1 Tobias Glasmachers 2 and Christian Igel 3 1 Institut für Mathematik Universität Potsdam Germany

More information

Localized Complexities for Transductive Learning

Localized Complexities for Transductive Learning JMLR: Workshop and Conference Proceedings vol 35:1 28, 2014 Localized Complexities for Transductive Learning Ilya Tolstikhin Computing Centre of Russian Academy of Sciences, Russia Gilles Blanchard Department

More information

Introduction to Statistical Learning Theory

Introduction to Statistical Learning Theory Introduction to Statistical Learning Theory In the last unit we looked at regularization - adding a w 2 penalty. We add a bias - we prefer classifiers with low norm. How to incorporate more complicated

More information

Concentration inequalities: basics and some new challenges

Concentration inequalities: basics and some new challenges Concentration inequalities: basics and some new challenges M. Ledoux University of Toulouse, France & Institut Universitaire de France Measure concentration geometric functional analysis, probability theory,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Vapnik Chervonenkis Theory Barnabás Póczos Empirical Risk and True Risk 2 Empirical Risk Shorthand: True risk of f (deterministic): Bayes risk: Let us use the empirical

More information

Class 2 & 3 Overfitting & Regularization

Class 2 & 3 Overfitting & Regularization Class 2 & 3 Overfitting & Regularization Carlo Ciliberto Department of Computer Science, UCL October 18, 2017 Last Class The goal of Statistical Learning Theory is to find a good estimator f n : X Y, approximating

More information

AdaBoost. Lecturer: Authors: Center for Machine Perception Czech Technical University, Prague

AdaBoost. Lecturer: Authors: Center for Machine Perception Czech Technical University, Prague AdaBoost Lecturer: Jan Šochman Authors: Jan Šochman, Jiří Matas Center for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz Motivation Presentation 2/17 AdaBoost with trees

More information

Differential Privacy without Sensitivity

Differential Privacy without Sensitivity Differential Privacy without Sensitivity Kentaro Minami The University of Tokyo kentaro minami@mist.i.u-tokyo.ac.jp Hiromi Arai The University of Tokyo arai@dl.itc.u-tokyo.ac.jp Issei Sato The University

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Deep Boosting MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Model selection. Deep boosting. theory. algorithm. experiments. page 2 Model Selection Problem:

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it Statistics 300B Winter 08 Final Exam Due 4 Hours after receiving it Directions: This test is open book and open internet, but must be done without consulting other students. Any consultation of other students

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results

Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics

More information

The sample complexity of agnostic learning with deterministic labels

The sample complexity of agnostic learning with deterministic labels The sample complexity of agnostic learning with deterministic labels Shai Ben-David Cheriton School of Computer Science University of Waterloo Waterloo, ON, N2L 3G CANADA shai@uwaterloo.ca Ruth Urner College

More information

Statistical Properties of Large Margin Classifiers

Statistical Properties of Large Margin Classifiers Statistical Properties of Large Margin Classifiers Peter Bartlett Division of Computer Science and Department of Statistics UC Berkeley Joint work with Mike Jordan, Jon McAuliffe, Ambuj Tewari. slides

More information

On the Concentration of the Crest Factor for OFDM Signals

On the Concentration of the Crest Factor for OFDM Signals On the Concentration of the Crest Factor for OFDM Signals Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel The 2011 IEEE International Symposium

More information

LAWS OF LARGE NUMBERS AND TAIL INEQUALITIES FOR RANDOM TRIES AND PATRICIA TREES

LAWS OF LARGE NUMBERS AND TAIL INEQUALITIES FOR RANDOM TRIES AND PATRICIA TREES LAWS OF LARGE NUMBERS AND TAIL INEQUALITIES FOR RANDOM TRIES AND PATRICIA TREES Luc Devroye School of Computer Science McGill University Montreal, Canada H3A 2K6 luc@csmcgillca June 25, 2001 Abstract We

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

Perceptron Mistake Bounds

Perceptron Mistake Bounds Perceptron Mistake Bounds Mehryar Mohri, and Afshin Rostamizadeh Google Research Courant Institute of Mathematical Sciences Abstract. We present a brief survey of existing mistake bounds and introduce

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Sharp Generalization Error Bounds for Randomly-projected Classifiers

Sharp Generalization Error Bounds for Randomly-projected Classifiers Sharp Generalization Error Bounds for Randomly-projected Classifiers R.J. Durrant and A. Kabán School of Computer Science The University of Birmingham Birmingham B15 2TT, UK http://www.cs.bham.ac.uk/ axk

More information

Consistency of Nearest Neighbor Methods

Consistency of Nearest Neighbor Methods E0 370 Statistical Learning Theory Lecture 16 Oct 25, 2011 Consistency of Nearest Neighbor Methods Lecturer: Shivani Agarwal Scribe: Arun Rajkumar 1 Introduction In this lecture we return to the study

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1 Linear Regression Machine Learning CSE546 Kevin Jamieson University of Washington Oct 5, 2017 1 The regression problem Given past sales data on zillow.com, predict: y = House sale price from x = {# sq.

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

AdaBoost and other Large Margin Classifiers: Convexity in Classification

AdaBoost and other Large Margin Classifiers: Convexity in Classification AdaBoost and other Large Margin Classifiers: Convexity in Classification Peter Bartlett Division of Computer Science and Department of Statistics UC Berkeley Joint work with Mikhail Traskin. slides at

More information

FORMULATION OF THE LEARNING PROBLEM

FORMULATION OF THE LEARNING PROBLEM FORMULTION OF THE LERNING PROBLEM MIM RGINSKY Now that we have seen an informal statement of the learning problem, as well as acquired some technical tools in the form of concentration inequalities, we

More information

The definitions and notation are those introduced in the lectures slides. R Ex D [h

The definitions and notation are those introduced in the lectures slides. R Ex D [h Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 2 October 04, 2016 Due: October 18, 2016 A. Rademacher complexity The definitions and notation

More information

A Tight Excess Risk Bound via a Unified PAC-Bayesian- Rademacher-Shtarkov-MDL Complexity

A Tight Excess Risk Bound via a Unified PAC-Bayesian- Rademacher-Shtarkov-MDL Complexity A Tight Excess Risk Bound via a Unified PAC-Bayesian- Rademacher-Shtarkov-MDL Complexity Peter Grünwald Centrum Wiskunde & Informatica Amsterdam Mathematical Institute Leiden University Joint work with

More information

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses Information and Coding Theory Autumn 07 Lecturer: Madhur Tulsiani Lecture 9: October 5, 07 Lower bounds for minimax rates via multiple hypotheses In this lecture, we extend the ideas from the previous

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

On the Concentration of the Crest Factor for OFDM Signals

On the Concentration of the Crest Factor for OFDM Signals On the Concentration of the Crest Factor for OFDM Signals Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology, Haifa 3, Israel E-mail: sason@eetechnionacil Abstract

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Risk Minimization Barnabás Póczos What have we seen so far? Several classification & regression algorithms seem to work fine on training datasets: Linear

More information

Comments. x > w = w > x. Clarification: this course is about getting you to be able to think as a machine learning expert

Comments. x > w = w > x. Clarification: this course is about getting you to be able to think as a machine learning expert Logistic regression Comments Mini-review and feedback These are equivalent: x > w = w > x Clarification: this course is about getting you to be able to think as a machine learning expert There has to be

More information

Topics in Machine Learning (CS729) Instructor: Saketh

Topics in Machine Learning (CS729) Instructor: Saketh Topics in Machine Learning (CS729) Instructor: Saketh Contents Contents 1 1 Introduction 3 2 Supervised Inductive Learning 5 2.1 Statistical Learning Theory (for SIL case)............... 6 2.1.1 ERM Consistency

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song Presenter: Jiwei Zhao Department of Statistics University of Wisconsin Madison April

More information

1 Machine Learning Concepts (16 points)

1 Machine Learning Concepts (16 points) CSCI 567 Fall 2018 Midterm Exam DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO PLEASE TURN OFF ALL CELL PHONES Problem 1 2 3 4 5 6 Total Max 16 10 16 42 24 12 120 Points Please read the following instructions

More information

Infinitely Imbalanced Logistic Regression

Infinitely Imbalanced Logistic Regression p. 1/1 Infinitely Imbalanced Logistic Regression Art B. Owen Journal of Machine Learning Research, April 2007 Presenter: Ivo D. Shterev p. 2/1 Outline Motivation Introduction Numerical Examples Notation

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

Support Vector Machines for Classification and Regression

Support Vector Machines for Classification and Regression CIS 520: Machine Learning Oct 04, 207 Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information