Introduction to Machine Learning

Size: px
Start display at page:

Download "Introduction to Machine Learning"

Transcription

1 Introduction to Machine Learning Vapnik Chervonenkis Theory Barnabás Póczos

2 Empirical Risk and True Risk 2

3 Empirical Risk Shorthand: True risk of f (deterministic): Bayes risk: Let us use the empirical counter part: Empirical risk: 3

4 Empirical Risk Minimization Law of Large Numbers: Empirical risk is converging to the true risk 4

5 Overfitting in Classification with ERM Generative model: Bayes classifier: Bayes risk: Picture from David Pal 5

6 Overfitting in Classification with ERM n-order thresholded polynomials Empirical risk: Picture from David Pal Bayes risk: 6

7 Overfitting in Regression If we allow very complicated predictors, we could overfit the training data. Examples: Regression (Polynomial of order k-1 degree k ) constant 1.5 k=1 k=2 1 linear quadratic k=3 1.2 k= th order

8 Solutions to Overfitting 8

9 Solutions to Overfitting Structural Risk Minimization Notation: Goal: Risk Empirical risk (Model error, Approximation error) Solution: Structural Risk Minimzation (SRM) 9

10 Big Picture Ultimate goal: Estimation error Approximation error Bayes risk Bayes risk Estimation error Bayes risk Approximation error 10

11 Effect of Model Complexity If we allow very complicated predictors, we could overfit the training data. fixed # training data Prediction error on training data Empirical risk is no longer a good indicator of true risk 11

12 Classification using the 0-1 loss 12

13 The Bayes Classifier Lemma I: Lemma II: Proofs: Lemma I: Trivial from definition Lemma II: Surprisingly long calculation 13

14 The Bayes Classifier This is what the learning algorithm produces We will need these definitions, please copy it! 14

15 The Bayes Classifier Theorem I: Bound on the Estimation error This is what the learning algorithm produces The true risk of what the learning algorithm produces 15

16 Proof of Theorem 1 Theorem I: Bound on the Estimation error The true risk of what the learning algorithm produces Proof:

17 The Bayes Classifier Theorem II: This is what the learning algorithm produces Proof: Trivial 17

18 Corollary Corollary: Main message: It s enough to derive upper bounds for 18

19 Illustration of the Risks 19

20 It s enough to derive upper bounds for It is a random variable that we need to bound! We will bound it with tail bounds! 20

21 Hoeffding s inequality (1963) Special case 21

22 Binomial distributions Our goal is to bound Bernoulli(p) Therefore, from Hoeffding we have: Yuppie!!! 22

23 Inversion From Hoeffding we have: Therefore, 23

24 Union Bound Our goal is to bound: We already know: Theorem: [tail bound on the deviation in the worst case] Worst case error This is not the worst classifier in terms of classification accuracy! Worst case means that the empirical risk of classifier f is the furthest from its true risk! Proof: 24

25 Inversion of Union Bound We already know: Therefore, 25

26 Inversion of Union Bound The larger the N, the looser the bound This results is distribution free: True for all P(X,Y) distributions It is useless if N is big, or infinite (e.g. all possible hyperplanes) It can be fixed with McDiarmid inequality and VC dimension 26

27 Concentration and Expected Value n 27

28 The Expected Error Our goal is to bound: We already know: (Tail bound, Concentration inequality) Theorem: [Expected deviation in the worst case] Proof: we already know a tail bound. Worst case deviation This is not the worst classifier in terms of classification accuracy! Worst case means that the empirical risk of classifier f is the furthest from its true risk! (From that actually we get a bit weaker inequality oh well) 28

29 Function classes with infinite many elements

30 McDiarmid s Bounded Difference Inequality It follows that 30

31 Bounded Difference Condition Our main goal is to bound Lemma: Proof: Let g denote the following function: Observation: => McDiarmid can be applied for g! 31

32 Bounded Difference Condition Corollary: The Vapnik-Chervonenkis inequality does that with the shatter coefficient (and VC dimension)! 32

33 Vapnik-Chervonenkis inequality Our main goal is to bound We already know: Vapnik-Chervonenkis inequality: Corollary: Vapnik-Chervonenkis theorem: 33

34 Shattering 34

35 How many points can a linear boundary classify exactly in 1D? 2 pts 3 pts There exists placement s.t. all labelings can be classified - + -?? The answer is 2 35

36 How many points can a linear boundary classify exactly in 2D? pts 4 pts There exists a placement s.t. all labelings can be classified + -?? The answer is 3 No matter how we place 4 points, there is a labeling that cannot be classified 36

37 How many points can a linear boundary classify exactly in 3D? The answer is tetraeder How many points can a linear boundary classify exactly in d-dim? The answer is d+1 37

38 Growth function, Shatter coefficient Definition (=5 in this example) Growth function, Shatter coefficient maximum number of behaviors on n points 38

39 Growth function, Shatter coefficient Definition - + Growth function, Shatter coefficient + maximum number of behaviors on n points Example: Half spaces in 2D

40 # behaviors VC-dimension Definition Growth function, Shatter coefficient maximum number of behaviors on n points Definition: VC-dimension Definition: Shattering Note: 40

41 # behaviors VC-dimension Definition 41

42 VC-dimension - + (such that you want to maximize the # of different behaviors)

43 Examples 43

44 VC dim of decision stumps (axis aligned linear separator) in 2d What s the VC dim. of decision stumps in 2d? There is a placement of 3 pts that can be shattered => VC dim 3 44

45 VC dim of decision stumps (axis aligned linear separator) in 2d What s the VC dim. of decision stumps in 2d? If VC dim = 3, then for all placements of 4 pts, there exists a labeling that can t be shattered 3 collinear in convex hull of other 3 - quadrilateral => VC dim = 3 45

46 VC dim. of axis parallel rectangles in 2d What s the VC dim. of axis parallel rectangles in 2d? There is a placement of 3 pts that can be shattered => VC dim 3 46

47 VC dim. of axis parallel rectangles in 2d There is a placement of 4 pts that can be shattered ) VC dim 4 47

48 VC dim. of axis parallel rectangles in 2d What s the VC dim. of axis parallel rectangles in 2d? If VC dim = 4, then for all placements of 5 pts, there exists a labeling that can t be shattered 4 collinear pentagon in convex hull 1 in convex hull ) VC dim = 4 48

49 Sauer s Lemma We already know that [Exponential in n] Sauer s lemma: The VC dimension can be used to upper bound the shattering coefficient. Corollary: [Polynomial in n] 49

50 Vapnik-Chervonenkis inequality Vapnik-Chervonenkis inequality: [We don t prove this] From Sauer s lemma: Since Therefore, Estimation error 50

51 Linear (hyperplane) classifiers We already know that Estimation error Estimation error Estimation error 51

52 Vapnik-Chervonenkis Theorem We already know from McDiarmid: Vapnik-Chervonenkis inequality: Corollary: Vapnik-Chervonenkis theorem: [We don t prove them] We already know: Hoeffding + Union bound for finite function class: 52

53 PAC Bound for the Estimation VC theorem: Error Inversion: Estimation error 53

54 What you need to know Complexity of the classifier depends on number of points that can be classified exactly Finite case Number of hypothesis Infinite case Shattering coefficient, VC dimension

55 Thanks for your attention 55

56 Attic

57 Proof of Sauer s Lemma Write all different behaviors on a sample (x 1,x 2, x n ) in a matrix: VC dim =

58 Proof of Sauer s Lemma Shattered subsets of columns: We will prove that Therefore, In this example: =7, since VC=2, n=3 58

59 Proof of Sauer s Lemma Shattered subsets of columns: Lemma 1 In this example: =7 Lemma 2 for any binary matrix with no repeated rows. In this example:

60 Proof of Lemma Shattered subsets of columns: In this example: =7 Lemma 1 Proof Q.E.D. 60

61 Proof of Lemma 2 Lemma 2 for any binary matrix with no repeated rows. Proof: Induction on the number of columns Base case: A has one column. There are three cases: => 1 1 => 1 1 =>2 2 61

62 Proof of Lemma 2 Inductive case: A has at least two columns. We have, By induction (less columns)

63 Proof of Lemma 2 because Q.E.D

64 Solution to Overfitting 2 nd issue: Solution: 64

65 Approximation with the Hinge loss and quadratic loss Picture is taken from R. Herbrich

66 Underfitting Bayes risk =

67 Underfitting Best linear classifier: The empirical risk of the best linear classifier: 67

68 Underfitting Best quadratic classifier: Same as the Bayes risk ) good fit! 68

69 Structural Risk Minimization Estimation error Approximation error Bayes risk Ultimate goal: Estimation error Approximation error So far we studied when estimation error! 0, but we also want approximation error! 0 Many different variants penalize too complex models to avoid overfitting 69

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU10701 11. Learning Theory Barnabás Póczos Learning Theory We have explored many ways of learning from data But How good is our classifier, really? How much data do we

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Risk Minimization Barnabás Póczos What have we seen so far? Several classification & regression algorithms seem to work fine on training datasets: Linear

More information

Computational and Statistical Learning theory

Computational and Statistical Learning theory Computational and Statistical Learning theory Problem set 2 Due: January 31st Email solutions to : karthik at ttic dot edu Notation : Input space : X Label space : Y = {±1} Sample : (x 1, y 1,..., (x n,

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University PAC Learning Matt Gormley Lecture 14 March 5, 2018 1 ML Big Picture Learning Paradigms:

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 477 Instructor: Tony Jebara Topic 5 Generalization Guarantees VC-Dimension Nearest Neighbor Classification (infinite VC dimension) Structural Risk Minimization Support Vector Machines

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

12. Structural Risk Minimization. ECE 830 & CS 761, Spring 2016

12. Structural Risk Minimization. ECE 830 & CS 761, Spring 2016 12. Structural Risk Minimization ECE 830 & CS 761, Spring 2016 1 / 23 General setup for statistical learning theory We observe training examples {x i, y i } n i=1 x i = features X y i = labels / responses

More information

Part of the slides are adapted from Ziko Kolter

Part of the slides are adapted from Ziko Kolter Part of the slides are adapted from Ziko Kolter OUTLINE 1 Supervised learning: classification........................................................ 2 2 Non-linear regression/classification, overfitting,

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Empirical Risk Minimization

Empirical Risk Minimization Empirical Risk Minimization Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Introduction PAC learning ERM in practice 2 General setting Data X the input space and Y the output space

More information

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization : Neural Networks Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization 11s2 VC-dimension and PAC-learning 1 How good a classifier does a learner produce? Training error is the precentage

More information

The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis Dimension The Vapnik-Chervonenkis Dimension Prof. Dan A. Simovici UMB 1 / 91 Outline 1 Growth Functions 2 Basic Definitions for Vapnik-Chervonenkis Dimension 3 The Sauer-Shelah Theorem 4 The Link between VCD and

More information

Generalization and Overfitting

Generalization and Overfitting Generalization and Overfitting Model Selection Maria-Florina (Nina) Balcan February 24th, 2016 PAC/SLT models for Supervised Learning Data Source Distribution D on X Learning Algorithm Expert / Oracle

More information

CS340 Machine learning Lecture 5 Learning theory cont'd. Some slides are borrowed from Stuart Russell and Thorsten Joachims

CS340 Machine learning Lecture 5 Learning theory cont'd. Some slides are borrowed from Stuart Russell and Thorsten Joachims CS340 Machine learning Lecture 5 Learning theory cont'd Some slides are borrowed from Stuart Russell and Thorsten Joachims Inductive learning Simplest form: learn a function from examples f is the target

More information

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI An Introduction to Statistical Theory of Learning Nakul Verma Janelia, HHMI Towards formalizing learning What does it mean to learn a concept? Gain knowledge or experience of the concept. The basic process

More information

Understanding Generalization Error: Bounds and Decompositions

Understanding Generalization Error: Bounds and Decompositions CIS 520: Machine Learning Spring 2018: Lecture 11 Understanding Generalization Error: Bounds and Decompositions Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Pardis Noorzad Department of Computer Engineering and IT Amirkabir University of Technology Ordibehesht 1390 Introduction For the analysis of data structures and algorithms

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Learning Theory. Piyush Rai. CS5350/6350: Machine Learning. September 27, (CS5350/6350) Learning Theory September 27, / 14

Learning Theory. Piyush Rai. CS5350/6350: Machine Learning. September 27, (CS5350/6350) Learning Theory September 27, / 14 Learning Theory Piyush Rai CS5350/6350: Machine Learning September 27, 2011 (CS5350/6350) Learning Theory September 27, 2011 1 / 14 Why Learning Theory? We want to have theoretical guarantees about our

More information

Statistical and Computational Learning Theory

Statistical and Computational Learning Theory Statistical and Computational Learning Theory Fundamental Question: Predict Error Rates Given: Find: The space H of hypotheses The number and distribution of the training examples S The complexity of the

More information

IFT Lecture 7 Elements of statistical learning theory

IFT Lecture 7 Elements of statistical learning theory IFT 6085 - Lecture 7 Elements of statistical learning theory This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s): Brady Neal and

More information

VC Dimension and Sauer s Lemma

VC Dimension and Sauer s Lemma CMSC 35900 (Spring 2008) Learning Theory Lecture: VC Diension and Sauer s Lea Instructors: Sha Kakade and Abuj Tewari Radeacher Averages and Growth Function Theore Let F be a class of ±-valued functions

More information

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015 Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

More information

VC dimension and Model Selection

VC dimension and Model Selection VC dimension and Model Selection Overview PAC model: review VC dimension: Definition Examples Sample: Lower bound Upper bound!!! Model Selection Introduction to Machine Learning 2 PAC model: Setting A

More information

Computational Learning Theory. Definitions

Computational Learning Theory. Definitions Computational Learning Theory Computational learning theory is interested in theoretical analyses of the following issues. What is needed to learn effectively? Sample complexity. How many examples? Computational

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture (2 slots) Prof. L. Palagi 16/10/2014 1 What is (not) Data Mining? By Namwar Rizvi - Ad Hoc Query: ad Hoc queries just examines the current data

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory Problem set 1 Due: Monday, October 10th Please send your solutions to learning-submissions@ttic.edu Notation: Input space: X Label space: Y = {±1} Sample:

More information

VC Dimension Review. The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces.

VC Dimension Review. The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces. VC Dimension Review The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces. Previously, in discussing PAC learning, we were trying to answer questions about

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. By: Postedited by: R.

Lecture Slides for INTRODUCTION TO. Machine Learning. By:  Postedited by: R. Lecture Slides for INTRODUCTION TO Machine Learning By: alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml Postedited by: R. Basili Learning a Class from Examples Class C of a family car Prediction:

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

References for online kernel methods

References for online kernel methods References for online kernel methods W. Liu, J. Principe, S. Haykin Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley, 2010. W. Liu, P. Pokharel, J. Principe. The kernel least mean square

More information

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell CS340 Machine learning Lecture 4 Learning theory Some slides are borrowed from Sebastian Thrun and Stuart Russell Announcement What: Workshop on applying for NSERC scholarships and for entry to graduate

More information

MACHINE LEARNING - CS671 - Part 2a The Vapnik-Chervonenkis Dimension

MACHINE LEARNING - CS671 - Part 2a The Vapnik-Chervonenkis Dimension MACHINE LEARNING - CS671 - Part 2a The Vapnik-Chervonenkis Dimension Prof. Dan A. Simovici UMB Prof. Dan A. Simovici (UMB) MACHINE LEARNING - CS671 - Part 2a The Vapnik-Chervonenkis Dimension 1 / 30 The

More information

Introduction to Statistical Learning Theory

Introduction to Statistical Learning Theory Introduction to Statistical Learning Theory Definition Reminder: We are given m samples {(x i, y i )} m i=1 Dm and a hypothesis space H and we wish to return h H minimizing L D (h) = E[l(h(x), y)]. Problem

More information

The sample complexity of agnostic learning with deterministic labels

The sample complexity of agnostic learning with deterministic labels The sample complexity of agnostic learning with deterministic labels Shai Ben-David Cheriton School of Computer Science University of Waterloo Waterloo, ON, N2L 3G CANADA shai@uwaterloo.ca Ruth Urner College

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Stochastic Convergence Barnabás Póczos Motivation 2 What have we seen so far? Several algorithms that seem to work fine on training datasets: Linear regression

More information

Generalization theory

Generalization theory Generalization theory Chapter 4 T.P. Runarsson (tpr@hi.is) and S. Sigurdsson (sven@hi.is) Introduction Suppose you are given the empirical observations, (x 1, y 1 ),..., (x l, y l ) (X Y) l. Consider the

More information

Computational Learning Theory

Computational Learning Theory 1 Computational Learning Theory 2 Computational learning theory Introduction Is it possible to identify classes of learning problems that are inherently easy or difficult? Can we characterize the number

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 6: Training versus Testing (LFD 2.1) Cho-Jui Hsieh UC Davis Jan 29, 2018 Preamble to the theory Training versus testing Out-of-sample error (generalization error): What

More information

Foundations of Machine Learning

Foundations of Machine Learning Introduction to ML Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu page 1 Logistics Prerequisites: basics in linear algebra, probability, and analysis of algorithms. Workload: about

More information

Does Unlabeled Data Help?

Does Unlabeled Data Help? Does Unlabeled Data Help? Worst-case Analysis of the Sample Complexity of Semi-supervised Learning. Ben-David, Lu and Pal; COLT, 2008. Presentation by Ashish Rastogi Courant Machine Learning Seminar. Outline

More information

Solving Classification Problems By Knowledge Sets

Solving Classification Problems By Knowledge Sets Solving Classification Problems By Knowledge Sets Marcin Orchel a, a Department of Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland Abstract We propose

More information

Machine Learning. Model Selection and Validation. Fabio Vandin November 7, 2017

Machine Learning. Model Selection and Validation. Fabio Vandin November 7, 2017 Machine Learning Model Selection and Validation Fabio Vandin November 7, 2017 1 Model Selection When we have to solve a machine learning task: there are different algorithms/classes algorithms have parameters

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

Statistical Learning Learning From Examples

Statistical Learning Learning From Examples Statistical Learning Learning From Examples We want to estimate the working temperature range of an iphone. We could study the physics and chemistry that affect the performance of the phone too hard We

More information

Computational Learning Theory. CS534 - Machine Learning

Computational Learning Theory. CS534 - Machine Learning Computational Learning Theory CS534 Machine Learning Introduction Computational learning theory Provides a theoretical analysis of learning Shows when a learning algorithm can be expected to succeed Shows

More information

Support Vector Machines. Machine Learning Fall 2017

Support Vector Machines. Machine Learning Fall 2017 Support Vector Machines Machine Learning Fall 2017 1 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost 2 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost Produce

More information

Lecture 3: Introduction to Complexity Regularization

Lecture 3: Introduction to Complexity Regularization ECE90 Spring 2007 Statistical Learning Theory Instructor: R. Nowak Lecture 3: Introduction to Complexity Regularization We ended the previous lecture with a brief discussion of overfitting. Recall that,

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 2: PAC Learning and VC Theory I Fro Adversarial Online to Statistical Three reasons to ove fro worst-case deterinistic

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

ORIE 4741: Learning with Big Messy Data. Generalization

ORIE 4741: Learning with Big Messy Data. Generalization ORIE 4741: Learning with Big Messy Data Generalization Professor Udell Operations Research and Information Engineering Cornell September 23, 2017 1 / 21 Announcements midterm 10/5 makeup exam 10/2, by

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Overview Motivation

More information

CS 6375: Machine Learning Computational Learning Theory

CS 6375: Machine Learning Computational Learning Theory CS 6375: Machine Learning Computational Learning Theory Vibhav Gogate The University of Texas at Dallas Many slides borrowed from Ray Mooney 1 Learning Theory Theoretical characterizations of Difficulty

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Support vector machines Lecture 4

Support vector machines Lecture 4 Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The

More information

Learning Theory. Sridhar Mahadevan. University of Massachusetts. p. 1/38

Learning Theory. Sridhar Mahadevan. University of Massachusetts. p. 1/38 Learning Theory Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts p. 1/38 Topics Probability theory meet machine learning Concentration inequalities: Chebyshev, Chernoff, Hoeffding, and

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

ECE-271B. Nuno Vasconcelos ECE Department, UCSD

ECE-271B. Nuno Vasconcelos ECE Department, UCSD ECE-271B Statistical ti ti Learning II Nuno Vasconcelos ECE Department, UCSD The course the course is a graduate level course in statistical learning in SLI we covered the foundations of Bayesian or generative

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

The PAC Learning Framework -II

The PAC Learning Framework -II The PAC Learning Framework -II Prof. Dan A. Simovici UMB 1 / 1 Outline 1 Finite Hypothesis Space - The Inconsistent Case 2 Deterministic versus stochastic scenario 3 Bayes Error and Noise 2 / 1 Outline

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Sinh Hoa Nguyen, Hung Son Nguyen Polish-Japanese Institute of Information Technology Institute of Mathematics, Warsaw University February 14, 2006 inh Hoa Nguyen, Hung Son

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013 Learning Theory Ingo Steinwart University of Stuttgart September 4, 2013 Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 1 / 62 Basics Informal Introduction Informal Description

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

THE VAPNIK- CHERVONENKIS DIMENSION and LEARNABILITY

THE VAPNIK- CHERVONENKIS DIMENSION and LEARNABILITY THE VAPNIK- CHERVONENKIS DIMENSION and LEARNABILITY Dan A. Simovici UMB, Doctoral Summer School Iasi, Romania What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential

More information

PAC Learning. prof. dr Arno Siebes. Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht

PAC Learning. prof. dr Arno Siebes. Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht PAC Learning prof. dr Arno Siebes Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht Recall: PAC Learning (Version 1) A hypothesis class H is PAC learnable

More information

Computational Learning Theory. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Computational Learning Theory. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Computational Learning Theory CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Overview Introduction to Computational Learning Theory PAC Learning Theory Thanks to T Mitchell 2 Introduction

More information

Mathematical Foundations of Supervised Learning

Mathematical Foundations of Supervised Learning Mathematical Foundations of Supervised Learning (growing lecture notes) Michael M. Wolf November 26, 2017 Contents Introduction 5 1 Learning Theory 7 1.1 Statistical framework.........................

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Support Vector Machine for Classification and Regression

Support Vector Machine for Classification and Regression Support Vector Machine for Classification and Regression Ahlame Douzal AMA-LIG, Université Joseph Fourier Master 2R - MOSIG (2013) November 25, 2013 Loss function, Separating Hyperplanes, Canonical Hyperplan

More information

Computational Learning Theory (VC Dimension)

Computational Learning Theory (VC Dimension) Computational Learning Theory (VC Dimension) 1 Difficulty of machine learning problems 2 Capabilities of machine learning algorithms 1 Version Space with associated errors error is the true error, r is

More information

the tree till a class assignment is reached

the tree till a class assignment is reached Decision Trees Decision Tree for Playing Tennis Prediction is done by sending the example down Prediction is done by sending the example down the tree till a class assignment is reached Definitions Internal

More information

Generalization bounds

Generalization bounds Advanced Course in Machine Learning pring 200 Generalization bounds Handouts are jointly prepared by hie Mannor and hai halev-hwartz he problem of characterizing learnability is the most basic question

More information

Models of Language Acquisition: Part II

Models of Language Acquisition: Part II Models of Language Acquisition: Part II Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015 Probably Approximately Correct Model of Language Learning General setting of Statistical

More information

http://imgs.xkcd.com/comics/electoral_precedent.png Statistical Learning Theory CS4780/5780 Machine Learning Fall 2012 Thorsten Joachims Cornell University Reading: Mitchell Chapter 7 (not 7.4.4 and 7.5)

More information

An Introduction to No Free Lunch Theorems

An Introduction to No Free Lunch Theorems February 2, 2012 Table of Contents Induction Learning without direct observation. Generalising from data. Modelling physical phenomena. The Problem of Induction David Hume (1748) How do we know an induced

More information

Vapnik-Chervonenkis Dimension of Neural Nets

Vapnik-Chervonenkis Dimension of Neural Nets P. L. Bartlett and W. Maass: Vapnik-Chervonenkis Dimension of Neural Nets 1 Vapnik-Chervonenkis Dimension of Neural Nets Peter L. Bartlett BIOwulf Technologies and University of California at Berkeley

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland RADEMACHER COMPLEXITY Slides adapted from Rob Schapire Machine Learning: Jordan Boyd-Graber UMD Introduction

More information

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Computational Learning Theory Le Song Lecture 11, September 20, 2012 Based on Slides from Eric Xing, CMU Reading: Chap. 7 T.M book 1 Complexity of Learning

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 2: Introduction to statistical learning theory. 1 / 22 Goals of statistical learning theory SLT aims at studying the performance of

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

10-701/ Machine Learning - Midterm Exam, Fall 2010

10-701/ Machine Learning - Midterm Exam, Fall 2010 10-701/15-781 Machine Learning - Midterm Exam, Fall 2010 Aarti Singh Carnegie Mellon University 1. Personal info: Name: Andrew account: E-mail address: 2. There should be 15 numbered pages in this exam

More information

The Perceptron algorithm

The Perceptron algorithm The Perceptron algorithm Tirgul 3 November 2016 Agnostic PAC Learnability A hypothesis class H is agnostic PAC learnable if there exists a function m H : 0,1 2 N and a learning algorithm with the following

More information

Statistical Learning Theory and the C-Loss cost function

Statistical Learning Theory and the C-Loss cost function Statistical Learning Theory and the C-Loss cost function Jose Principe, Ph.D. Distinguished Professor ECE, BME Computational NeuroEngineering Laboratory and principe@cnel.ufl.edu Statistical Learning Theory

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machine Learning Theory (CS 6783) Tu-Th 1:25 to 2:40 PM Kimball, B-11 Instructor : Karthik Sridharan ABOUT THE COURSE No exams! 5 assignments that count towards your grades (55%) One term project (40%)

More information

Introduction to Statistical Learning Theory. Material para Máster en Matemáticas y Computación

Introduction to Statistical Learning Theory. Material para Máster en Matemáticas y Computación Introduction to Statistical Learning Theory Material para Máster en Matemáticas y Computación 1 Learning agents Inductive learning Decision tree learning First Part: Outline 2 Learning Learning is essential

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Computational Learning Theory

Computational Learning Theory CS 446 Machine Learning Fall 2016 OCT 11, 2016 Computational Learning Theory Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes 1 PAC Learning We want to develop a theory to relate the probability of successful

More information

Vapnik-Chervonenkis Dimension of Neural Nets

Vapnik-Chervonenkis Dimension of Neural Nets Vapnik-Chervonenkis Dimension of Neural Nets Peter L. Bartlett BIOwulf Technologies and University of California at Berkeley Department of Statistics 367 Evans Hall, CA 94720-3860, USA bartlett@stat.berkeley.edu

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 3 Additive Models and Linear Regression Sinusoids and Radial Basis Functions Classification Logistic Regression Gradient Descent Polynomial Basis Functions

More information

Computational Learning Theory for Artificial Neural Networks

Computational Learning Theory for Artificial Neural Networks Computational Learning Theory for Artificial Neural Networks Martin Anthony and Norman Biggs Department of Statistical and Mathematical Sciences, London School of Economics and Political Science, Houghton

More information