Computational Learning Theory

Size: px
Start display at page:

Download "Computational Learning Theory"

Transcription

1 1 Computational Learning Theory

2 2 Computational learning theory Introduction Is it possible to identify classes of learning problems that are inherently easy or difficult? Can we characterize the number of training examples necessary or sufficient to assure successful learning? How is this number affected if the learner is allowed to pose queries to the trainer? Can we characterize the number of mistakes that a learner will make before learning the target function? Can we characterize the inherent computational complexity of classes of learning problems? General answers to all these questions are not yet known. This chapter Sample complexity Computational complexity Mistake bound

3 Probably Approximately Correct (PAC) Learning [1] 3 Problem Setting for concept learning: X : Set of all possible instances over which target functions may be defined. Training and Testing instances are generated from X according some unknown distribution D. We assume that D is stationary. C : Set of target concepts that our learner might be called upon to learn. Target concept is a Boolean function c : X {0,1}. H : Set of all possible hypotheses. Goal : Producing hypothesis h H which is an estimate of c. Evaluation: Performance of h measured over new samples drawn randomly using distribution D. Error of a Hypothesis : The training error (sample error ) of hypothesis h with respect to target concept c and data sample S of size n is. 1 errors ( h) δ [ c( x) h( x )] n x S The true error (denoted error D (h)) of hypothesis h with respect to target concept c and distribution D is the probability that h will misclassify an instance drawn at random according to D. error error D (h) depends strongly of the D. D(x) is prob. of presenting x. h is approximately correct if error D (h) ε D error ( h) Pr [ c( x ) h( x )] D x D ( h) h( x) c( x) D( x) - Instance Space X c Where c and h disagree + + h - -

4 Probably Approximately Correct (PAC) Learning [2] 4 We are trying to characterize the number of training examples needed to learn a hypothesis h for which error D (h)=0. Problems : May be multiple consistent hypotheses and the learner can not pickup one of them. Since training set is chosen randomly, the true error may not be zero. To accommodate these difficulties, we will not require that : True error may not be zero, We require that true error is bounded by some constant ε. The learner succeed for every training sequence, we require that the failure probability is bounded by some constant δ. δ Is confidence parameter. In short, we require only that the learner probably learns a hypothesis that is approximately correct. PAC Learnability : Definition : C is PAC-learnable by L using H if for all c C, distributions D over X, there exists an ε such that 0 < ε < 1/2, and a δ such that 0 < δ < 1/2, learner L will, with probability at least (1 - δ), output a hypothesis h H such that error D (h) ε in time that is polynomial in (1/ ε), (1/ δ), n, and C. If L requires some minimum processing time per training example, then for C to be PAC-Learnable by L, L must learn from a polynomial number of training examples.

5 Probably Approximately Correct (PAC) Learning [3] 5 Sample Complexity : The growth in the number of required training examples with problem size. The most limiting factor for success of a learner is the limited availability of training data. Consistent learner : A learner is consistent if it outputs hypotheses that perfectly fit the training data, whenever possible. Our Concern : Can we bound true error of h (given training error of h)? Definition : Version space VS H,D is said to be ε-exhausted with respect to c and D, if all h VS H,D has true error less than ε with respect to c and D ( h VS H,D. error D (h) < ε) Hypothesis Space H error = 0.1 r = 0.2 error = 0.2 r = 0.0 error = 0.3 r = 0.4 error = 0.3 r = 0.1 VS H,D error = 0.1 r = 0.0 error = 0.2 r = 0.3 (r = training error, error = true error)

6 Probably Approximately Correct (PAC) Learning [4] 6 Theorem [Haussler, 1988] If the hypothesis space H is finite, and D is a sequence of m 1 independent random examples of some target concept c, then for any 0 ε 1, the probability that the version space with respect to H and D is not ε-exhausted (with respect to c) is less than or equal to H e - ε m Important Result! Bounds the probability that any consistent learner will output a hypothesis h with error(h) ε Want this probability to be below a specified threshold δ H e - ε m δ To achieve, solve inequality for m: let m 1/ε (ln H + ln (1/δ)) Need to see at leas this many examples It is possible that H e - ε m > 1.

7 Probably Approximately Correct (PAC) Learning [5] 7 Example : H: conjunctions of constraints on up to n boolean attributes (n boolean literals) H = 3 n, m 1/ε (ln 3 n + ln (1/δ)) = 1/ε (n ln 3 + ln (1/δ)) How About EnjoySport? H as given in EnjoySport (conjunctive concepts with don t cares) H = 973 m 1/ε (ln H + ln (1/δ)) Example goal: probability 1 - δ = 95% of hypotheses with error D (h) < 0.1 m 1/0.1 (ln ln (1/0.05)) 98.8 Example Sky Air Temp Humidity Wind Water Forecast Enjoy Sport 0 Sunny Warm Normal Strong Warm Same Yes 1 Sunny Warm High Strong Warm Same Yes 2 Rainy Cold High Strong Warm Change No 3 Sunny Warm High Strong Cool Change Yes

8 Probably Approximately Correct (PAC) Learning [6] 8 Unbiased Learner Recall: sample complexity bound m 1/ε (ln H + ln (1/δ)) Sample complexity not always polynomial Example: for unbiased learner, H = 2 X Suppose X consists of n booleans (binary-valued attributes) X = 2 n, H = 2 2n m 1/ε (2 n ln 2 + ln (1/δ)) Sample complexity for this H is exponential in n Agnostic Learner : A learner that make no assumption that the target concept is representable by H and that simply finds the hypothesis with minimum error. How Hard Is This? Sample complexity: m 1/2ε 2 (ln H + ln (1/δ)) Derived from Hoeffding bounds: P [TrueError D (h) > TrainingError D (h) + ε] e -2mε2

9 Probably Approximately Correct (PAC) Learning [7] 9 Drawbacks of sample complexity The bound is not tight, when H is large and probability may be grater than 1. When H is infinite. Vapnik-Chervonekis dimension (VC (H)) VC-dimension measures complexity of hypothesis space H, not by the number of distinct hypotheses H, but by the number of distinct instances from X that can be completely discriminated using H. Dichotomies: A dichotomy(concept) of a set S is a partition of S into two subsets S 1 and S 2 Shattering A set of instances S is shattered by hypothesis space H if and only if for every dichotomy (concept) of S, there exists a hypothesis in H consistent with this dichotomy Intuition: a rich set of functions shatters a larger instance space Instance Space X

10 10 Vapnik-Chervonekis Dimension [1] From Chapter 2, unbiased hypotheses space is capable of representing every possible concept (dichotomy) defined over the instance space X. Unbiased hypotheses space H can shatter instance space X. If H cannot shatter X, but can shatter some large subset S of X, what happens? This is defined by VC (H). Vapnik-Chervonekis dimension (VC (H)) VC (H) of hypotheses space H defined over the instance space X is the size of largest finite subset of X shattered by H. If arbitrary large finite sets of X can be shattered by H, then VC (H) =. For any finite H, VC (H) log 2 H

11 Vapnik-Chervonekis Dimension [2] 11 Example : X = R : The set of real numbers. H : The set of intervals on real line in form of a < x < b, where a and b may be any real constants. What is VC (H)? Let S = {3.1,5.7}, can S be shattered by H? 1 < x < 2 1 < x < 4 4 < x < 7 1 < x < 7 Let S = {x 0, x 1, x 2 } (x 0 < x 1 < x 2 ), can S be shattered by H? The dichotomy that includes x 0 and x 2 but not x 1 cannot be shattered by H. Thus VC (H) = 2.

12 Vapnik-Chervonekis Dimension [3] 12 Example : X :The set of instances corresponding to points in x-y plane. H : The set of all linear decision surfaces in the plane (such as decision function of perceptron). What is VC (H)? Colinear points cannot be shattered! Thus VC (H) = 2 or 3 or. VC (H) > 3. To show VC (H) < d, we must show that no set of size d can be shattered. In this example, no set of size 4, can be shattered, hence VC (H) = 3 It can be shown that VC-dimension of linear decision surfaces in r-dimensional is r+1. Example : X :The set of instances corresponding to points in x-y plane. H : The set of all axis-aligned rectangles in two dimensions. What is VC (H)?

13 Vapnik-Chervonekis Dimension [4] 13 Example : X :The set of instances corresponding to conjunction of the exactly three Boolean literals. H : The conjunction of up to three Boolean literals. What is VC (H)? Representing each instance by a three-bit string corresponding to literals l 1, l 2, and l 3 such as Instance 1 : 100 Instance 2 : 010 Instance 3 : 001 A hypothesis can be constructed for any desired dichotomy using the following rule. If dichotomy is to exclude instance 1, add ( l 1 ) to hypothesis, ex. ( l 1 l 3 ), ( l 1 l 2 ) Thus, VC(H) for conjunction of n Boolean literals is equal to n. Example : Feed forward Neural Networks with N free parameters VC for a neural network with linear activation function is O(N). VC for a neural network with Threshold activation function is O(N log N). VC for a neural network with sigmoid activation function is O(N 2 ).

14 14 Mistake Bounds How many mistakes will the learner make in its prediction before it learns the target concept. Example : Find-S Suppose H be conjunction of up to n Boolean literals and their negations Find-S Initialize h to the most specific hypothesis l 1 l 1 l 2 l 2 l n l n For each positive training instance x do remove from h any literal that is not satisfied by x Output hypothesis h How Many Mistakes before Converging to Correct h? Once a literal is removed, it is never put back No false positives (started with most restrictive h): count false negatives First example will remove n candidate literals Worst case: every remaining literal is also removed (incurring 1 mistake each) Find-S makes at most n + 1 mistakes

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Sinh Hoa Nguyen, Hung Son Nguyen Polish-Japanese Institute of Information Technology Institute of Mathematics, Warsaw University February 14, 2006 inh Hoa Nguyen, Hung Son

More information

Computational Learning Theory

Computational Learning Theory 09s1: COMP9417 Machine Learning and Data Mining Computational Learning Theory May 20, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997

More information

Computational Learning Theory (VC Dimension)

Computational Learning Theory (VC Dimension) Computational Learning Theory (VC Dimension) 1 Difficulty of machine learning problems 2 Capabilities of machine learning algorithms 1 Version Space with associated errors error is the true error, r is

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory [read Chapter 7] [Suggested exercises: 7.1, 7.2, 7.5, 7.8] Computational learning theory Setting 1: learner poses queries to teacher Setting 2: teacher chooses examples Setting

More information

Computational Learning Theory

Computational Learning Theory 0. Computational Learning Theory Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 7 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell 1. Main Questions

More information

Computational Learning Theory (COLT)

Computational Learning Theory (COLT) Computational Learning Theory (COLT) Goals: Theoretical characterization of 1 Difficulty of machine learning problems Under what conditions is learning possible and impossible? 2 Capabilities of machine

More information

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Computational Learning Theory Le Song Lecture 11, September 20, 2012 Based on Slides from Eric Xing, CMU Reading: Chap. 7 T.M book 1 Complexity of Learning

More information

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds Lecture 25 of 42 PAC Learning, VC Dimension, and Mistake Bounds Thursday, 15 March 2007 William H. Hsu, KSU http://www.kddresearch.org/courses/spring2007/cis732 Readings: Sections 7.4.17.4.3, 7.5.17.5.3,

More information

Computational Learning Theory. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Computational Learning Theory. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Computational Learning Theory CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Overview Introduction to Computational Learning Theory PAC Learning Theory Thanks to T Mitchell 2 Introduction

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016 Machine Learning 10-701, Fall 2016 Computational Learning Theory Eric Xing Lecture 9, October 5, 2016 Reading: Chap. 7 T.M book Eric Xing @ CMU, 2006-2016 1 Generalizability of Learning In machine learning

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

CS 6375: Machine Learning Computational Learning Theory

CS 6375: Machine Learning Computational Learning Theory CS 6375: Machine Learning Computational Learning Theory Vibhav Gogate The University of Texas at Dallas Many slides borrowed from Ray Mooney 1 Learning Theory Theoretical characterizations of Difficulty

More information

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell CS340 Machine learning Lecture 4 Learning theory Some slides are borrowed from Sebastian Thrun and Stuart Russell Announcement What: Workshop on applying for NSERC scholarships and for entry to graduate

More information

Computational Learning Theory

Computational Learning Theory CS 446 Machine Learning Fall 2016 OCT 11, 2016 Computational Learning Theory Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes 1 PAC Learning We want to develop a theory to relate the probability of successful

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning PAC Learning and VC Dimension Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE

More information

Concept Learning through General-to-Specific Ordering

Concept Learning through General-to-Specific Ordering 0. Concept Learning through General-to-Specific Ordering Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 2 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Slides by and Nathalie Japkowicz (Reading: R&N AIMA 3 rd ed., Chapter 18.5) Computational Learning Theory Inductive learning: given the training set, a learning algorithm

More information

Computational Learning Theory. Definitions

Computational Learning Theory. Definitions Computational Learning Theory Computational learning theory is interested in theoretical analyses of the following issues. What is needed to learn effectively? Sample complexity. How many examples? Computational

More information

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University Concept Learning Mitchell, Chapter 2 CptS 570 Machine Learning School of EECS Washington State University Outline Definition General-to-specific ordering over hypotheses Version spaces and the candidate

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Pardis Noorzad Department of Computer Engineering and IT Amirkabir University of Technology Ordibehesht 1390 Introduction For the analysis of data structures and algorithms

More information

Concept Learning. Space of Versions of Concepts Learned

Concept Learning. Space of Versions of Concepts Learned Concept Learning Space of Versions of Concepts Learned 1 A Concept Learning Task Target concept: Days on which Aldo enjoys his favorite water sport Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

More information

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses 1 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specific ordering over hypotheses Version spaces and

More information

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization : Neural Networks Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization 11s2 VC-dimension and PAC-learning 1 How good a classifier does a learner produce? Training error is the precentage

More information

Dan Roth 461C, 3401 Walnut

Dan Roth  461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning Question of the Day? Machine Learning 2D43 Lecture 3: Concept Learning What row of numbers comes next in this series? 2 2 22 322 3222 Outline Training Examples for Concept Enjoy Sport Learning from examples

More information

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 Vasant Honavar Artificial Intelligence Research Laboratory Department of Computer Science

More information

Computational Learning Theory. CS534 - Machine Learning

Computational Learning Theory. CS534 - Machine Learning Computational Learning Theory CS534 Machine Learning Introduction Computational learning theory Provides a theoretical analysis of learning Shows when a learning algorithm can be expected to succeed Shows

More information

Concept Learning. Berlin Chen References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials.

Concept Learning. Berlin Chen References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials. Concept Learning Berlin Chen 2005 References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials MLDM-Berlin 1 What is a Concept? Concept of Dogs Concept of Cats Concept

More information

VC Dimension Review. The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces.

VC Dimension Review. The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces. VC Dimension Review The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces. Previously, in discussing PAC learning, we were trying to answer questions about

More information

Overview. Machine Learning, Chapter 2: Concept Learning

Overview. Machine Learning, Chapter 2: Concept Learning Overview Concept Learning Representation Inductive Learning Hypothesis Concept Learning as Search The Structure of the Hypothesis Space Find-S Algorithm Version Space List-Eliminate Algorithm Candidate-Elimination

More information

Concept Learning. Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University.

Concept Learning. Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University. Concept Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s

More information

Web-Mining Agents Computational Learning Theory

Web-Mining Agents Computational Learning Theory Web-Mining Agents Computational Learning Theory Prof. Dr. Ralf Möller Dr. Özgür Özcep Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Exercise Lab) Computational Learning Theory (Adapted)

More information

Machine Learning 2D1431. Lecture 3: Concept Learning

Machine Learning 2D1431. Lecture 3: Concept Learning Machine Learning 2D1431 Lecture 3: Concept Learning Question of the Day? What row of numbers comes next in this series? 1 11 21 1211 111221 312211 13112221 Outline Learning from examples General-to specific

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

Learning Theory. Machine Learning B Seyoung Kim. Many of these slides are derived from Tom Mitchell, Ziv- Bar Joseph. Thanks!

Learning Theory. Machine Learning B Seyoung Kim. Many of these slides are derived from Tom Mitchell, Ziv- Bar Joseph. Thanks! Learning Theory Machine Learning 10-601B Seyoung Kim Many of these slides are derived from Tom Mitchell, Ziv- Bar Joseph. Thanks! Computa2onal Learning Theory What general laws constrain inducgve learning?

More information

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015 Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

More information

Statistical and Computational Learning Theory

Statistical and Computational Learning Theory Statistical and Computational Learning Theory Fundamental Question: Predict Error Rates Given: Find: The space H of hypotheses The number and distribution of the training examples S The complexity of the

More information

Computational Learning Theory: Shattering and VC Dimensions. Machine Learning. Spring The slides are mainly from Vivek Srikumar

Computational Learning Theory: Shattering and VC Dimensions. Machine Learning. Spring The slides are mainly from Vivek Srikumar Computational Learning Theory: Shattering and VC Dimensions Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 This lecture: Computational Learning Theory The Theory of Generalization

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems II - Machine Learning WS 2005/2006 Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias Lecture

More information

Concept Learning.

Concept Learning. . Machine Learning Concept Learning Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg Martin.Riedmiller@uos.de

More information

Online Learning, Mistake Bounds, Perceptron Algorithm

Online Learning, Mistake Bounds, Perceptron Algorithm Online Learning, Mistake Bounds, Perceptron Algorithm 1 Online Learning So far the focus of the course has been on batch learning, where algorithms are presented with a sample of training data, from which

More information

Version Spaces.

Version Spaces. . Machine Learning Version Spaces Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Computational Learning Theory: Probably Approximately Correct (PAC) Learning. Machine Learning. Spring The slides are mainly from Vivek Srikumar

Computational Learning Theory: Probably Approximately Correct (PAC) Learning. Machine Learning. Spring The slides are mainly from Vivek Srikumar Computational Learning Theory: Probably Approximately Correct (PAC) Learning Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 This lecture: Computational Learning Theory The Theory

More information

Fundamentals of Concept Learning

Fundamentals of Concept Learning Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Answers Machine Learning Exercises 2

Answers Machine Learning Exercises 2 nswers Machine Learning Exercises 2 Tim van Erven October 7, 2007 Exercises. Consider the List-Then-Eliminate algorithm for the EnjoySport example with hypothesis space H = {?,?,?,?,?,?, Sunny,?,?,?,?,?,

More information

Hypothesis Testing and Computational Learning Theory. EECS 349 Machine Learning With slides from Bryan Pardo, Tom Mitchell

Hypothesis Testing and Computational Learning Theory. EECS 349 Machine Learning With slides from Bryan Pardo, Tom Mitchell Hypothesis Testing and Computational Learning Theory EECS 349 Machine Learning With slides from Bryan Pardo, Tom Mitchell Overview Hypothesis Testing: How do we know our learners are good? What does performance

More information

Learning Theory Continued

Learning Theory Continued Learning Theory Continued Machine Learning CSE446 Carlos Guestrin University of Washington May 13, 2013 1 A simple setting n Classification N data points Finite number of possible hypothesis (e.g., dec.

More information

EECS 349: Machine Learning

EECS 349: Machine Learning EECS 349: Machine Learning Bryan Pardo Topic 1: Concept Learning and Version Spaces (with some tweaks by Doug Downey) 1 Concept Learning Much of learning involves acquiring general concepts from specific

More information

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin Learning Theory Machine Learning CSE546 Carlos Guestrin University of Washington November 25, 2013 Carlos Guestrin 2005-2013 1 What now n We have explored many ways of learning from data n But How good

More information

Statistical Learning Learning From Examples

Statistical Learning Learning From Examples Statistical Learning Learning From Examples We want to estimate the working temperature range of an iphone. We could study the physics and chemistry that affect the performance of the phone too hard We

More information

Learning Theory, Overfi1ng, Bias Variance Decomposi9on

Learning Theory, Overfi1ng, Bias Variance Decomposi9on Learning Theory, Overfi1ng, Bias Variance Decomposi9on Machine Learning 10-601B Seyoung Kim Many of these slides are derived from Tom Mitchell, Ziv- 1 Bar Joseph. Thanks! Any(!) learner that outputs a

More information

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination.

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination. Outline [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specic ordering over hypotheses Version spaces and candidate elimination algorithm Picking new examples

More information

10.1 The Formal Model

10.1 The Formal Model 67577 Intro. to Machine Learning Fall semester, 2008/9 Lecture 10: The Formal (PAC) Learning Model Lecturer: Amnon Shashua Scribe: Amnon Shashua 1 We have see so far algorithms that explicitly estimate

More information

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system Introduction to machine learning Concept learning Maria Simi, 2011/2012 Machine Learning, Tom Mitchell Mc Graw-Hill International Editions, 1997 (Cap 1, 2). Introduction to machine learning When appropriate

More information

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering Outline Learning from eamples CSCE 78/878 Lecture : Concept Learning and te General-to-Specific Ordering Stepen D. Scott (Adapted from Tom Mitcell s slides) General-to-specific ordering over ypoteses Version

More information

Data Mining and Machine Learning

Data Mining and Machine Learning Data Mining and Machine Learning Concept Learning and Version Spaces Introduction Concept Learning Generality Relations Refinement Operators Structured Hypothesis Spaces Simple algorithms Find-S Find-G

More information

Lecture 13: Introduction to Neural Networks

Lecture 13: Introduction to Neural Networks Lecture 13: Introduction to Neural Networks Instructor: Aditya Bhaskara Scribe: Dietrich Geisler CS 5966/6966: Theory of Machine Learning March 8 th, 2017 Abstract This is a short, two-line summary of

More information

Name (NetID): (1 Point)

Name (NetID): (1 Point) CS446: Machine Learning Fall 2016 October 25 th, 2016 This is a closed book exam. Everything you need in order to solve the problems is supplied in the body of this exam. This exam booklet contains four

More information

Midterm, Fall 2003

Midterm, Fall 2003 5-78 Midterm, Fall 2003 YOUR ANDREW USERID IN CAPITAL LETTERS: YOUR NAME: There are 9 questions. The ninth may be more time-consuming and is worth only three points, so do not attempt 9 unless you are

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

BITS F464: MACHINE LEARNING

BITS F464: MACHINE LEARNING BITS F464: MACHINE LEARNING Lecture-09: Concept Learning Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems Engineering, BITS Pilani, Rajasthan-333031 INDIA Jan

More information

Generalization theory

Generalization theory Generalization theory Chapter 4 T.P. Runarsson (tpr@hi.is) and S. Sigurdsson (sven@hi.is) Introduction Suppose you are given the empirical observations, (x 1, y 1 ),..., (x l, y l ) (X Y) l. Consider the

More information

Computational learning theory. PAC learning. VC dimension.

Computational learning theory. PAC learning. VC dimension. Computational learning theory. PAC learning. VC dimension. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics COLT 2 Concept...........................................................................................................

More information

PAC Learning. prof. dr Arno Siebes. Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht

PAC Learning. prof. dr Arno Siebes. Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht PAC Learning prof. dr Arno Siebes Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht Recall: PAC Learning (Version 1) A hypothesis class H is PAC learnable

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 6: Training versus Testing (LFD 2.1) Cho-Jui Hsieh UC Davis Jan 29, 2018 Preamble to the theory Training versus testing Out-of-sample error (generalization error): What

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Vapnik Chervonenkis Theory Barnabás Póczos Empirical Risk and True Risk 2 Empirical Risk Shorthand: True risk of f (deterministic): Bayes risk: Let us use the empirical

More information

Lecture 29: Computational Learning Theory

Lecture 29: Computational Learning Theory CS 710: Complexity Theory 5/4/2010 Lecture 29: Computational Learning Theory Instructor: Dieter van Melkebeek Scribe: Dmitri Svetlov and Jake Rosin Today we will provide a brief introduction to computational

More information

PAC Model and Generalization Bounds

PAC Model and Generalization Bounds PAC Model and Generalization Bounds Overview Probably Approximately Correct (PAC) model Basic generalization bounds finite hypothesis class infinite hypothesis class Simple case More next week 2 Motivating

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

Bayesian Learning Features of Bayesian learning methods:

Bayesian Learning Features of Bayesian learning methods: Bayesian Learning Features of Bayesian learning methods: Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 236756 Prof. Nir Ailon Lecture 4: Computational Complexity of Learning & Surrogate Losses Efficient PAC Learning Until now we were mostly worried about sample complexity

More information

CS446: Machine Learning Spring Problem Set 4

CS446: Machine Learning Spring Problem Set 4 CS446: Machine Learning Spring 2017 Problem Set 4 Handed Out: February 27 th, 2017 Due: March 11 th, 2017 Feel free to talk to other members of the class in doing the homework. I am more concerned that

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

FORMULATION OF THE LEARNING PROBLEM

FORMULATION OF THE LEARNING PROBLEM FORMULTION OF THE LERNING PROBLEM MIM RGINSKY Now that we have seen an informal statement of the learning problem, as well as acquired some technical tools in the form of concentration inequalities, we

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. By: Postedited by: R.

Lecture Slides for INTRODUCTION TO. Machine Learning. By:  Postedited by: R. Lecture Slides for INTRODUCTION TO Machine Learning By: alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml Postedited by: R. Basili Learning a Class from Examples Class C of a family car Prediction:

More information

1 The Probably Approximately Correct (PAC) Model

1 The Probably Approximately Correct (PAC) Model COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #3 Scribe: Yuhui Luo February 11, 2008 1 The Probably Approximately Correct (PAC) Model A target concept class C is PAC-learnable by

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

On the Sample Complexity of Noise-Tolerant Learning

On the Sample Complexity of Noise-Tolerant Learning On the Sample Complexity of Noise-Tolerant Learning Javed A. Aslam Department of Computer Science Dartmouth College Hanover, NH 03755 Scott E. Decatur Laboratory for Computer Science Massachusetts Institute

More information

Agnostic Online learnability

Agnostic Online learnability Technical Report TTIC-TR-2008-2 October 2008 Agnostic Online learnability Shai Shalev-Shwartz Toyota Technological Institute Chicago shai@tti-c.org ABSTRACT We study a fundamental question. What classes

More information

Learning Theory. Piyush Rai. CS5350/6350: Machine Learning. September 27, (CS5350/6350) Learning Theory September 27, / 14

Learning Theory. Piyush Rai. CS5350/6350: Machine Learning. September 27, (CS5350/6350) Learning Theory September 27, / 14 Learning Theory Piyush Rai CS5350/6350: Machine Learning September 27, 2011 (CS5350/6350) Learning Theory September 27, 2011 1 / 14 Why Learning Theory? We want to have theoretical guarantees about our

More information

B555 - Machine Learning - Homework 4. Enrique Areyan April 28, 2015

B555 - Machine Learning - Homework 4. Enrique Areyan April 28, 2015 - Machine Learning - Homework Enrique Areyan April 8, 01 Problem 1: Give decision trees to represent the following oolean functions a) A b) A C c) Ā d) A C D e) A C D where Ā is a negation of A and is

More information

Topics. Concept Learning. Concept Learning Task. Concept Descriptions

Topics. Concept Learning. Concept Learning Task. Concept Descriptions Topics Concept Learning Sattiraju Prabhakar CS898O: Lecture#2 Wichita State University Concept Description Using Concept Descriptions Training Examples Concept Learning Algorithm: Find-S 1/22/2006 ML2006_ConceptLearning

More information

Models of Language Acquisition: Part II

Models of Language Acquisition: Part II Models of Language Acquisition: Part II Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015 Probably Approximately Correct Model of Language Learning General setting of Statistical

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

CS 543 Page 1 John E. Boon, Jr.

CS 543 Page 1 John E. Boon, Jr. CS 543 Machine Learning Spring 2010 Lecture 05 Evaluating Hypotheses I. Overview A. Given observed accuracy of a hypothesis over a limited sample of data, how well does this estimate its accuracy over

More information

CS 395T Computational Learning Theory. Scribe: Mike Halcrow. x 4. x 2. x 6

CS 395T Computational Learning Theory. Scribe: Mike Halcrow. x 4. x 2. x 6 CS 395T Computational Learning Theory Lecture 3: September 0, 2007 Lecturer: Adam Klivans Scribe: Mike Halcrow 3. Decision List Recap In the last class, we determined that, when learning a t-decision list,

More information

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI An Introduction to Statistical Theory of Learning Nakul Verma Janelia, HHMI Towards formalizing learning What does it mean to learn a concept? Gain knowledge or experience of the concept. The basic process

More information

Introduction to Computational Learning Theory

Introduction to Computational Learning Theory Introduction to Computational Learning Theory The classification problem Consistent Hypothesis Model Probably Approximately Correct (PAC) Learning c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1

More information

Classification: The PAC Learning Framework

Classification: The PAC Learning Framework Classification: The PAC Learning Framework Machine Learning: Jordan Boyd-Graber University of Colorado Boulder LECTURE 5 Slides adapted from Eli Upfal Machine Learning: Jordan Boyd-Graber Boulder Classification:

More information

ICML '97 and AAAI '97 Tutorials

ICML '97 and AAAI '97 Tutorials A Short Course in Computational Learning Theory: ICML '97 and AAAI '97 Tutorials Michael Kearns AT&T Laboratories Outline Sample Complexity/Learning Curves: nite classes, Occam's VC dimension Razor, Best

More information

The PAC Learning Framework -II

The PAC Learning Framework -II The PAC Learning Framework -II Prof. Dan A. Simovici UMB 1 / 1 Outline 1 Finite Hypothesis Space - The Inconsistent Case 2 Deterministic versus stochastic scenario 3 Bayes Error and Noise 2 / 1 Outline

More information

FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE

FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE You are allowed a two-page cheat sheet. You are also allowed to use a calculator. Answer the questions in the spaces provided on the question sheets.

More information

The Decision List Machine

The Decision List Machine The Decision List Machine Marina Sokolova SITE, University of Ottawa Ottawa, Ont. Canada,K1N-6N5 sokolova@site.uottawa.ca Nathalie Japkowicz SITE, University of Ottawa Ottawa, Ont. Canada,K1N-6N5 nat@site.uottawa.ca

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Discriminative Learning can Succeed where Generative Learning Fails

Discriminative Learning can Succeed where Generative Learning Fails Discriminative Learning can Succeed where Generative Learning Fails Philip M. Long, a Rocco A. Servedio, b,,1 Hans Ulrich Simon c a Google, Mountain View, CA, USA b Columbia University, New York, New York,

More information

Part of the slides are adapted from Ziko Kolter

Part of the slides are adapted from Ziko Kolter Part of the slides are adapted from Ziko Kolter OUTLINE 1 Supervised learning: classification........................................................ 2 2 Non-linear regression/classification, overfitting,

More information

Learning Theory. Aar$ Singh and Barnabas Poczos. Machine Learning / Apr 17, Slides courtesy: Carlos Guestrin

Learning Theory. Aar$ Singh and Barnabas Poczos. Machine Learning / Apr 17, Slides courtesy: Carlos Guestrin Learning Theory Aar$ Singh and Barnabas Poczos Machine Learning 10-701/15-781 Apr 17, 2014 Slides courtesy: Carlos Guestrin Learning Theory We have explored many ways of learning from data But How good

More information