Hamming Cube and Other Stuff

Size: px
Start display at page:

Download "Hamming Cube and Other Stuff"

Transcription

1 Hamming Cube and Other Stuff Sabrina Sixta Tuesday, May 27, 2014 Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

2 Table of Contents Outline 1 Definition of a Hamming cube 2 Properties of the Hamming cube 3 Functions over the Hamming cube 4 l -norm 5 A counting measure on the Hamming cube 6 Expectation 7 Conditional expectation 8 Martingales 9 Azuma s inequality Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

3 Definition of a Hamming cube The Hamming Cube Definition The Hamming Cube of dimension n denoted by {0, 1} n is a collection of all binary strings of length n. That is for σ {0, 1} n, σ = σ 1 σ 2...σ n where σ i {0, 1} Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

4 Definition of a Hamming cube The Hamming Cube Definition The Hamming Cube of dimension n denoted by {0, 1} n is a collection of all binary strings of length n. That is for σ {0, 1} n, σ = σ 1 σ 2...σ n where σ i {0, 1} The Hamming distance: For σ, τ {0, 1} n, d(σ, τ) = #{i : σ i τ i } Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

5 Definition of a Hamming cube The Hamming Cube Definition The Hamming Cube of dimension n denoted by {0, 1} n is a collection of all binary strings of length n. That is for σ {0, 1} n, σ = σ 1 σ 2...σ n where σ i {0, 1} The Hamming distance: For σ, τ {0, 1} n, d(σ, τ) = #{i : σ i τ i } The normalized Hamming distance: For σ, τ {0, 1} n, d(σ, τ) = #{i : σ i τ i } n Since the (normalized) Hamming distance is a metric (it satisfies the separation, symmetry and triangle inequality properties), the pair ({0, 1} n, d) and ({0, 1} n, d) are both metric spaces. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

6 Properties of the Hamming cube Properties of the Hamming Cube Diameter: diam({0, 1} n ) = sup σ,τ d(σ, τ) = n Open Ball: B r (σ) = {τ {0, 1} n d(σ, τ) < r} Metrically homogenous: The metric space X is said to be metrically homogeneous if for all x, y X there exists an isometry i : X X such that i(x) = y. The hamming cube, {0, 1} n, is metrically homogeneous. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

7 Functions over the Hamming cube Functions over the Hamming cube The weight function: w(σ) = #{i : σ i = 1} The normalized weight function: w(σ) = #{i:σ i =1} n. The function π i : {0, 1} n {0, 1} that sends a string, σ, to its ith bit: π i (σ) = σ i The function that truncates a string: Let k < n, π n k = {0, 1}n {0, 1} k The distance from the set A {0, 1} n function: d A (σ) = inf a A d(x, a) Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

8 Lipschitz continuity Functions over the Hamming cube A real-valued function f on {0, 1} n is called Lipschitz with Lipschitz constant L if for σ, τin{0, 1} n, f (σ) f (τ) Ld(σ, τ). Since {0, 1} n is a finite set, all functions over {0, 1} n are Lipschitz. The more interesting question is the value of L, the Lipschitz constant. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

9 l -norm l -norm Definition: Let f : X R be a bounded function on a non-empty set. The l -norm of f is defined as: f = sup f (x) x X The l -norm has the following properties for f, g : X R where X is a finite set: f f 0 λf = λ f forλ R f + g f + g fg f g e f e f. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

10 A counting measure on the Hamming cube A counting measure on the Hamming cube Take # to be a counting measure on {0, 1} n such that for A {0, 1} n, #A =the number of elements in A. The following are some properties: # = 0, #{0, 1} n = 2 n. #A 0 for any A {0, 1} n Let A 1, A 2,... A k,... be a sequence of disjoint subsets of the Hamming cube. Then n n #( A i ) = #(A i ). i=1 If A B then #(A) < #(B). We can also define the normalized counting measure, µ # (A) = #A 2 n. For the normalized counting measure, µ # {0, 1} n = 1. All other properties from the counting measure hold. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12 i=1

11 Expectation Expectation Let f : {0, 1} n R be an arbitrary function. The integral of f with respect to the normalized counting measure is defined as σ {0,1} E[f ] = f (σ)dµ # (σ) = n f (σ) {0,1} n 2 n. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

12 Expectation Expectation Let f : {0, 1} n R be an arbitrary function. The integral of f with respect to the normalized counting measure is defined as σ {0,1} E[f ] = f (σ)dµ # (σ) = n f (σ) {0,1} n 2 n. Example: The expected value of the normalized weight function is E[w(σ)] = 1 2. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

13 Expectation Expectation Let f : {0, 1} n R be an arbitrary function. The integral of f with respect to the normalized counting measure is defined as σ {0,1} E[f ] = f (σ)dµ # (σ) = n f (σ) {0,1} n 2 n. Example: The expected value of the normalized weight function is E[w(σ)] = 1 2. Markov s Inequality: Let f : X R +, then µ # {x X f (x) 1} E[f ]. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

14 Conditional expectation Conditional expectation A standard partition Ω k ({0, 1} n ) of the Hamming cube consists of all sets A τ (τ {0, 1} k ) where, A τ {σ {0, 1} n πk n (σ) = τ}. Let Ω, Υ be two partitions of X. One says Ω Υ (Ω refines Υ) if for every A Ω there is a B Υ such that A B. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

15 Conditional expectation Conditional expectation A standard partition Ω k ({0, 1} n ) of the Hamming cube consists of all sets A τ (τ {0, 1} k ) where, A τ {σ {0, 1} n πk n (σ) = τ}. Let Ω, Υ be two partitions of X. One says Ω Υ (Ω refines Υ) if for every A Ω there is a B Υ such that A B. Conditional expectation: Let f : X R and let Ω be a partition over {0, 1} n. The conditional expectation of f given Ω, denoted E[f Ω] is a function from X to R: x A E[f Ω](a) = f (x) #(A) where a A. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

16 Conditional expectation Conditional expectation A standard partition Ω k ({0, 1} n ) of the Hamming cube consists of all sets A τ (τ {0, 1} k ) where, A τ {σ {0, 1} n πk n (σ) = τ}. Let Ω, Υ be two partitions of X. One says Ω Υ (Ω refines Υ) if for every A Ω there is a B Υ such that A B. Conditional expectation: Let f : X R and let Ω be a partition over {0, 1} n. The conditional expectation of f given Ω, denoted E[f Ω] is a function from X to R: x A E[f Ω](a) = f (x) #(A) where a A. Let Ω Υ be two partitions of X and f : X R, then E[f Υ] = E[E[f Ω] Υ]. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

17 Martingales Martingales Let (Ω k ({0, 1} n )) n k=0 be a refining sequence of partitions of {0, 1}n. That is Ω n ({0, 1} n ) Ω n 1 ({0, 1} n )... Ω 0 ({0, 1} n ). A martingale formed by a refining sequence of partitions is a collection of functions such that E[f i Ω i 1 ] = f i 1. A martingale difference of the martingales (f 0, f 1,..., f n ) on a set X is defined as d i = f i f i 1. So, E[d i Ω i 1 ] = 0. Application to Hamming cube. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

18 Azuma s inequality Azuma s inequality Let f : X R be a finite set on X and let (f i ) n i=0 be a corresponding martingale to a sequence of refining partitions ofx, (Ω i ) n i=0. Then for c > 0, ( c 2 ) µ # {x X f (x) E[f ] c} 2exp 2 n i=1 d i 2. Sabrina Sixta () Hamming Cube and Other Stuff Tuesday, May 27, / 12

Concentration function and other stuff

Concentration function and other stuff Concentration function and other stuff Sabrina Sixta Tuesday, June 16, 2014 Sabrina Sixta () Concentration function and other stuff Tuesday, June 16, 2014 1 / 13 Table of Contents Outline 1 Chernoff Bound

More information

Problem Set 1: Solutions Math 201A: Fall Problem 1. Let (X, d) be a metric space. (a) Prove the reverse triangle inequality: for every x, y, z X

Problem Set 1: Solutions Math 201A: Fall Problem 1. Let (X, d) be a metric space. (a) Prove the reverse triangle inequality: for every x, y, z X Problem Set 1: s Math 201A: Fall 2016 Problem 1. Let (X, d) be a metric space. (a) Prove the reverse triangle inequality: for every x, y, z X d(x, y) d(x, z) d(z, y). (b) Prove that if x n x and y n y

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms 南京大学 尹一通 Martingales Definition: A sequence of random variables X 0, X 1,... is a martingale if for all i > 0, E[X i X 0,...,X i1 ] = X i1 x 0, x 1,...,x i1, E[X i X 0 = x 0, X 1

More information

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Instructions: Answer all of the problems. Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Definitions (2 points each) 1. State the definition of a metric space. A metric space (X, d) is set

More information

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions 1 Distance Reading [SB], Ch. 29.4, p. 811-816 A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions (a) Positive definiteness d(x, y) 0, d(x, y) =

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

Lecture 3. Econ August 12

Lecture 3. Econ August 12 Lecture 3 Econ 2001 2015 August 12 Lecture 3 Outline 1 Metric and Metric Spaces 2 Norm and Normed Spaces 3 Sequences and Subsequences 4 Convergence 5 Monotone and Bounded Sequences Announcements: - Friday

More information

Error Detection and Correction: Small Applications of Exclusive-Or

Error Detection and Correction: Small Applications of Exclusive-Or Error Detection and Correction: Small Applications of Exclusive-Or Greg Plaxton Theory in Programming Practice, Fall 2005 Department of Computer Science University of Texas at Austin Exclusive-Or (XOR,

More information

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance Lecture 5 - Hausdorff and Gromov-Hausdorff Distance August 1, 2011 1 Definition and Basic Properties Given a metric space X, the set of closed sets of X supports a metric, the Hausdorff metric. If A is

More information

Basic Properties of Metric and Normed Spaces

Basic Properties of Metric and Normed Spaces Basic Properties of Metric and Normed Spaces Computational and Metric Geometry Instructor: Yury Makarychev The second part of this course is about metric geometry. We will study metric spaces, low distortion

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

Selçuk Demir WS 2017 Functional Analysis Homework Sheet Selçuk Demir WS 2017 Functional Analysis Homework Sheet 1. Let M be a metric space. If A M is non-empty, we say that A is bounded iff diam(a) = sup{d(x, y) : x.y A} exists. Show that A is bounded iff there

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES PETE L. CLARK 4. Metric Spaces (no more lulz) Directions: This week, please solve any seven problems. Next week, please solve seven more. Starred parts of

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

Bounded uniformly continuous functions

Bounded uniformly continuous functions Bounded uniformly continuous functions Objectives. To study the basic properties of the C -algebra of the bounded uniformly continuous functions on some metric space. Requirements. Basic concepts of analysis:

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

Mathematics for Economists

Mathematics for Economists Mathematics for Economists Victor Filipe Sao Paulo School of Economics FGV Metric Spaces: Basic Definitions Victor Filipe (EESP/FGV) Mathematics for Economists Jan.-Feb. 2017 1 / 34 Definitions and Examples

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

The uniform metric on product spaces

The uniform metric on product spaces The uniform metric on product spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Metric topology If (X, d) is a metric space, a X, and r > 0, then

More information

Based on the Appendix to B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University press,

Based on the Appendix to B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University press, NOTE ON ABSTRACT RIEMANN INTEGRAL Based on the Appendix to B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University press, 2003. a. Definitions. 1. Metric spaces DEFINITION 1.1. If

More information

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Yongsheng Han, Ji Li, and Guozhen Lu Department of Mathematics Vanderbilt University Nashville, TN Internet Analysis Seminar 2012

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization

Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization Uniform concentration inequalities, martingales, Rademacher complexity and symmetrization John Duchi Outline I Motivation 1 Uniform laws of large numbers 2 Loss minimization and data dependence II Uniform

More information

Integral Jensen inequality

Integral Jensen inequality Integral Jensen inequality Let us consider a convex set R d, and a convex function f : (, + ]. For any x,..., x n and λ,..., λ n with n λ i =, we have () f( n λ ix i ) n λ if(x i ). For a R d, let δ a

More information

Isodiametric problem in Carnot groups

Isodiametric problem in Carnot groups Conference Geometric Measure Theory Université Paris Diderot, 12th-14th September 2012 Isodiametric inequality in R n Isodiametric inequality: where ω n = L n (B(0, 1)). L n (A) 2 n ω n (diam A) n Isodiametric

More information

Analysis II Lecture notes

Analysis II Lecture notes Analysis II Lecture notes Christoph Thiele (lectures 11,12 by Roland Donninger lecture 22 by Diogo Oliveira e Silva) Summer term 2015 Universität Bonn July 5, 2016 Contents 1 Analysis in several variables

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

Lecture 5: Probabilistic tools and Applications II

Lecture 5: Probabilistic tools and Applications II T-79.7003: Graphs and Networks Fall 2013 Lecture 5: Probabilistic tools and Applications II Lecturer: Charalampos E. Tsourakakis Oct. 11, 2013 5.1 Overview In the first part of today s lecture we will

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide aliprantis.tex May 10, 2011 Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide Notes from [AB2]. 1 Odds and Ends 2 Topology 2.1 Topological spaces Example. (2.2) A semimetric = triangle

More information

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then MH 7500 THEOREMS Definition. A topological space is an ordered pair (X, T ), where X is a set and T is a collection of subsets of X such that (i) T and X T ; (ii) U V T whenever U, V T ; (iii) U T whenever

More information

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space. University of Bergen General Functional Analysis Problems with solutions 6 ) Prove that is unique in any normed space. Solution of ) Let us suppose that there are 2 zeros and 2. Then = + 2 = 2 + = 2. 2)

More information

Outline. Martingales. Piotr Wojciechowski 1. 1 Lane Department of Computer Science and Electrical Engineering West Virginia University.

Outline. Martingales. Piotr Wojciechowski 1. 1 Lane Department of Computer Science and Electrical Engineering West Virginia University. Outline Piotr 1 1 Lane Department of Computer Science and Electrical Engineering West Virginia University 8 April, 01 Outline Outline 1 Tail Inequalities Outline Outline 1 Tail Inequalities General Outline

More information

Math 5210, Definitions and Theorems on Metric Spaces

Math 5210, Definitions and Theorems on Metric Spaces Math 5210, Definitions and Theorems on Metric Spaces Let (X, d) be a metric space. We will use the following definitions (see Rudin, chap 2, particularly 2.18) 1. Let p X and r R, r > 0, The ball of radius

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Real Analysis Math 125A, Fall 2012 Sample Final Questions. x 1+x y. x y x. 2 (1+x 2 )(1+y 2 ) x y

Real Analysis Math 125A, Fall 2012 Sample Final Questions. x 1+x y. x y x. 2 (1+x 2 )(1+y 2 ) x y . Define f : R R by Real Analysis Math 25A, Fall 202 Sample Final Questions f() = 3 + 2. Show that f is continuous on R. Is f uniformly continuous on R? To simplify the inequalities a bit, we write 3 +

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Functional Analysis, Math 7320 Lecture Notes from August taken by Yaofeng Su

Functional Analysis, Math 7320 Lecture Notes from August taken by Yaofeng Su Functional Analysis, Math 7320 Lecture Notes from August 30 2016 taken by Yaofeng Su 1 Essentials of Topology 1.1 Continuity Next we recall a stronger notion of continuity: 1.1.1 Definition. Let (X, d

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013

A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013 A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013 Note. The purpose of these notes is to contrast the behavior of functions of a real variable and functions of

More information

Math General Topology Fall 2012 Homework 6 Solutions

Math General Topology Fall 2012 Homework 6 Solutions Math 535 - General Topology Fall 202 Homework 6 Solutions Problem. Let F be the field R or C of real or complex numbers. Let n and denote by F[x, x 2,..., x n ] the set of all polynomials in n variables

More information

A new approach to quantum metrics. Nik Weaver. (joint work with Greg Kuperberg, in progress)

A new approach to quantum metrics. Nik Weaver. (joint work with Greg Kuperberg, in progress) A new approach to quantum metrics Nik Weaver (joint work with Greg Kuperberg, in progress) Definition. A dual operator system is a linear subspace V of B(H) such that I V A V implies A V V is weak*-closed.

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

ANALYSIS WORKSHEET II: METRIC SPACES

ANALYSIS WORKSHEET II: METRIC SPACES ANALYSIS WORKSHEET II: METRIC SPACES Definition 1. A metric space (X, d) is a space X of objects (called points), together with a distance function or metric d : X X [0, ), which associates to each pair

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015 Math 30-: Midterm Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A metric on R with respect to which R is bounded. (b)

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

Embeddings of finite metric spaces in Euclidean space: a probabilistic view

Embeddings of finite metric spaces in Euclidean space: a probabilistic view Embeddings of finite metric spaces in Euclidean space: a probabilistic view Yuval Peres May 11, 2006 Talk based on work joint with: Assaf Naor, Oded Schramm and Scott Sheffield Definition: An invertible

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

Definable Extension Theorems in O-minimal Structures. Matthias Aschenbrenner University of California, Los Angeles

Definable Extension Theorems in O-minimal Structures. Matthias Aschenbrenner University of California, Los Angeles Definable Extension Theorems in O-minimal Structures Matthias Aschenbrenner University of California, Los Angeles 1 O-minimality Basic definitions and examples Geometry of definable sets Why o-minimal

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Introduction to Algebraic and Geometric Topology Week 3

Introduction to Algebraic and Geometric Topology Week 3 Introduction to Algebraic and Geometric Topology Week 3 Domingo Toledo University of Utah Fall 2017 Lipschitz Maps I Recall f :(X, d)! (X 0, d 0 ) is Lipschitz iff 9C > 0 such that d 0 (f (x), f (y)) apple

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2.

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2. Sobolevology 1. Definitions and Notation 1.1. The domain. is an open subset of R n. 1.2. Hölder seminorm. For α (, 1] the Hölder seminorm of exponent α of a function is given by f(x) f(y) [f] α = sup x

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Similarity and Dissimilarity Similarity Numerical measure of how alike two data objects are. Is higher

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Reminder Notes for the Course on Distribution Theory

Reminder Notes for the Course on Distribution Theory Reminder Notes for the Course on Distribution Theory T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie March

More information

MA651 Topology. Lecture 10. Metric Spaces.

MA651 Topology. Lecture 10. Metric Spaces. MA65 Topology. Lecture 0. Metric Spaces. This text is based on the following books: Topology by James Dugundgji Fundamental concepts of topology by Peter O Neil Linear Algebra and Analysis by Marc Zamansky

More information

Free spaces and the approximation property

Free spaces and the approximation property Free spaces and the approximation property Gilles Godefroy Institut de Mathématiques de Jussieu Paris Rive Gauche (CNRS & UPMC-Université Paris-06) September 11, 2015 Gilles Godefroy (IMJ-PRG) Free spaces

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg Metric Spaces Exercises Fall 2017 Lecturer: Viveka Erlandsson Written by M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK 1 Exercises. 1. Let X be a non-empty set, and suppose

More information

Class Notes for MATH 255.

Class Notes for MATH 255. Class Notes for MATH 255. by S. W. Drury Copyright c 2006, by S. W. Drury. Contents 0 LimSup and LimInf Metric Spaces and Analysis in Several Variables 6. Metric Spaces........................... 6.2 Normed

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

Introduction to Functional Analysis

Introduction to Functional Analysis Introduction to Functional Analysis Carnegie Mellon University, 21-640, Spring 2014 Acknowledgements These notes are based on the lecture course given by Irene Fonseca but may differ from the exact lecture

More information

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets Convergence in Metric Spaces Functional Analysis Lecture 3: Convergence and Continuity in Metric Spaces Bengt Ove Turesson September 4, 2016 Suppose that (X, d) is a metric space. A sequence (x n ) X is

More information

R. M. Brown. 29 March 2008 / Regional AMS meeting in Baton Rouge. Department of Mathematics University of Kentucky. The mixed problem.

R. M. Brown. 29 March 2008 / Regional AMS meeting in Baton Rouge. Department of Mathematics University of Kentucky. The mixed problem. mixed R. M. Department of Mathematics University of Kentucky 29 March 2008 / Regional AMS meeting in Baton Rouge Outline mixed 1 mixed 2 3 4 mixed We consider the mixed boundary value Lu = 0 u = f D u

More information

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem 56 Chapter 7 Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem Recall that C(X) is not a normed linear space when X is not compact. On the other hand we could use semi

More information

arxiv: v1 [eess.sp] 4 Nov 2018

arxiv: v1 [eess.sp] 4 Nov 2018 Estimating the Signal Reconstruction Error from Threshold-Based Sampling Without Knowing the Original Signal arxiv:1811.01447v1 [eess.sp] 4 Nov 2018 Bernhard A. Moser SCCH, Austria Email: bernhard.moser@scch.at

More information

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Prof. Wickerhauser Due Friday, February 5th, 2016 Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*. Exercises marked

More information

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES DUSTIN HEDMARK Abstract. A study of the conditions under which a topological space is metrizable, concluding with a proof of the Nagata Smirnov

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Eugenia Malinnikova NTNU. March E. Malinnikova Propagation of smallness for elliptic PDEs

Eugenia Malinnikova NTNU. March E. Malinnikova Propagation of smallness for elliptic PDEs Remez inequality and propagation of smallness for solutions of second order elliptic PDEs Part II. Logarithmic convexity for harmonic functions and solutions of elliptic PDEs Eugenia Malinnikova NTNU March

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

The Hopf argument. Yves Coudene. IRMAR, Université Rennes 1, campus beaulieu, bat Rennes cedex, France

The Hopf argument. Yves Coudene. IRMAR, Université Rennes 1, campus beaulieu, bat Rennes cedex, France The Hopf argument Yves Coudene IRMAR, Université Rennes, campus beaulieu, bat.23 35042 Rennes cedex, France yves.coudene@univ-rennes.fr slightly updated from the published version in Journal of Modern

More information

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018 ECE534, Spring 2018: s for Problem Set #4 Due Friday April 6, 2018 1. MMSE Estimation, Data Processing and Innovations The random variables X, Y, Z on a common probability space (Ω, F, P ) are said to

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

Math General Topology Fall 2012 Homework 1 Solutions

Math General Topology Fall 2012 Homework 1 Solutions Math 535 - General Topology Fall 2012 Homework 1 Solutions Definition. Let V be a (real or complex) vector space. A norm on V is a function : V R satisfying: 1. Positivity: x 0 for all x V and moreover

More information

Chapter II. Metric Spaces and the Topology of C

Chapter II. Metric Spaces and the Topology of C II.1. Definitions and Examples of Metric Spaces 1 Chapter II. Metric Spaces and the Topology of C Note. In this chapter we study, in a general setting, a space (really, just a set) in which we can measure

More information

COUNTABLE PRODUCTS ELENA GUREVICH

COUNTABLE PRODUCTS ELENA GUREVICH COUNTABLE PRODUCTS ELENA GUREVICH Abstract. In this paper, we extend our study to countably infinite products of topological spaces.. The Cantor Set Let us constract a very curios (but usefull) set known

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

1 Inner Product Space

1 Inner Product Space Ch - Hilbert Space 1 4 Hilbert Space 1 Inner Product Space Let E be a complex vector space, a mapping (, ) : E E C is called an inner product on E if i) (x, x) 0 x E and (x, x) = 0 if and only if x = 0;

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

MODULUS AND CONTINUOUS CAPACITY

MODULUS AND CONTINUOUS CAPACITY Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 455 464 MODULUS AND CONTINUOUS CAPACITY Sari Kallunki and Nageswari Shanmugalingam University of Jyväskylä, Department of Mathematics

More information

Numerical Sequences and Series

Numerical Sequences and Series Numerical Sequences and Series Written by Men-Gen Tsai email: b89902089@ntu.edu.tw. Prove that the convergence of {s n } implies convergence of { s n }. Is the converse true? Solution: Since {s n } is

More information

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. 2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is

More information