Solution: Homework 3 Biomedical Signal, Systems and Control (BME )

Size: px
Start display at page:

Download "Solution: Homework 3 Biomedical Signal, Systems and Control (BME )"

Transcription

1 Solution: Homework Biomedical Signal, Systems and Control (BME 80.) Instructor: René Vidal, TA: Donavan Cheng, TA: Ertan Cetingul, April, 008. (0 points) Modeling glucose metabolism Glucose metabolism can be represented by the two compartment model shown below. Glucose enters gastrointestinal (GI) tract and gets absorbed into the bloodstream where it is metabolized. A rabbit is fed with glucose. Let the concentration of glucose in the GI tract and bloodstream at time t be x (t) and x (t) respectively, and let the rate of glucose ingestion be z(t). Assume the volume of the two compartments are both liter. Also assume that there is a negligible amount of glucose in the bloodstream and GI tract before the oral dose. z(t) GI tract λ Blood λ (a) Let us assume glucose is absorbed into the blood stream at a rate in proportion to x (t) with a proportionality constant λ. Meanwhile, glucose is metabolized at a rate in proportion to x (t) with proportionality constant λ. Set up the differential equations for x (t) and x (t). (b) In this system, x (t) and x (t) are the internal states, and the system output is y(t) x (t). Find the transfer function of this system. (Hint: are the solutions the same for λ λ and λ λ?) (c) Now let us only consider the case λ λ. What is the output y(t) if the input is z(t) δ(t)? When does the blood glucose concentration reach a maximum? Answer: (a) The differential equations are: ẋ (t) λ x (t) + z(t), ẋ (t) λ x (t) + λ x (t). (b) Assuming no glucose in GI or blood at t 0, i.e., zero initial conditions, take the Laplace transform of the differential equations We can write (s) X (s) sx (s) λ X (s) + Z(s), sx (s) λ X (s) + λ X (s). λ (s+λ )(s+λ ) Z(s), and H(s) (s) Z(s) λ ( λ )( λ ). If λ λ λ H(s) ( λ ).

2 (c) First do partial fraction expansion to H(s) H(s) λ ( λ )( λ ) A λ + A ( λ )H(s) s λ λ λ λ B ( λ )H(s) s λ λ λ λ The response to z(t) δ(t) is the impulse response h(t) B λ h(t) L (H(s)) λ λ λ (e λt e λt )u(t), where u(t) is the step function. ou can ignore the step function term in h(t) but in that case you have to specify that t 0. The extremum point is obtained at t ˆt where dh 0, i.e., dt tˆt dh dt λ ( λ e λˆt + λ e λˆt ) 0 λ e λˆt + λ e λˆt 0. () tˆt λ λ Take logs of both sides and solve Eqn. () for ˆt, i.e., ˆt λ λ log. (0 points) Find the Laplace transform and region of convergence of the following time functions: (a) f(t) t sin t (b) f(t) t sin t t cos t (c) f(t) (t) + t cos t (d) f(t) sin t sin t (e) f(t) sin t + cos t ( λ Answer: Note that we always take unilateral Laplace transform defined for t 0 (a) Use multiplication by time Laplace transform property, i.e., L{tg(t)} d dsg(s). Let g(t) sin(t) and use L{sin(at)} a s +a, λ ). L{t sin(t)} d ds s + s (s + ) s s + s +. Note that for Re{s} > 0, e st t sin(t) 0 as t. So the region of convergence (ROC) is Re{s} > 0. (b) Using the following properties of the Laplace transform L{tg(t)} d ds G(s), L{sin(at)} L{cos(at)} a s + a, s s + a,

3 we can calculate (c) L{f(t)} L{t sin(t)} L{t cos(t)} d [ ds s d ] s + 9 ds s + 6s (s + 9) (s ) (s + ) s6 + 6s s + s 6s (s + 9) (s + ). Note that for Re{s} > 0, e st (t sin(t) t cos(t)) 0 as t. So the region of convergence (ROC) is Re{s} > 0. L{f(t)} L{(t)} + L{t cos(t)} [ d ] s ds s + [ s ] s + (s + ) 0s + 8 s(s + ) Note that for Re{s} > 0, e st ((t) + t cos(t)) 0 as t. So the region of convergence (ROC) is Re{s} > 0. (d) Using the trigonometric relation we have sin(αt) sin(βt) cos( α β t) cos( α + β t), with α and β, f(t) cos( t) cos( + t) cos(t) cos(t) L{f(t)} L{cos(t)} L{cos(t)} s s + s s + 6 6s (s + )(s + 6) Note that for Re{s} > 0, e st sin(t) sin(t) 0 as t. So the region of convergence (ROC) is Re{s} > 0. (e) Using the trigonometric relations sin (t) cos(t) and cos (t) + cos(t),

4 we have f(t) cos(t) + cos(t) L{f(t)} L{} + L{cos(t)} s s + 8 s(s + ) [ ] + cos(t) + Note that for Re{s} > 0, e st (sin (t) + cos (t)) 0 as t. So the region of convergence (ROC) is Re{s} > 0.. (0 points) Find the time function corresponding to each of the following Laplace transforms using partial fraction expansions: (a) F (s) s+ s +s+0 (b) F (s) (s+) (s+)(s +) (c) F (s) s+ s (d) F (s) s+ s 6 (e) F (s) (s+)(s+) (s+)(s +) Answer: (a) Rewrite and carry out partial fraction expansion, (b) F (s) s + 0 [ ( ) ] ( ) + ( ) ( ) + ( ) + f(t) L {F (s)} e t cos(t) e t sin(t), t 0. F (s) C ( ) ( )(s + ) C + C C s + ( ) s + s After equating the coefficients of s, s, and in the numerator we obtain 8 + C s + (C + C ) + C 8 + C C C + C C.

5 We then get F (s) (c) Perform partial fraction expansion, + s + + s s s + f(t) e t cos(t) + 6 sin(t), t 0. F (s) s s + (s )(s + ) C s + C C s + C (s )F (s) s s + s s + C C s + s + (s )(s + ) After equating the coefficients of s, s, and in the numerator we obtain s + C + s C + C + C s + We then get F (s) (d) Carry out partial fraction expansion, s + s + s + ( + + C C C C ) f(t) L {F (s)} et + e t cos F (s) s 6 A (s )F (s) s ( ) t, t 0. A s + B + C D s + B ( )F (s) s

6 After equating the coefficients of s, s, s, and in the numerator we obtain s ( + + C) + s ( + D) + s( + C) + ( D) S + f(t) L {F (s)} et + e t + cos(t) sin(t), t 0. Alternate solution: F (s) s 6 C C s + C C s C C + D 0 D s + s s + f(t) L {F (s)} cosh(t) + sinh(t) + cos(t) sin(t), t 0. (e) Perform partial fraction expansion F (s) ( )( ) ( )(s + ) A + B C s + + D E (s + ) A ( )F (s) s.80 After equating the coefficients of s, s, s, s, and in the numerator we obtain s ( + B) + s (B + C) + s ( 6 + B + C + D) + s(b + C + D + E) + ( + C + E) s B 0 B.80 We then get 6 F (s) s + + (s + ) B + C C B + C + D D 90.6 B + C + D + E 90 E f(t).8e t.80 cos(t) +.60 sin(t) + 7.8t sin(t) +.τ sin(τ)dτ, 0.8e t.80 cos(t) +.60 sin(t) + 7.8t sin(t) 6.6t cos(t) + 8. sin(t), f(t).8e t.80 cos(t) sin(t) + 7.8t sin(t) 6.6t cos(t). t 6

7 Alternate solution: Expand in partial fraction expansion F (s) ( )( ) ( )(s + ) C + C s j + C j + C (s j) + C ( j) C ( )F (s) s.80 C (s j) F (s) sj.0 j.90 C C.0 + j.90 C d [ (s j) F (s) ] sj ds C C j j 00 ou can use Matlab function residue to check the results. We then have 0.6 j.89 f(t).8e t + C cos(t + arg(c )) + C t cos(t + arg(c )).8e t cos(t.788) t cos(t.70), where C.9689, C.8, and arg(c ) tan.788, arg(c ) tan (0 points) Solve the following ordinary differential equations using Laplace transforms: (a) ÿ(t) + ẏ(t) + y(t) 0; y(0) ; ẏ(0) (b) ÿ(t) + ẏ(t) sin t; y(0) ; ẏ(0) (c) ÿ(t) + ẏ(t) e t ; y(0) ; ẏ(0) Answer: (a) Use the differentiation Laplace transform property to get We then get (s) s (s) sy(0) ẏ(0) + s (s) y(0) + (s) 0. s ( y(t) e t cos ) + ( t + ) (b) Use the differentiation Laplace transform property to get ( ) + + e t sin ( t s (s) sy(0) ẏ(0) + s (s) y(0) s +. ), t

8 We then get and match coefficients of to obtain s ( + C (s) s + s( )(s + ) C C + C C s + C s + ( )(s + ) s0 C s + s(s + ) s ) + s ( + C + C ) + s + C + s + s + C + C, C + C. So y(t) becomes y(t) e t cos(t) sin(t), t 0. (c) Use the differentiation Laplace transform property to get We then calculate s (s) sy(0) ẏ(0) + s (s) y(0) s. (s) s + s s(s )( ) C C s + C s + s C (s )( ) s0 C s s( ) s C s s(s ) s 6 (s) s 6 [ y(t) + et ] 6 e t u(t).. (0 points) Find the transfer functions for the block diagrams in Figure. The special structure in Figure (b) is called the observer canonical form. Answer: (a) The block diagram in Figure can be simplified to the diagram in Figure with G and G such that G G and G G. G H G H 8

9 06 CHAPTER. DNAMIC RESPONSE 0. Find the transfer functions for the block diagrams in Fig.., using the ideas of block diagram simpli cation. The special; structure in Fig.. (b) is called the observer canonical form and will be discussed in Chapter 7. R R S G S G S b b b H S G S Figure : Block a a a diagrams for Problem H s S s S s (a ) ( b ) R b b b S s S Then the transfer function can be written as a s S s R G ( + G ) + G ( + G )G a G ( G H )( G H ) + G G ( G H ) a. ( c ) + ( G H )( G H ) + G G ( G H ) + G G G R ( s ) S A ( s ) S B ( s ) S ( s ) (b) We move the summing junction on the right past the integrator to get b s and repeat to get (b + b s)s. H ( s ) Meanwhile we apply the feedback rule to the first inner loop to get s+a and repeat for the second and G ( s ) third loops to get the simplified block diagram (d ) in Figure and the transfer function: Figure.: [Text Fig..] Block diagrams for Problem.0 D ( s ) R b s + b b s + a s + a a. (c) Applying block diagram reduction (see Figure ) i.e., reduce innermost loop, shift b to the b node, reduce Solution: next innermost loop and continue systematically to obtain: Part (a): Transfer functions found using the ideas of Figs..6 and.7: (a) (a) Block diagram for Fig.. (a). Figure : Simplified block diagram for Problem (a) 9

10 R G ( + G ) G ( G H )( G H ) + G G ( G H ) + G ( + G : )G + ( G H )( G H ) + G G ( G H ) + G G G (c) Block diagram for Fig..(c). (b) We move the summer on the right past the integrator to get b s and repeat to get (b + b s)s. Meanwhile we apply the feedback rule to the rst inner loop to get as shown in the gure and repeat for s+a the second and third loops to get: (b) Block diagram for Fig..(b). Figure : Simplified block diagram for Problem (b) R b s + b b s + a s + a a : (c) Applying block diagram reduction: reduce innermost loop, shift b to the b node, reduce next innermost loop and continue systematically to obtain: (c) Block diagram for Fig..(c). Figure : Simplified block diagram for Problem (c) R b s + (a b + b ) a b + a b + b s + a s : + a a R b s + (a b + b ) a b + a b + b s + a s. + a a 09 (d) (d) The simplified block diagram is depicted in Figure and the transfer function can be written as: (d) Block diagram for Fig..(d). Figure : Simplified block diagram for Problem (d) R D + AB + G(D + AB ) D + DBH + AB + BH + GD + GBDH + GAB. 0 D + AB D + DBH + AB

Computing inverse Laplace Transforms.

Computing inverse Laplace Transforms. Review Exam 3. Sections 4.-4.5 in Lecture Notes. 60 minutes. 7 problems. 70 grade attempts. (0 attempts per problem. No partial grading. (Exceptions allowed, ask you TA. Integration table included. Complete

More information

Solutions: Homework 2 Biomedical Signal, Systems and Control (BME )

Solutions: Homework 2 Biomedical Signal, Systems and Control (BME ) Solutions: Homework 2 Biomedical Signal, Systems and Control (BE 580.222) Instructor: René Vidal, E-mail: rvidal@cis.jhu.edu TA: Donavan Cheng, E-mail: donavan.cheng@gmail.com TA: Ertan Cetingül, E-mail:

More information

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K. 4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

Module 39: Periodic Forcing Functions

Module 39: Periodic Forcing Functions Module 39: Periodic Forcing Functions For a variety of reasons, periodic functions arise in natural phenomena, either as forcing functions for systems or as states of systems. They arise so often that

More information

The Laplace Transform and the IVP (Sect. 6.2).

The Laplace Transform and the IVP (Sect. 6.2). The Laplace Transform and the IVP (Sect..2). Solving differential equations using L ]. Homogeneous IVP. First, second, higher order equations. Non-homogeneous IVP. Recall: Partial fraction decompositions.

More information

EE Homework 12 - Solutions. 1. The transfer function of the system is given to be H(s) = s j j

EE Homework 12 - Solutions. 1. The transfer function of the system is given to be H(s) = s j j EE3054 - Homework 2 - Solutions. The transfer function of the system is given to be H(s) = s 2 +3s+3. Decomposing into partial fractions, H(s) = 0.5774j s +.5 0.866j + 0.5774j s +.5 + 0.866j. () (a) The

More information

Chapter DEs with Discontinuous Force Functions

Chapter DEs with Discontinuous Force Functions Chapter 6 6.4 DEs with Discontinuous Force Functions Discontinuous Force Functions Using Laplace Transform, as in 6.2, we solve nonhomogeneous linear second order DEs with constant coefficients. The only

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

MA 201, Mathematics III, July-November 2016, Laplace Transform

MA 201, Mathematics III, July-November 2016, Laplace Transform MA 21, Mathematics III, July-November 216, Laplace Transform Lecture 18 Lecture 18 MA 21, PDE (216) 1 / 21 Laplace Transform Let F : [, ) R. If F(t) satisfies the following conditions: F(t) is piecewise

More information

MATH 251 Examination II April 3, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 3, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination II April 3, 2017 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Formulation of Linear Constant Coefficient ODEs

Formulation of Linear Constant Coefficient ODEs E E 380 Linear Control Systems Supplementary Reading Methods for Solving Linear Constant Coefficient ODEs In this note, we present two methods for solving linear constant coefficient ordinary differential

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have Math 090 Midterm Exam Spring 07 S o l u t i o n s. Results of this problem will be used in other problems. Therefore do all calculations carefully and double check them. Find the inverse Laplace transform

More information

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section: MATH 251 Examination II April 7, 2014 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n 1, Remarks:

Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n 1, Remarks: Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n, d n, t < δ n (t) = n, t 3 d3 d n, t > n. d t The Dirac delta generalized function

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

20.5. The Convolution Theorem. Introduction. Prerequisites. Learning Outcomes

20.5. The Convolution Theorem. Introduction. Prerequisites. Learning Outcomes The Convolution Theorem 2.5 Introduction In this Section we introduce the convolution of two functions f(t), g(t) which we denote by (f g)(t). The convolution is an important construct because of the convolution

More information

{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}.

{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}. EM Solved roblems Lalace & Fourier transform c Habala 3 EM Solved roblems Lalace & Fourier transform Find the Lalace transform of the following functions: ft t sint; ft e 3t cos3t; 3 ft e 3s ds; { sint,

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

CH.6 Laplace Transform

CH.6 Laplace Transform CH.6 Laplace Transform Where does the Laplace transform come from? How to solve this mistery that where the Laplace transform come from? The starting point is thinking about power series. The power series

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

Control Systems. Frequency domain analysis. L. Lanari

Control Systems. Frequency domain analysis. L. Lanari Control Systems m i l e r p r a in r e v y n is o Frequency domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

ECE 3793 Matlab Project 3 Solution

ECE 3793 Matlab Project 3 Solution ECE 3793 Matlab Project 3 Solution Spring 27 Dr. Havlicek. (a) In text problem 9.22(d), we are given X(s) = s + 2 s 2 + 7s + 2 4 < Re {s} < 3. The following Matlab statements determine the partial fraction

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix Third In-Class Exam Solutions Math 26, Professor David Levermore Thursday, December 2009 ) [6] Given that 2 is an eigenvalue of the matrix A 2, 0 find all the eigenvectors of A associated with 2. Solution.

More information

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the

More information

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is,

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is, .5. Convolutions and Solutions Solutions of initial value problems for linear nonhomogeneous differential equations can be decomposed in a nice way. The part of the solution coming from the initial data

More information

Lecture 29. Convolution Integrals and Their Applications

Lecture 29. Convolution Integrals and Their Applications Math 245 - Mathematics of Physics and Engineering I Lecture 29. Convolution Integrals and Their Applications March 3, 212 Konstantin Zuev (USC) Math 245, Lecture 29 March 3, 212 1 / 13 Agenda Convolution

More information

Laplace Theory Examples

Laplace Theory Examples Laplace Theory Examples Harmonic oscillator s-differentiation Rule First shifting rule Trigonometric formulas Exponentials Hyperbolic functions s-differentiation Rule First Shifting Rule I and II Damped

More information

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination II April 4, 2016 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Solutions of the Sample Problems for the Third In-Class Exam Math 246, Fall 2017, Professor David Levermore

Solutions of the Sample Problems for the Third In-Class Exam Math 246, Fall 2017, Professor David Levermore Solutions of the Sample Problems for the Third In-Class Exam Math 6 Fall 07 Professor David Levermore Compute the Laplace transform of ft t e t ut from its definition Solution The definition of the Laplace

More information

REVIEW FOR MT3 ANSWER KEY MATH 2373, SPRING 2015

REVIEW FOR MT3 ANSWER KEY MATH 2373, SPRING 2015 REVIEW FOR MT3 ANSWER KEY MATH 373 SPRING 15 PROF. YOICHIRO MORI This list of problems is not guaranteed to be an absolutel complete review. For completeness ou must also make sure that ou know how to

More information

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013 EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Laplace Transform. Chapter 4

Laplace Transform. Chapter 4 Chapter 4 Laplace Transform It s time to stop guessing solutions and find a systematic way of finding solutions to non homogeneous linear ODEs. We define the Laplace transform of a function f in the following

More information

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 16.3 LAPLACE TRANSFORMS 3 (Differential equations) by A.J.Hobson 16.3.1 Examples of solving differential equations 16.3.2 The general solution of a differential equation 16.3.3

More information

Math 216 Second Midterm 19 March, 2018

Math 216 Second Midterm 19 March, 2018 Math 26 Second Midterm 9 March, 28 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

ECE : Linear Circuit Analysis II

ECE : Linear Circuit Analysis II Purdue University School of Electrical and Computer Engineering ECE 20200 : Linear Circuit Analysis II Summer 2014 Instructor: Aung Kyi San Instructions: Midterm Examination I July 2, 2014 1. Wait for

More information

Final Exam Review. Review of Systems of ODE. Differential Equations Lia Vas. 1. Find all the equilibrium points of the following systems.

Final Exam Review. Review of Systems of ODE. Differential Equations Lia Vas. 1. Find all the equilibrium points of the following systems. Differential Equations Lia Vas Review of Systems of ODE Final Exam Review 1. Find all the equilibrium points of the following systems. (a) dx = x x xy (b) dx = x x xy = 0.5y y 0.5xy = 0.5y 0.5y 0.5xy.

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Solutions to Assignment 7

Solutions to Assignment 7 MTHE 237 Fall 215 Solutions to Assignment 7 Problem 1 Show that the Laplace transform of cos(αt) satisfies L{cosαt = s s 2 +α 2 L(cos αt) e st cos(αt)dt A s α e st sin(αt)dt e stsin(αt) α { e stsin(αt)

More information

Solution to Homework Assignment 1

Solution to Homework Assignment 1 ECE602 Fall 2008 Homework Solution September 2, 2008 Solution to Homework Assignment. Consider the two-input two-output system described by D (p)y (t)+d 2 (p)y 2 (t) N (p)u (t)+n 2 (p)u 2 (t) D 2 (p)y

More information

SOLUTIONS TO PRACTICE EXAM 3, SPRING 2004

SOLUTIONS TO PRACTICE EXAM 3, SPRING 2004 8034 SOLUTIONS TO PRACTICE EXAM 3, SPRING 004 Problem Let A be a real matrix and consider the linear system of first order differential equations, y y (t) Ay(t), y(t) (t) y (t) Let α be a real number,

More information

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.)

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) Lecture 19 Lecture 19 MA 201, PDE (2018) 1 / 24 Application of Laplace transform in solving ODEs ODEs with constant coefficients

More information

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc Advanced Analog Building Blocks Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc 1 Topics 1. S domain and Laplace Transform Zeros and Poles 2. Basic and Advanced current

More information

Chapter 6: The Laplace Transform 6.3 Step Functions and

Chapter 6: The Laplace Transform 6.3 Step Functions and Chapter 6: The Laplace Transform 6.3 Step Functions and Dirac δ 2 April 2018 Step Function Definition: Suppose c is a fixed real number. The unit step function u c is defined as follows: u c (t) = { 0

More information

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes Further Laplace Transforms 2.3 Introduction In this Section we introduce the second shift theorem which simplifies the determination of Laplace and inverse Laplace transforms in some complicated cases.

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

ECE 3793 Matlab Project 3

ECE 3793 Matlab Project 3 ECE 3793 Matlab Project 3 Spring 2017 Dr. Havlicek DUE: 04/25/2017, 11:59 PM What to Turn In: Make one file that contains your solution for this assignment. It can be an MS WORD file or a PDF file. Make

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Differential Equations

Differential Equations Differential Equations Math 341 Fall 21 MWF 2:3-3:25pm Fowler 37 c 21 Ron Buckmire http://faculty.oxy.edu/ron/math/341/1/ Worksheet 29: Wednesday December 1 TITLE Laplace Transforms and Introduction to

More information

Calculus of Variations Summer Term 2015

Calculus of Variations Summer Term 2015 Calculus of Variations Summer Term 2015 Lecture 14 Universität des Saarlandes 24. Juni 2015 c Daria Apushkinskaya (UdS) Calculus of variations lecture 14 24. Juni 2015 1 / 20 Purpose of Lesson Purpose

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Generalizing the Fourier Transform The CTFT expresses a time-domain signal as a linear combination of complex sinusoids of the form e jωt. In the generalization of the CTFT to the

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section:

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section: MATH 251 Examination II November 5, 2018 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work

More information

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006 Multivariable Control Lecture 3 Description of Linear Time Invariant Systems John T. Wen September 7, 26 Outline Mathematical description of LTI Systems Ref: 3.1-3.4 of text September 7, 26Copyrighted

More information

Final Exam December 20, 2011

Final Exam December 20, 2011 Final Exam December 20, 2011 Math 420 - Ordinary Differential Equations No credit will be given for answers without mathematical or logical justification. Simplify answers as much as possible. Leave solutions

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries . AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

More information

Ordinary Differential Equations. Session 7

Ordinary Differential Equations. Session 7 Ordinary Differential Equations. Session 7 Dr. Marco A Roque Sol 11/16/2018 Laplace Transform Among the tools that are very useful for solving linear differential equations are integral transforms. An

More information

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions.

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. COLOR LAYER red LAPLACE TRANSFORM Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. + Differentiation of Transforms. F (s) e st f(t)

More information

Introduction to Controls

Introduction to Controls EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

More information

Ordinary differential equations

Ordinary differential equations Class 11 We will address the following topics Convolution of functions Consider the following question: Suppose that u(t) has Laplace transform U(s), v(t) has Laplace transform V(s), what is the inverse

More information

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

More information

Math 216 Final Exam 14 December, 2012

Math 216 Final Exam 14 December, 2012 Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Problems and Solutions for Section 3.1

Problems and Solutions for Section 3.1 Chapter 3 Dynamic Response Problems and Solutions for Section 3.. Show that, in a partial-fraction expansion, complex conjugate poles have coefficients that are also complex conjugates. (The result of

More information

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] =

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] = Chapter 3 The Laplace Transform 3. The Laplace Transform The Laplace transform of the function f(t) is defined L[f(t)] = e st f(t) dt, for all values of s for which the integral exists. The Laplace transform

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Syllabus ECE 316, Spring 2015 Final Grades Homework (6 problems per week): 25% Exams (midterm and final): 50% (25:25) Random Quiz: 25% Textbook M. Roberts, Signals and Systems, 2nd

More information

Control System. Contents

Control System. Contents Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

More information

APPPHYS 217 Tuesday 6 April 2010

APPPHYS 217 Tuesday 6 April 2010 APPPHYS 7 Tuesday 6 April Stability and input-output performance: second-order systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Bounded-input bounded-output (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated

More information

Finding Transfer Functions of Circuits Using State-Space

Finding Transfer Functions of Circuits Using State-Space Objective: Finding Transfer Functions of Circuits Using State-Space Write the state-space model for a circuit Find the transfer function for a system in state-space form Discussion Assume either The input

More information

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state

More information

INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto

INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

More information

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Linear Control Systems Solution to Assignment #1

Linear Control Systems Solution to Assignment #1 Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the

More information

Differential Equations Class Notes

Differential Equations Class Notes Differential Equations Class Notes Dan Wysocki Spring 213 Contents 1 Introduction 2 2 Classification of Differential Equations 6 2.1 Linear vs. Non-Linear.................................. 7 2.2 Seperable

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

EE102 Homework 2, 3, and 4 Solutions

EE102 Homework 2, 3, and 4 Solutions EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

One-Sided Laplace Transform and Differential Equations

One-Sided Laplace Transform and Differential Equations One-Sided Laplace Transform and Differential Equations As in the dcrete-time case, the one-sided transform allows us to take initial conditions into account. Preliminaries The one-sided Laplace transform

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

APPM 2360: Midterm exam 3 April 19, 2017

APPM 2360: Midterm exam 3 April 19, 2017 APPM 36: Midterm exam 3 April 19, 17 On the front of your Bluebook write: (1) your name, () your instructor s name, (3) your lecture section number and (4) a grading table. Text books, class notes, cell

More information

MAE143 A - Signals and Systems - Winter 11 Midterm, February 2nd

MAE143 A - Signals and Systems - Winter 11 Midterm, February 2nd MAE43 A - Signals and Systems - Winter Midterm, February 2nd Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may

More information

Math 216 Second Midterm 17 November, 2016

Math 216 Second Midterm 17 November, 2016 Math 216 Second Midterm 17 November, 2016 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

L2 gains and system approximation quality 1

L2 gains and system approximation quality 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION L2 gains and system approximation quality 1 This lecture discusses the utility

More information

Review Sol. of More Long Answer Questions

Review Sol. of More Long Answer Questions Review Sol. of More Long Answer Questions 1. Solve the integro-differential equation t y (t) e t v y(v)dv = t; y()=. (1) Solution. The key is to recognize the convolution: t e t v y(v) dv = e t y. () Now

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information