Electricity & Magnetism Lecture 14

Size: px
Start display at page:

Download "Electricity & Magnetism Lecture 14"

Transcription

1 Electricit & Magnetism Lecture 14 Toda s Concept: Biot-Savart Law Electricit & Magne/sm Lecture 14, Slide 1

2 The order of events Toda we will do Unit 26 S 1 Wednesda will do Unit 26 S2 Frida will do Unit 27 S1 to learn Oscilloscope Monda will do Unit 26 S3

3 Your comments are important to somebod Could ou summarie all the right hand rules? I think I dislocated m wrist while tring to appl the right hand rule Shouldn't all current in a wire flow on the outside surface, and therefore the magnec field inside it be ero? Is it intenonal for homework from Biot-Savart Law to Farada's Law to be due on the same da? That's a lot of homeworkthree is usuall barel tolerable (TT_TT) pls hev merc Are there an formulas that are general and can be used for an tpe of problem, or are there specific formulas for specific situaons? I found the lecture for the hsics 212 online and it explained things a lot beyer than the prelecture I actuall understand how to use the right hand rule now

4 This lecture seemed eas, but mabe I don't know what I don't know

5 What is it? Biot-Savart Law: Fundamental law for determining the direcon and magnitude of the magnec field due to an element of current It is named for Jean-Baptiste Biot and Felix Savart who discovered this relationship in 1820 We can use this law to calculate the magnec field produced b ANY current distribuon BUT Eas analc calculaons are possible onl for a few distribuons: Text Axis of Current Loop Infinite Straight Wire lan for Toda: Mainl use the results of these calculaons! GOOD NEWS: Remember Gauss Law? Allowed us to calculate E for smmetrical charge distribuons NEXT TIME: Introduce Ampère s Law Allows us to calculate B for smmetrical current distribuons Electricit & Magne/sm Lecture 14, Slide 2

6 B from Infinite Line of Current Magnitude: Integrang gives result r = distance from wire B r Current I OUT µ 0 = T m/a Direcon: Thumb: on I Fingers: curl in direcon of B Electricit & Magne/sm Lecture 14, Slide 3

7 Currents + Charges A long straight wire is carring current from led to right Two iden/cal charges are moving with equal speed Compare the magnitude of the force on charge a moving directl to the right, to the magnitude of the force on charge b moving up and to the right at the instant shown (ie same distance from the wire) (a) r v (b) r v I A) F a > F b B) F a = F b C) F a < F b Electricit & Magne/sm Lecture 14, Slide 4

8 Adding Magnetic Fields Two long wires carr opposite current x What is the direc/on of the magne/c field above, and midwa between the two wires carring current at the point marked? A) Leb B) Right C) Up D) Down E) Zero Electricit & Magne/sm Lecture 14, Slide 5

9 Force Between Current-Carring Wires I towards d B us F Another I towards us F 12 = I 2 L µ 0 2 d I 1 Conclusion: Currents in same direcon ayract! I towards B us d F Another I awa from us Conclusion: Currents in opposite direcon repel! Electricit & Magne/sm Lecture 14, Slide 6

10 Checkoint 2 & 4 What is the direcon of the force on wire 2 due to wire 1? A) Up B) Down C) Into Screen D) Out of screen E) Zero What is the direcon of the torque on wire 2 due to wire 1? A) Up B) Down C) Into Screen D) Out of screen E) Zero Electricit & Magne/sm Lecture 14, Slide 7

11 Checkoint 7 What is the direcon of the force on wire 2 due to wire 1? A) Up B) Down C) Into Screen D) Out of screen E) Zero Electricit & Magne/sm Lecture 14, Slide 8

12 Consider Force on Smmetric Segments B I F out of screen I F into screen B r r Net Force is Zero! What about torque? Electricit & Magne/sm Lecture 14, Slide 9

13 Checkoint 9 What is the net torque on wire 2 due to wire 1? What is the direction of the torque on wire 2 due to wire 1? A) Up B) Down C) Into Screen D) Out of screen E) Zero Text Electricit & Magne/sm Lecture 14, Slide 10

14 Consider Force on Smmetric Segments τ B I F out of screen I F into screen B r Text r What about torque? Electricit & Magne/sm Lecture 14, Slide 9

15 B on axis from Current Loop I Resulng B Field Current in Wire Electricit & Magne/sm Lecture 14, Slide 12

16 Two Current Loops Two idencal loops are hung next to each other Current flows in the same direcon in both The loops will: A) A`ract each other B) Repel each other Electricit & Magne/sm Lecture 14, Slide 13

17 Right Hand Rule Review 1 ANY CROSS RODUCT 2 Direcon of Magnec Moment Fingers: Current in Loop Thumb: Magne/c Moment 3 Direcon of Magnec Field from Wire Fingers: Magne/c Field Thumb: Current Electricit & Magne/sm Lecture 14, Slide 14

18 Calculation Two parallel horiontal wires are located in the vercal (x,) plane as shown Each wire carries a current of I = 1A flowing in the direcons shown What is the B field at point? I 1 = 1A I 2 = 1A x 3cm Front view Side view Conceptual Analsis Each wire creates a magnec field at B from infinite wire: B = µ 0 I / 2πr Total magnec field at obtained from superposion Strategic Analsis Calculate B at from each wire separatel Total B = vector sum of individual B fields Electricit & Magne/sm Lecture 14, Slide 15

19 Calculation Two parallel horiontal wires are located in the vercal (x,) plane as shown Each wire carries a current of I = 1A flowing in the direcons shown What is the B field at point? I 1 = 1A I 2 = 1A x 3cm Front view Side view What is the direc/on of B at produced b the top current I 1? A B C D E Electricit & Magne/sm Lecture 14, Slide 16

20 What is the direc/on of B at produced b the bo`om current I 2? Calculation Two parallel horiontal wires are located in the vercal (x,) plane as shown Each wire carries a current of I = 1A flowing in the direcons shown What is the B field at point? Front view I 1 = 1A I 2 = 1A x 3cm Side view A B C D E Electricit & Magne/sm Lecture 14, Slide 17

21 Calculation Two parallel horiontal wires are located in the vercal (x,) plane as shown Each wire carries a current of I = 1A flowing in the direcons shown What is the B field at point? I 1 = 1A I 2 = 1A x 3cm What is the direc/on of B at? Front view Side view A B C D Electricit & Magne/sm Lecture 14, Slide 18

22 Calculation Two parallel horiontal wires are located in the vercal (x,) plane as shown Each wire carries a current of I = 1A flowing in the direcons shown What is the B field at point? What is the magnitude of B at produced b the top current I 1? (µ 0 = 4π x 10 7 T m/a) Text A) 40 x 10 6 T B) 50 x 10 6 T C) 67 x 10 6 T Front view I 1 = 1A I 2 = 1A x 3cm Side view µ 0 2 = T m/a Electricit & Magne/sm Lecture 14, Slide 19

23 Calculation Two parallel horiontal wires are located in the vercal (x,) plane as shown Each wire carries a current of I = 1A flowing in the direcons shown What is the B field at point? B top = 4 x 10 6 T Front view I 1 = 1A I 2 = 1A x 3cm What is the magnitude of B at? (µ 0 = 4π x 10-7 T - m/a) A) 32 x 10 6 T B) 48 x 10 6 T C) 64 x 10 6 T D) 80 x 10 6 T B total = B x1 + B x2 = 2 3! T = T 5 Electricit & Magne/sm Lecture 14, Slide 20

Electricity & Magnetism Lecture 14

Electricity & Magnetism Lecture 14 Electricit & Magnetism Lecture 14 Toda s Concept: Biot- Savart Law Electricit & Magne=sm Lecture 14, Slide 1 Your comments are important to somebod lease explain how wires exert torque on each other and

More information

Electricity & Magnetism Lecture 13

Electricity & Magnetism Lecture 13 Electricit & Magnetism Lecture 13 Toda s Concept: Torques Electricit & Magne9sm Lecture 13, Slide 1 Extra Deadlines Extra deadlines have been set up for Prelectures and Checkpoints that happened last week.

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Electricity & Magnetism Lecture 18

Electricity & Magnetism Lecture 18 Electricity & Magnetism ecture 18 Today s Concepts: A) Induc4on B) R Circuits Electricity & Magne/sm ecture 18, Slide 1 Extended deadline for next few FlipItPhysics homework:! 80% extended by one week.

More information

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Physics 212 Jonathan Dowling Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Jean-Baptiste Biot (1774-1862) Felix Savart (1791 1841) Electric Current: A Source of Magnetic Field Observation:

More information

Physics 2112 Unit 16

Physics 2112 Unit 16 Physics 2112 Unit 16 Concept: Motional EMF Unit 16, Slide 1 Your Comments Hopefully I will understand more after lecture. May be time to open the book. can we go over the conducting loop moving toward

More information

Elements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1

Elements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1 Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8) Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires Biot-Savart Law Examples: ring,

More information

Elements of Physics II. Agenda for Today

Elements of Physics II. Agenda for Today Physics 132: Lecture e 18 Elements of Physics II Agenda for Today Magnets and the Magnetic Field Magnetic fields caused by charged particles B-field from a current-carrying wire Magnetic fields and forces

More information

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq

More information

Chapter 28 Source of Magnetic Field

Chapter 28 Source of Magnetic Field Chapter 28 Source of Magnetic Field Lecture by Dr. Hebin Li Goals of Chapter 28 To determine the magnetic field produced by a moving charge To study the magnetic field of an element of a current-carrying

More information

Electricity & Magnetism Lecture 1: Coulomb s Law

Electricity & Magnetism Lecture 1: Coulomb s Law Electricity & Magnetism Lecture 1: Coulomb s Law Today s Concepts: A) Coulomb s Law B) Superposi

More information

Phys 102 Lecture 12 Currents & magnetic fields

Phys 102 Lecture 12 Currents & magnetic fields Phys 102 Lecture 12 Currents & magnetic fields 1 Today we will... Learn how magnetic fields are created by currents Use specific examples Long straight wire Current loop Solenoid Apply these concepts Electromagnets

More information

Electricity & Magnetism Lecture 18

Electricity & Magnetism Lecture 18 Electricity & Magnetism ecture 18 Today s Concepts: A) Induc4on B) R Circuits Electricity & Magne4sm ecture 18, Slide 1 Stuff you said.. Will there be more lab ac4vi4es involving oscilloscopes? Unlike

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

Physics 2212 G Quiz #4 Solutions Spring 2018 = E

Physics 2212 G Quiz #4 Solutions Spring 2018 = E Physics 2212 G Quiz #4 Solutions Spring 2018 I. (16 points) The circuit shown has an emf E, three resistors with resistance, and one resistor with resistance 3. What is the current through the resistor

More information

Ampere s law. Lecture 15. Chapter 32. Physics II. Course website:

Ampere s law. Lecture 15. Chapter 32. Physics II. Course website: Lecture 15 Chapter 32 Physics II Ampere s law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Ampere s Law Electric Field From Coulomb s law 1 4 Magnetic Field Bio-Savart law 4

More information

= e = e 3 = = 4.98%

= e = e 3 = = 4.98% PHYS 212 Exam 2 - Practice Test - Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.

More information

AP Physics C. Electricity and Magne4sm Review

AP Physics C. Electricity and Magne4sm Review AP Physics C Electricity and Magne4sm Review Electrosta4cs 30% Chap 22-25 Charge and Coulomb s Law Electric Field and Electric Poten4al (including point charges) Gauss Law Fields and poten4als of other

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

The Steady Magnetic Field LECTURE 7

The Steady Magnetic Field LECTURE 7 The Steady Magnetic Field LECTURE 7 Learning Objectives Understand the Biot-Savart Law Understand the Ampere s Circuital Law Explain the Application of Ampere s Law Motivating the Magnetic Field Concept:

More information

Announcements This week:

Announcements This week: Announcements This week: Homework due Thursday March 22: Chapter 26 sections 3-5 + Chapter 27 Recitation on Friday March 23: Chapter 27. Quiz on Friday March 23: Homework, Lectures 12, 13 and 14 Properties

More information

Ch 30 - Sources of Magnetic Field

Ch 30 - Sources of Magnetic Field Ch 30 - Sources of Magnetic Field Currents produce Magnetism? 1820, Hans Christian Oersted: moving charges produce a magnetic field. The direction of the field is determined using a RHR. Oersted (1820)

More information

Magnetostatics: Part 1

Magnetostatics: Part 1 Magnetostatics: Part 1 We present magnetostatics in comparison with electrostatics. Sources of the fields: Electric field E: Coulomb s law. Magnetic field B: Biot-Savart law. Charge Current (moving charge)

More information

Physics 2135 Exam 3 April 19, 2016

Physics 2135 Exam 3 April 19, 2016 Exam Total / 200 hsics 2135 Exam 3 April 19, 2016 rinted Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearl correct answer. 1. Two long, straight parallel

More information

Forces & Magnetic Dipoles. Phys 122 Lecture 18 D. Hertzog

Forces & Magnetic Dipoles. Phys 122 Lecture 18 D. Hertzog orces & Magnetic Dipoles µ = τ U AI = µ = µ θ θ. Phys 122 Lecture 18 D. Hertzog µ usiness Regrade requests by 4 pm riday (no eceptions) Solutions/Key posted on home page Last Time: The Lorentz orce and

More information

Biot-Savart. The equation is this:

Biot-Savart. The equation is this: Biot-Savart When a wire carries a current, this current produces a magnetic field in the vicinity of the wire. One way of determining the strength and direction of this field is with the Law of Biot-Savart.

More information

Electricity & Magnetism Lecture 5: Electric Potential Energy

Electricity & Magnetism Lecture 5: Electric Potential Energy Electricity & Magnetism Lecture 5: Electric Potential Energy Today... Ø Ø Electric Poten1al Energy Unit 21 session Gravita1onal and Electrical PE Electricity & Magne/sm Lecture 5, Slide 1 Stuff you asked

More information

Chapter 30 Sources of the magnetic field

Chapter 30 Sources of the magnetic field Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? Biot-Savart Law Set-Up The magnetic field is

More information

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Today s Concepts: A) Electric Flux B) Field Lines Gauss Law Electricity & Magne@sm Lecture 3, Slide 1 Your Comments What the heck is epsilon

More information

CH 19-1 Magnetic Field

CH 19-1 Magnetic Field CH 19-1 Magnetic Field Important Ideas A moving charged particle creates a magnetic field everywhere in space around it. If the particle has a velocity v, then the magnetic field at this instant is tangent

More information

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 22 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

Physics 2212 GH Quiz #4 Solutions Spring 2016

Physics 2212 GH Quiz #4 Solutions Spring 2016 Physics 2212 GH Quiz #4 Solutions Spring 2016 I. (18 points) A bar (mass m, length L) is connected to two frictionless vertical conducting rails with loops of wire, in the presence of a uniform magnetic

More information

March 11. Physics 272. Spring Prof. Philip von Doetinchem

March 11. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 32 Summary Magnetic

More information

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1 Outline Introduce as an analogy to Gauss Law. Define. Applications of. Objectives Recognise to be analogous to Gauss Law. Recognise similar concepts: (1) draw an imaginary shape enclosing the current carrying

More information

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law. Magnetic Fields Charge q as source Gauss s Law Electric field E F = q E Faraday s Law Ampere-Maxwell Law Current I as source Magnetic field B Ampere s Law F = q v B Force on q in the field Force on q v

More information

Electricity & Magnetism Lecture 2: Electric Fields

Electricity & Magnetism Lecture 2: Electric Fields Electricity & Magnetism Lecture 2: Electric Fields Today s Concepts: A) The Electric Field B) Con9nuous Charge Distribu9ons Electricity & Magne9sm Lecture 2, Slide 1 Your Comments Suddenly, terrible haiku:

More information

PHY132 Lecture 13 02/24/2010. Lecture 13 1

PHY132 Lecture 13 02/24/2010. Lecture 13 1 Classical Physics II PHY132 Lecture 13 Magnetism II: Magnetic torque Lecture 13 1 Magnetic Force MAGNETISM is yet another force that has been known since a very long time. Its name stems from the mineral

More information

μ 0 I enclosed = B ds

μ 0 I enclosed = B ds Ampere s law To determine the magnetic field created by a current, an equation much easier to use than Biot-Savart is known as Ampere s law. As before, μ 0 is the permeability of free space, 4π x 10-7

More information

A little history. Electricity and Magnetism are related!

A little history. Electricity and Magnetism are related! Intro to Magnetism A little history Until the early 19 th century, scientists thought electricity and magnetism were unrelated In 1820, Danish science professor Hans Christian Oersted was demonstrating

More information

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives:

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Measuring the magnetic field of a current passing through long straight and conductor wire as a function of the current. Measuring the magnetic

More information

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH.

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it NORTH. This end points to the South; call it SOUTH. Unit 9 Magnetism This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH." 1 The behavior of magnetic poles is similar to that of like and unlike electric charges. Law

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields Consider the forces between charges in motion Attraction of parallel currents and Repulsion of antiparallel ones: How do you explain

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism The figure shows the path of a negatively charged particle in a region of a uniform magnetic field. Answer the following questions about this situation (in each case, we revert back

More information

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018 Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of

More information

Lecture 29. PHYC 161 Fall 2016

Lecture 29. PHYC 161 Fall 2016 Lecture 29 PHYC 161 Fall 2016 Magnetic Force and Torque on a Current Loop Let s look at the Net force and net torque on a current loop: df Idl B F IaB top and bottom F IbB sides But, the forces on opposite

More information

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect Magnetic Fields Key Contents Magnetic fields and the Lorentz force The Hall effect Magnetic force on current The magnetic dipole moment Biot-Savart law Ampere s law The magnetic dipole field What is a

More information

PHYS 212 Final Exam (Old Material) Solutions - Practice Test

PHYS 212 Final Exam (Old Material) Solutions - Practice Test PHYS 212 Final Exam (Old Material) Solutions - Practice Test 1E If the ball is attracted to the rod, it must be made of a conductive material, otherwise it would not have been influenced by the nearby

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

Phys102 Lecture 16/17 Magnetic fields

Phys102 Lecture 16/17 Magnetic fields Phys102 Lecture 16/17 Magnetic fields Key Points Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on an Electric Charge Moving in a Magnetic

More information

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is ragsdale (zdr8) HW7 ditmire (585) This print-out should have 8 questions. Multiple-choice questions ma continue on the net column or page find all choices efore answering. 00 0.0 points A wire carring

More information

Electricity and Magnetism Magnetic Field from Moving Charges

Electricity and Magnetism Magnetic Field from Moving Charges Electricity and Magnetism Magnetic Field from Moving Charges Lana Sheridan De Anza College Nov 17, 2015 Last time force on a wire with a current in a B-field torque on a wire loop in a B-field motors relating

More information

Magnetic Fields due to Currents

Magnetic Fields due to Currents Observation: a current of moving charged particles produces a magnetic field around the current. Chapter 29 Magnetic Fields due to Currents Magnetic field due to a current in a long straight wire a current

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Electromagnetic

More information

Electricity & Magnetism Lecture 12

Electricity & Magnetism Lecture 12 Electricity & Magnetism Lecture 12 Today s Concept: Magne2c Force on Moving Charges Electricity & Magne2sm Lecture 12, Slide 1 Today s rants I'm struggling a fair bit with this component of the course.

More information

Electricity & Magnetism Lecture 10: Kirchhoff s Rules

Electricity & Magnetism Lecture 10: Kirchhoff s Rules Electricity & Magnetism Lecture 10: Kirchhoff s Rules Today s Concept: Kirchhoff s Rules Electricity & Magne

More information

Electricity & Magnetism Lecture 2: Electric Fields

Electricity & Magnetism Lecture 2: Electric Fields Electricity & Magnetism Lecture 2: Electric Fields Today s Concepts: A) The Electric Field B) Con3nuous Charge Distribu3ons Electricity & Magne3sm Lecture 2, Slide 1 Your Comments Suddenly, terrible haiku:

More information

Exercise Exercise Correct. Correct. Part A

Exercise Exercise Correct. Correct. Part A Heimadæmi 7 Due: :00pm on Thursday, March 3, 206 You will receive no credit for items you complete after the assignment is due. Grading Policy Exercise 28. z A +z direction mm A long, straight wire lies

More information

Electricity & Magnetism Lecture 9: Conductors and Capacitance

Electricity & Magnetism Lecture 9: Conductors and Capacitance Electricity & Magnetism Lecture 9: Conductors and Capacitance Today s Concept: A) Conductors B) Capacitance ( Electricity & Magne7sm Lecture 7, Slide 1 Some of your comments This chapter makes absolute

More information

Sources of Magnetic Field

Sources of Magnetic Field Chapter 28 Sources of Magnetic Field PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 28 To determine the

More information

Magnetic Forces and Fields

Magnetic Forces and Fields Magnetic Forces and Fields Physics 102 Lecture 3 21 February 2002 IF NOT REGISTERED FOR PHYSICS 102, SEE REGISTRAR ASAP, AND REGISTER 21 Feb 2002 Physics 102 Lecture 3 1 RC Puzzler 21 Feb 2002 Physics

More information

Your Comments. I don't understand how to find current given the velocity and magnetic field. I only understand how to find external force

Your Comments. I don't understand how to find current given the velocity and magnetic field. I only understand how to find external force Your Comments CONFUSED! Especially with the direction of eerything The rotating loop checkpoint question is incredibly difficult to isualize. All of this is pretty confusing, but 'm especially confused

More information

Chapter 20 Lecture Notes

Chapter 20 Lecture Notes Chapter 20 Lecture Notes Physics 2424 - Strauss Formulas: B = µ 0 I/2πr B = Nµ 0 I/(2R) B = µ 0 ni Σ B l = µ 0 I F = Bqv sinθ r = mv/bq m = (er 2 /2V) B 2 F = ILB sinθ τ = NIAB sinϕ F/L = I 2 I 1 µ 0 /2πd

More information

Magnetism and Vectors

Magnetism and Vectors Physics 1051 Workshop 5 Magnetism and Vectors Workshop 5 - Contents I. Where do Vector Cross Products Appear? II. Review of What We've Seen Already I. Magnetic Force on a Charge Particle II.Magnetic Force

More information

Chapter 22 Magnetism

Chapter 22 Magnetism Chapter 22 Magnetism 1 Overview of Chapter 22 The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Chapter 29: Magnetic Fields Due to Currents. PHY2049: Chapter 29 1

Chapter 29: Magnetic Fields Due to Currents. PHY2049: Chapter 29 1 Chapter 29: Magnetic Fields Due to Currents PHY2049: Chapter 29 1 Law of Magnetism Unlike the law of static electricity, comes in two pieces Piece 1: Effect of B field on moving charge r r F = qv B (Chapt.

More information

General Physics II. Magnetism

General Physics II. Magnetism General Physics II Magnetism Bar magnet... two poles: N and S Like poles repel; Unlike poles attract. Bar Magnet Magnetic Field lines [B]: (defined in a similar way as electric field lines, direction and

More information

Electricity & Magnetism Lecture 10: Kirchhoff s Rules

Electricity & Magnetism Lecture 10: Kirchhoff s Rules Electricity & Magnetism Lecture 10: Kirchhoff s Rules Today s Concept: Kirchhoff s Rules Electricity & Magne/sm Lecture 10, Slide 1 Deadline for Unit 23 Ac>vity guide and WriBen Homework is pushed to Friday

More information

Good Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A

Good Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A Good Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A The correct solution process is the right answer Do you know all the following? Circuits Current, Voltage,

More information

Physics 202: Lecture 8, Pg 1

Physics 202: Lecture 8, Pg 1 Physics 132: Lecture e 18 Elements of Physics II Agenda for Today Magnets and the Magnetic Field Magnetic fields caused by charged particles B-field from a current-carrying carrying wire Magnetic fields

More information

Electricity and Magnetism B-Fields from Moving Charges

Electricity and Magnetism B-Fields from Moving Charges Electricity and Magnetism B-Fields from Moving Charges Lana Sheridan De Anza College Feb 28, 2018 Last time force on a curved current carrying wire torque on a wire loop magnetic dipole moment Overview

More information

Module 3: Electromagnetism

Module 3: Electromagnetism Module 3: Electromagnetism Lecture - Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an electromagnetic

More information

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Force on a Current Carrying Wire! The magnitude of the magnetic force on a wire of length L carrying a current i is F = il

More information

Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations

Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations Today in Physics 1: finding B Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations of B from Ampère s law Uniform currents in conductors?

More information

Physics 4B Chapter 29: Magnetic Fields Due to Currents

Physics 4B Chapter 29: Magnetic Fields Due to Currents Physics 4B Chapter 29: Magnetic Fields Due to Currents Nothing can bring you peace but yourself. Ralph Waldo Emerson The foolish man seeks happiness in the distance, the wise man grows it under his feet.

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

A = Qinside. E d. Today: fundamentals of how currents generate magnetic fields 10/7/15 2 LECTURE 14. Our Study of Magnetism

A = Qinside. E d. Today: fundamentals of how currents generate magnetic fields 10/7/15 2 LECTURE 14. Our Study of Magnetism LECTUE 4 Fundamental Laws for Calculating B-field Biot-Savart Law ( brute force Ampere s Law ( high symmetry Example: B-field of an nfinite Straight Wire from Biot-Savart Law from Ampere s Law Other examples

More information

Lecture 20 Ampère s Law

Lecture 20 Ampère s Law Lecture 20 Ampère s Law Sections: 7.2, partially 7.7 Homework: See homework file Ampère s Law in ntegral Form 1 the field of a straight wire with current (Lecture 19) B H = = a a φ φ µ, T 2πρ, A/m 2πρ

More information

Physics 202, Lecture 12. Today s Topics

Physics 202, Lecture 12. Today s Topics Physics 202, Lecture 12 Today s Topics Magnetic orces (Ch. 27) Review: magnetic force, magnetic dipoles Motion of charge in uniform field: Applications: cyclotron, velocity selector, Hall effect Sources

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications.

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications. The Cross Product In this section, we will learn about: Cross products of vectors and their applications. THE CROSS PRODUCT The cross product a x b of two vectors a and b, unlike the dot product, is a

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields and Forces Fundamentally they do not exist If we had special relativity we would find there is no such thing as a magnetic field. It is only a relativistic transformation

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM PHY294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 handwritten problem per week) Help-room hours: 12:40-2:40 Monday

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Magnetic Fields Part 2: Sources of Magnetic Fields

Magnetic Fields Part 2: Sources of Magnetic Fields Magnetic Fields Part 2: Sources of Magnetic Fields Last modified: 08/01/2018 Contents Links What Causes a Magnetic Field? Moving Charges Right Hand Grip Rule Permanent Magnets Biot-Savart Law Magnetic

More information

Presentations. Dr. Douglas Beck. Mr. Ray Schroeder. Dr. Terri Weaver. Professor, Urbana. Associate Vice Chancellor for Online Learning, Springfield

Presentations. Dr. Douglas Beck. Mr. Ray Schroeder. Dr. Terri Weaver. Professor, Urbana. Associate Vice Chancellor for Online Learning, Springfield Presentations Dr. Douglas Beck Professor, Urbana Mr. Ray Schroeder Associate Vice Chancellor for Online Learning, Springfield Dr. Terri Weaver Dean, College of Nursing, Chicago Blended Web/Live Course

More information

Section 9: Magnetic Forces on Moving Charges

Section 9: Magnetic Forces on Moving Charges Section 9: Magnetic Forces on Moving Charges In this lesson you will derive an expression for the magnetic force caused by a current carrying conductor on another current carrying conductor apply F = BIL

More information

Lecture 13 Chapter 29 Magnetism Course website:

Lecture 13 Chapter 29 Magnetism Course website: Lecture 13 Chapter 29 Magnetism Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 29: Section 29.1-3 Section 29.5 (skip) Section 29.7 ConcepTest

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

Other Formulae for Electromagnetism. Biot's Law Force on moving charges

Other Formulae for Electromagnetism. Biot's Law Force on moving charges Other Formulae for Electromagnetism Biot's Law Force on moving charges 1 Biot's Law. Biot's Law states that the magnetic field strength (B) is directly proportional to the current in a straight conductor,

More information

Physics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Magnetic Induction Before we can talk about induction we need to understand magnetic flux. You can think of flux as the number of field lines passing through an area. Here is the formula: flux

More information

Chapter 29. Magnetic Fields due to Currentss

Chapter 29. Magnetic Fields due to Currentss Chapter 29 Magnetic Fields due to Currentss Refresher: The Magnetic Field Permanent bar magnets have opposite poles on each end, called north and south. Like poles repel; opposites attract. If a magnet

More information

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws Chapter 30 Sources of the Magnetic Field Amperes and Biot-Savart Laws F B on a Charge Moving in a Magnetic Field Magnitude proportional to charge and speed of the particle Direction depends on the velocity

More information

DAY 12. Summary of Topics Covered in Today s Lecture. Magnetic Fields Exert Torques on a Loop of Current

DAY 12. Summary of Topics Covered in Today s Lecture. Magnetic Fields Exert Torques on a Loop of Current DAY 12 Summary of Topics Covered in Today s Lecture Magnetic Fields Exert Torques on a Loop of Current Imagine a wire bent into the shape of a rectangle with height h and width w. The wire carries a current

More information

Every magnet has a north pole and south pole.

Every magnet has a north pole and south pole. Magnets - Intro The lodestone is a naturally occurring mineral called magnetite. It was found to attract certain pieces of metal. o one knew why. ome early Greek philosophers thought the lodestone had

More information

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units.

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units. Chapter 9 THE MAGNETC FELD ntroduction Magnetic field due to a moving point charge Units Biot-Savart Law Gauss s Law for magnetism Ampère s Law Maxwell s equations for statics Summary NTRODUCTON Last lecture

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26 Magnetic Fields PHYS 272 - David Blasing Wednesday June 26th 1 / 26 Magnetic ( B) Fields This is a significant change, until now we have discussed just E fields. Now we are talking about a totally different

More information