Math 2214 Solution Test 1D Spring 2015

Size: px
Start display at page:

Download "Math 2214 Solution Test 1D Spring 2015"

Transcription

1 Math 2214 Solution Test 1D Spring 2015 Problem 1: A 600 gallon open top tank initially holds 300 gallons of fresh water. At t = 0, a brine solution containing 3 lbs of salt per gallon is poured into the tank at a rate of 4 gallons per minute while a well stirred solution leaves the tank at a rate of 2 gallons per minute. a) Set up the differential equation that models this scenario. (do not solve) b) At what time will overflow occur? Solution: (8pts) a) Set up the differential equation that models this scenario. (do not solve) 12, (0) t Solution: (4pts) c) At what time will overflow occur? Volume = = 600, so t = 150 min. Problem 2: time t is given to be Using Newton s law of cooling we have the temperature of a given object at any T t ( ) e F a) What was the initial temperature of the object? b) What was the limiting temperature for the object? Solution: (8pts) a) What was the initial temperature of the object? At t = 0, T(0) = e 0 = = 60 b) What was the limiting temperature for the object? Limit t ( e ) I would like to comment here that is not number value and you should not try to use this notation in your calculations. Also, when the limit is zero then you should write the zero in the appropriate place.

2 Problem 3: Use Euler s method (not Euler s formula) to evaluate y(4) when you are given the y following non-linear differential equation. y, with the initial value y(2) = 1 and h = 1. 2 t Discuss if you think the estimate would be close. Explain why or why not. Solution: (16pts) the method involves finding a point, slope and the equation of the tangent line. Then evaluate the point of interest. y 1 Part 1) We are given the point (2, ) and the slope is y 2, and the equation is t 4 y 1 (1 4)( t 2) to simplify to y ( t 4) (1 2) and y(3) = 54 Part 2) We now have the point (3, 54) and the slope is 5 4 5, (3) 36 y and the equation is 2 y 5 4 (5 36)( t 3) to simplify to y (5 t 36) 5 6 and y(4) = 2518 In general the step value between the t values is probably too large to be a close estimation Problem 4: A body of weight 160 lbs is dropped with an initial velocity of 4 ftsec. The resistance constant due to air is given to be k = 10. Using the given differential equation, find the equation for velocity at any time t. mv mg kv Solution: (16pts) Since the weight is given to be 160 lbs we know that mg = m(32) = 160 so m = 5. Using mv mg kv and inserting appropriate values we have 5v v 32 2v 2 t so [ ve ] dt 32e dt v v 2v 32 find the integrating factor to be u = e ve 16e C v 16 Ce using v(0) = 4 (since velocity is negative) 4 16 C and C = 12, so v e

3 Problem 5: Given the differential equation y 1 cos t e Solutions: (10pts) Consider the given solution: y 1 e ye cost e cost cost [ ye ] [ e 1] cos t cos t cost y p t y g t ( ) ( ) with a particular solution, find p(t) and g(t). Show all work and explain reasoning. 1 Take the derivative on both sides to get the following: cost cost cos t y e sin( t) e y sin( t) e 0 [ y sin( t) y sin( t)] e Clearly the integrating factor is u(t) = cost e, p(t) = -sin(t) and g(t) = sin(t) Problem 6: Given the following direction field, find the possible autonomous differential equation associated with it and clearly justify your answer. 1) y ( y1)( y 2) 2) y ( y 2)( y1) 3) y (1 y)( y 2) Solution (10 pts) We first notice the equilibrium isoclines are found at y = 1 and y = -2. By investigating the equations above we notice that when we set y = 0 we have the following results: 1) 0 = (y +1)(y + 2) and so y = -2 and y = - 1 which matches up with the equilibrium isocline y = -2 but not y = 1.

4 2) 0 = (-y 2)(y - 1) and so y = -2 and y = 1 which matches up with both equilibrium isoclines y = 1 and y = -2. 3) 0 = - (1- y)(y + 2) and so y = -2 and y = 1 which matches up with both equilibrium isoclines y = 1 and y = -2. Since 2) and 3) are each a possibility, we will check other isoclines in the direction field to see if slopes match. We will test the slope when y = 0. So in 2) y = ( - 0 2)(0-1) = 2 which is a positive slope that corresponds with the graph. Now check 3) so y = - (1-0)(0 + 2) = -2 which is negative and dose not match. We should test 2) for one more isocline. Let y = -4 to get y = (-(-4)-2)(-4 1) = - 10 which is a negative slope. Therefore 2) is the DE that generates this direction field. Problem 7: Demonstrate how to use the Existence and Uniqueness Theorem to find the largest rectangular region that guarantees a unique solution for the non-linear differential equation y ( t 3) sec( y), with initial value y( 4) = 1. Sketch the region. Solution:(12pts) sec( y) f ( t, y) y t 3 f sec( y) tan( y) y t3 notice 3 < t < and 2 y 2 for the initial value y( 4) =1 To sketch the region you need to plot the initial value point and enclose it in the rectangular region that is bounded by the intervals given above

5 Problem 8: differential equation In a certain agency a computer virus is spreading at a rate modeled by the k where the initially there were 20 computers infected. In a day a 2 total of 100 were infected. Use the method separation of variables to solve for the number computers infected at any given time t. Solution: (16pts) 2 2 (0) = kt C and with initail values this gives us C = kt and with value t = 1day and = 100, k = so k d k dt d 2 dt kdt 1 1 t 20 25

6

Sample Questions, Exam 1 Math 244 Spring 2007

Sample Questions, Exam 1 Math 244 Spring 2007 Sample Questions, Exam Math 244 Spring 2007 Remember, on the exam you may use a calculator, but NOT one that can perform symbolic manipulation (remembering derivative and integral formulas are a part of

More information

Chapter 2 Notes, Kohler & Johnson 2e

Chapter 2 Notes, Kohler & Johnson 2e Contents 2 First Order Differential Equations 2 2.1 First Order Equations - Existence and Uniqueness Theorems......... 2 2.2 Linear First Order Differential Equations.................... 5 2.2.1 First

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: (a) Equilibrium solutions are only defined

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: This is an isocline associated with a slope

More information

Differential Equations

Differential Equations Math 181 Prof. Beydler 9.1/9.3 Notes Page 1 of 6 Differential Equations A differential equation is an equation that contains an unknown function and some of its derivatives. The following are examples

More information

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ). Section 1.1 Direction Fields Key Terms/Ideas: Mathematical model Geometric behavior of solutions without solving the model using calculus Graphical description using direction fields Equilibrium solution

More information

Solutions x. Figure 1: g(x) x g(t)dt ; x 0,

Solutions x. Figure 1: g(x) x g(t)dt ; x 0, MATH Quiz 4 Spring 8 Solutions. (5 points) Express ln() in terms of ln() and ln(3). ln() = ln( 3) = ln( ) + ln(3) = ln() + ln(3). (5 points) If g(x) is pictured in Figure and..5..5 3 4 5 6 x Figure : g(x)

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

dy x a. Sketch the slope field for the points: (1,±1), (2,±1), ( 1, ±1), and (0,±1).

dy x a. Sketch the slope field for the points: (1,±1), (2,±1), ( 1, ±1), and (0,±1). Chapter 6. d x Given the differential equation: dx a. Sketch the slope field for the points: (,±), (,±), (, ±), and (0,±). b. Find the general solution for the given differential equation. c. Find the

More information

P (t) = rp (t) 22, 000, 000 = 20, 000, 000 e 10r = e 10r. ln( ) = 10r 10 ) 10. = r. 10 t. P (30) = 20, 000, 000 e

P (t) = rp (t) 22, 000, 000 = 20, 000, 000 e 10r = e 10r. ln( ) = 10r 10 ) 10. = r. 10 t. P (30) = 20, 000, 000 e APPM 360 Week Recitation Solutions September 18 01 1. The population of a country is growing at a rate that is proportional to the population of the country. The population in 1990 was 0 million and in

More information

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Chapter 1. Introduction Section 1.1 Background Definition Equation that contains some derivatives of an unknown function is called

More information

Graded and supplementary homework, Math 2584, Section 4, Fall 2017

Graded and supplementary homework, Math 2584, Section 4, Fall 2017 Graded and supplementary homework, Math 2584, Section 4, Fall 2017 (AB 1) (a) Is y = cos(2x) a solution to the differential equation d2 y + 4y = 0? dx2 (b) Is y = e 2x a solution to the differential equation

More information

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation.

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation. Section.3.5.3, #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation dq = 1 4 (1 + sin(t) ) + Q, Q(0) = 50. (1) 100 (a) The differential equation given

More information

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November 6 2017 Name: Student ID Number: I understand it is against the rules to cheat or engage in other academic misconduct

More information

Differential equations

Differential equations Differential equations Math 27 Spring 2008 In-term exam February 5th. Solutions This exam contains fourteen problems numbered through 4. Problems 3 are multiple choice problems, which each count 6% of

More information

LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS 130 LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS: A differential equation (DE) is an equation involving an unknown function and one or more of its derivatives. A differential

More information

Math Assignment 2

Math Assignment 2 Math 2280 - Assignment 2 Dylan Zwick Spring 2014 Section 1.5-1, 15, 21, 29, 38, 42 Section 1.6-1, 3, 13, 16, 22, 26, 31, 36, 56 Section 2.1-1, 8, 11, 16, 29 Section 2.2-1, 10, 21, 23, 24 1 Section 1.5

More information

ANOTHER FIVE QUESTIONS:

ANOTHER FIVE QUESTIONS: No peaking!!!!! See if you can do the following: f 5 tan 6 sin 7 cos 8 sin 9 cos 5 e e ln ln @ @ Epress sin Power Series Epansion: d as a Power Series: Estimate sin Estimate MACLAURIN SERIES ANOTHER FIVE

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1 Math 392 Exam 1 Solutions Fall 20104 1. (10 pts) Find the general solution to the differential equation = 1 y 2 t + 4ty = 1 t(y 2 + 4y). Hence (y 2 + 4y) = t y3 3 + 2y2 = ln t + c. 2. (8 pts) Perform Euler

More information

MATH 251 Examination I July 5, 2011 FORM A. Name: Student Number: Section:

MATH 251 Examination I July 5, 2011 FORM A. Name: Student Number: Section: MATH 251 Examination I July 5, 2011 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

4. Some Applications of first order linear differential

4. Some Applications of first order linear differential September 9, 2012 4-1 4. Some Applications of first order linear differential Equations The modeling problem There are several steps required for modeling scientific phenomena 1. Data collection (experimentation)

More information

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination I February 25, 2016 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit

More information

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, SPRING 2019 UNIVERSITY OF MINNESOTA ANSWER KEY

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, SPRING 2019 UNIVERSITY OF MINNESOTA ANSWER KEY REVIEW PROBLEMS FOR MIDTERM I MATH 2373, SPRING 209 UNIVERSITY OF MINNESOTA ANSWER KEY This list of problems is not guaranteed to be a complete review. For a complete review make sure that you know how

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Definition: A differential equation is an equation involving the derivative of a function. If the function depends on a single variable, then only ordinary derivatives appear and

More information

Math Spring 2014 Homework 2 solution

Math Spring 2014 Homework 2 solution Math 3-00 Spring 04 Homework solution.3/5 A tank initially contains 0 lb of salt in gal of weater. A salt solution flows into the tank at 3 gal/min and well-stirred out at the same rate. Inflow salt concentration

More information

MATH 312 Section 3.1: Linear Models

MATH 312 Section 3.1: Linear Models MATH 312 Section 3.1: Linear Models Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Population Growth 2 Newton s Law of Cooling 3 Kepler s Law Second Law of Planetary Motion 4

More information

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx Chapter 6 AP Eam Problems Antiderivatives. ( ) + d = ( + ) + 5 + + 5 ( + ) 6 ( + ). If the second derivative of f is given by f ( ) = cos, which of the following could be f( )? + cos + cos + + cos + sin

More information

Homework 2 Solutions Math 307 Summer 17

Homework 2 Solutions Math 307 Summer 17 Homework 2 Solutions Math 307 Summer 17 July 8, 2017 Section 2.3 Problem 4. A tank with capacity of 500 gallons originally contains 200 gallons of water with 100 pounds of salt in solution. Water containing

More information

Basic Theory of Differential Equations

Basic Theory of Differential Equations page 104 104 CHAPTER 1 First-Order Differential Equations 16. The following initial-value problem arises in the analysis of a cable suspended between two fixed points y = 1 a 1 + (y ) 2, y(0) = a, y (0)

More information

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, SPRING 2015 ANSWER KEY

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, SPRING 2015 ANSWER KEY REVIEW PROBLEMS FOR MIDTERM I MATH 2373, SPRING 2015 ANSWER KEY Problem 1 Standing in line at the supermarket I see Alice, Bob and Carol ahead of me in the express check-out lane. Alice buys 2 bags of

More information

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section: MATH 251 Examination I October 10, 2013 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, FALL 2016 ANSWER KEY

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, FALL 2016 ANSWER KEY REVIEW PROBLEMS FOR MIDTERM I MATH 2373, FALL 2016 ANSWER KEY This list of problems is not guaranteed to be an absolutely complete review. For a complete review make sure that you know how to do all the

More information

First Order ODEs, Part II

First Order ODEs, Part II Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline Existence & Uniqueness Theorems 1 Existence & Uniqueness Theorems

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Swaroop Nandan Bora swaroop@iitg.ernet.in Department of Mathematics Indian Institute of Technology Guwahati Guwahati-781039 A first-order differential equation is an equation

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

y = sin(x) y = x x = 0 x = 1.

y = sin(x) y = x x = 0 x = 1. Math 122 Fall 2008 Unit Test 2 Review Problems Set B We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Compartmental Analysis

Compartmental Analysis Compartmental Analysis Math 366 - Differential Equations Material Covering Lab 3 We now learn how to model some physical phonomena through DE. General steps for modeling (you are encouraged to find your

More information

Homework 3, due February 4, 2015 Math 307 G, J. Winter 2015

Homework 3, due February 4, 2015 Math 307 G, J. Winter 2015 Homework 3, due February 4, 205 Math 307 G, J. Winter 205 In Problems -8, find the general solution of the equation. If initial conditions are given, solve also the initial value problem. is Problem. y

More information

Drill Exercise Differential equations by abhijit kumar jha DRILL EXERCISE - 1 DRILL EXERCISE - 2. e x, where c 1

Drill Exercise Differential equations by abhijit kumar jha DRILL EXERCISE - 1 DRILL EXERCISE - 2. e x, where c 1 DRILL EXERCISE -. Find the order and degree (if defined) of the differential equation 5 4 3 d y d y. Find the order and degree (if defined) of the differential equation n. 3. Find the order and degree

More information

Modeling with Differential Equations

Modeling with Differential Equations Modeling with Differential Equations 1. Exponential Growth and Decay models. Definition. A quantity y(t) is said to have an exponential growth model if it increases at a rate proportional to the amount

More information

Chapters 8.1 & 8.2 Practice Problems

Chapters 8.1 & 8.2 Practice Problems EXPECTED SKILLS: Chapters 8.1 & 8. Practice Problems Be able to verify that a given function is a solution to a differential equation. Given a description in words of how some quantity changes in time

More information

Math 2410Q - 10 Elementary Differential Equations Summer 2017 Midterm Exam Review Guide

Math 2410Q - 10 Elementary Differential Equations Summer 2017 Midterm Exam Review Guide Math 410Q - 10 Elementary Differential Equations Summer 017 Mierm Exam Review Guide Math 410Q Mierm Exam Info: Covers Sections 1.1 3.3 7 questions in total Some questions will have multiple parts. 1 of

More information

Math Applied Differential Equations

Math Applied Differential Equations Math 256 - Applied Differential Equations Notes Existence and Uniqueness The following theorem gives sufficient conditions for the existence and uniqueness of a solution to the IVP for first order nonlinear

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 2 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 2 Solutions MA 214 Calculus IV (Spring 2016) Section 2 Homework Assignment 2 Solutions 1 Boyce and DiPrima, p 60, Problem 2 Solution: Let M(t) be the mass (in grams) of salt in the tank after t minutes The initial-value

More information

Do not write in this space. Problem Possible Score Number Points Total 48

Do not write in this space. Problem Possible Score Number Points Total 48 MTH 337. Name MTH 337. Differential Equations Exam II March 15, 2019 T. Judson Do not write in this space. Problem Possible Score Number Points 1 8 2 10 3 15 4 15 Total 48 Directions Please Read Carefully!

More information

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam Math 122 Fall 2008 Handout 15: Review Problems for the Cumulative Final Exam The topics that will be covered on Final Exam are as follows. Integration formulas. U-substitution. Integration by parts. Integration

More information

MATH 294???? FINAL # 4 294UFQ4.tex Find the general solution y(x) of each of the following ODE's a) y 0 = cosecy

MATH 294???? FINAL # 4 294UFQ4.tex Find the general solution y(x) of each of the following ODE's a) y 0 = cosecy 3.1. 1 ST ORDER ODES 1 3.1 1 st Order ODEs MATH 294???? FINAL # 4 294UFQ4.tex 3.1.1 Find the general solution y(x) of each of the following ODE's a) y 0 = cosecy MATH 294 FALL 1990 PRELIM 2 # 4 294FA90P2Q4.tex

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

Homework Solutions:

Homework Solutions: Homework Solutions: 1.1-1.3 Section 1.1: 1. Problems 1, 3, 5 In these problems, we want to compare and contrast the direction fields for the given (autonomous) differential equations of the form y = ay

More information

AP Calculus Testbank (Chapter 6) (Mr. Surowski)

AP Calculus Testbank (Chapter 6) (Mr. Surowski) AP Calculus Testbank (Chapter 6) (Mr. Surowski) Part I. Multiple-Choice Questions 1. Suppose that f is an odd differentiable function. Then (A) f(1); (B) f (1) (C) f(1) f( 1) (D) 0 (E). 1 1 xf (x) =. The

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers.

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers. CALCULUS AB THE SECOND FUNDAMENTAL THEOREM OF CALCULUS AND REVIEW E. Find the derivative. Do not leave negative eponents or comple fractions in your answers. 4 (a) y 4 e 5 f sin (b) sec (c) g 5 (d) y 4

More information

Math 266, Midterm Exam 1

Math 266, Midterm Exam 1 Math 266, Midterm Exam 1 February 19th 2016 Name: Ground Rules: 1. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use

More information

Math 116 Second Midterm November 14, 2012

Math 116 Second Midterm November 14, 2012 Math 6 Second Midterm November 4, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 8 problems. Note that

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Math 225 Differential Equations Notes Chapter 1

Math 225 Differential Equations Notes Chapter 1 Math 225 Differential Equations Notes Chapter 1 Michael Muscedere September 9, 2004 1 Introduction 1.1 Background In science and engineering models are used to describe physical phenomena. Often these

More information

MATH 251 Examination I July 1, 2013 FORM A. Name: Student Number: Section:

MATH 251 Examination I July 1, 2013 FORM A. Name: Student Number: Section: MATH 251 Examination I July 1, 2013 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit problems,

More information

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det Math D Final Exam 8 December 9. ( points) Show that the matrix 4 has eigenvalues 3, 3, and find the eigenvectors associated with 3. 4 λ det λ λ λ = (4 λ) det λ ( ) det + det λ = (4 λ)(( λ) 4) + ( λ + )

More information

Math 308, Sections 301, 302, Summer 2008 Lecture 5. 06/6/2008

Math 308, Sections 301, 302, Summer 2008 Lecture 5. 06/6/2008 Math 308, Sections 301, 302, Summer 2008 Lecture 5. 06/6/2008 Chapter 3. Mathematical methods and numerical methods involving first order equations. Section 3.3 Heating and cooling of buildings. Our goal

More information

Find the rectangular coordinates for each of the following polar coordinates:

Find the rectangular coordinates for each of the following polar coordinates: WORKSHEET 13.1 1. Plot the following: 7 3 A. 6, B. 3, 6 4 5 8 D. 6, 3 C., 11 2 E. 5, F. 4, 6 3 Find the rectangular coordinates for each of the following polar coordinates: 5 2 2. 4, 3. 8, 6 3 Given the

More information

cos 5x dx e dt dx 20. CALCULUS AB WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator.

cos 5x dx e dt dx 20. CALCULUS AB WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator. WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator. Find the derivative. Do not leave negative eponents or comple fractions in our answers. 4. 8 4 f

More information

MATH 104 Practice Problems for Exam 2

MATH 104 Practice Problems for Exam 2 . Find the area between: MATH 4 Practice Problems for Exam (a) x =, y = / + x, y = x/ Answer: ln( + ) 4 (b) y = e x, y = xe x, x = Answer: e6 4 7 4 (c) y = x and the x axis, for x 4. x Answer: ln 5. Calculate

More information

AP Calculus AB Free-Response Scoring Guidelines

AP Calculus AB Free-Response Scoring Guidelines Question pt The rate at which raw sewage enters a treatment tank is given by Et 85 75cos 9 gallons per hour for t 4 hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per

More information

Assignment # 3, Math 370, Fall 2018 SOLUTIONS:

Assignment # 3, Math 370, Fall 2018 SOLUTIONS: Assignment # 3, Math 370, Fall 2018 SOLUTIONS: Problem 1: Solve the equations: (a) y (1 + x)e x y 2 = xy, (i) y(0) = 1, (ii) y(0) = 0. On what intervals are the solution of the IVP defined? (b) 2y + y

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.4 Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. What is a difference quotient?. How do you find the slope of a curve (aka slope

More information

Calculus BC AP/Dual Fall Semester Review Sheet REVISED 1 Name Date. 3) Explain why f(x) = x 2 7x 8 is a guarantee zero in between [ 3, 0] g) lim x

Calculus BC AP/Dual Fall Semester Review Sheet REVISED 1 Name Date. 3) Explain why f(x) = x 2 7x 8 is a guarantee zero in between [ 3, 0] g) lim x Calculus BC AP/Dual Fall Semester Review Sheet REVISED Name Date Eam Date and Time: Read and answer all questions accordingly. All work and problems must be done on your own paper and work must be shown.

More information

Exam 3 MATH Calculus I

Exam 3 MATH Calculus I Trinity College December 03, 2015 MATH 131-01 Calculus I By signing below, you attest that you have neither given nor received help of any kind on this exam. Signature: Printed Name: Instructions: Show

More information

Math 165 Final Exam worksheet solutions

Math 165 Final Exam worksheet solutions C Roettger, Fall 17 Math 165 Final Exam worksheet solutions Problem 1 Use the Fundamental Theorem of Calculus to compute f(4), where x f(t) dt = x cos(πx). Solution. From the FTC, the derivative of the

More information

MATH 104 Practice Problems for Exam 2

MATH 104 Practice Problems for Exam 2 . Find the area between: MATH 4 Practice Problems for Eam (a) =, y = / +, y = / (b) y = e, y = e, = y = and the ais, for 4.. Calculate the volume obtained by rotating: (a) The region in problem a around

More information

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide GENERAL INFORMATION AND FINAL EXAM RULES The exam will have a duration of 3 hours. No extra time will be given. Failing to submit your solutions

More information

Mathematics 3C Summer 3B 2009 Worksheet Solutions NAME: MY WEBSITE: kgracekennedy/sb093c.html

Mathematics 3C Summer 3B 2009 Worksheet Solutions NAME: MY WEBSITE:   kgracekennedy/sb093c.html Mathematics 3C Summer 3B 2009 Worksheet Solutions NAME: MY WEBSITE: http://math.ucsb.edu/ kgracekenne/sb093c.html When typing in Latex cutting and pasting code and being distracted by formating lead to

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

MATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 0/GRACEY PRACTICE FINAL Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Choose the graph that represents the given function without using

More information

Chapter1. Ordinary Differential Equations

Chapter1. Ordinary Differential Equations Chapter1. Ordinary Differential Equations In the sciences and engineering, mathematical models are developed to aid in the understanding of physical phenomena. These models often yield an equation that

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

MATH 251 Examination I October 5, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 5, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I October 5, 2017 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit

More information

ODE Math 3331 (Summer 2014) June 16, 2014

ODE Math 3331 (Summer 2014) June 16, 2014 Page 1 of 12 Please go to the next page... Sample Midterm 1 ODE Math 3331 (Summer 2014) June 16, 2014 50 points 1. Find the solution of the following initial-value problem 1. Solution (S.O.V) dt = ty2,

More information

Math 217 Practice Exam 1. Page Which of the following differential equations is exact?

Math 217 Practice Exam 1. Page Which of the following differential equations is exact? Page 1 1. Which of the following differential equations is exact? (a) (3x x 3 )dx + (3x 3x 2 ) d = 0 (b) sin(x) dx + cos(x) d = 0 (c) x 2 x 2 = 0 (d) (1 + e x ) + (2 + xe x ) d = 0 CORRECT dx (e) e x dx

More information

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ Math 90 Practice Midterm III Solutions Ch. 8-0 (Ebersole), 3.3-3.8 (Stewart) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam.

More information

Extra Practice Recovering C

Extra Practice Recovering C Etra Practice Recovering C 1 Given the second derivative of a function, integrate to get the first derivative, then again to find the equation of the original function. Use the given initial conditions

More information

Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs

Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs September 18 22, 2017 Mixing Problem Yuliya Gorb Example: A tank with a capacity

More information

SMA 208: Ordinary differential equations I

SMA 208: Ordinary differential equations I SMA 208: Ordinary differential equations I Modeling with First Order differential equations Lecturer: Dr. Philip Ngare (Contacts: pngare@uonbi.ac.ke, Tue 12-2 PM) School of Mathematics, University of Nairobi

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

The Princeton Review AP Calculus BC Practice Test 1

The Princeton Review AP Calculus BC Practice Test 1 8 The Princeton Review AP Calculus BC Practice Test CALCULUS BC SECTION I, Part A Time 55 Minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each

More information

8. Set up the integral to determine the force on the side of a fish tank that has a length of 4 ft and a heght of 2 ft if the tank is full.

8. Set up the integral to determine the force on the side of a fish tank that has a length of 4 ft and a heght of 2 ft if the tank is full. . Determine the volume of the solid formed by rotating the region bounded by y = 2 and y = 2 for 2 about the -ais. 2. Determine the volume of the solid formed by rotating the region bounded by the -ais

More information

AP Calculus BC Fall Final Part IIa

AP Calculus BC Fall Final Part IIa AP Calculus BC 18-19 Fall Final Part IIa Calculator Required Name: 1. At time t = 0, there are 120 gallons of oil in a tank. During the time interval 0 t 10 hours, oil flows into the tank at a rate of

More information

Lesson 10 MA Nick Egbert

Lesson 10 MA Nick Egbert Overview There is no new material for this lesson, we just apply our knowledge from the previous lesson to some (admittedly complicated) word problems. Recall that given a first-order linear differential

More information

Math 106 Answers to Test #1 11 Feb 08

Math 106 Answers to Test #1 11 Feb 08 Math 06 Answers to Test # Feb 08.. A projectile is launched vertically. Its height above the ground is given by y = 9t 6t, where y is the height in feet and t is the time since the launch, in seconds.

More information

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to Math 7 REVIEW Part I: Problems Using the precise definition of the it, show that [Find the that works for any arbitrarily chosen positive and show that it works] Determine the that will most likely work

More information

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1 PARTICLE MOTION Section 3.7A Calculus BC AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:20 AM 3.7A: Particle Motion 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest v t = 0 At

More information

Math 216 Final Exam 14 December, 2012

Math 216 Final Exam 14 December, 2012 Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists).

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists). Please do not write on. Calc AB Semester 1 Exam Review 1. Determine the limit (if it exists). 1 1 + lim x 3 6 x 3 x + 3 A).1 B).8 C).157778 D).7778 E).137778. Determine the limit (if it exists). 1 1cos

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Math 112 (Calculus I) Final Exam

Math 112 (Calculus I) Final Exam Name: Student ID: Section: Instructor: Math 112 (Calculus I) Final Exam Dec 18, 7:00 p.m. Instructions: Work on scratch paper will not be graded. For questions 11 to 19, show all your work in the space

More information

A MATH 1225 Practice Test 4 NAME: SOLUTIONS CRN:

A MATH 1225 Practice Test 4 NAME: SOLUTIONS CRN: A MATH 5 Practice Test 4 NAME: SOLUTIONS CRN: Multiple Choice No partial credit will be given. Clearly circle one answer. No calculator!. Which of the following must be true (you may select more than one

More information