Beal Conjecture Original Directly Proved Abstract

Size: px
Start display at page:

Download "Beal Conjecture Original Directly Proved Abstract"

Transcription

1 Beal Conjecture Original Directl Proved "% of the eole think; 0% of the eole think that the think; and the other 8%would rather die than think."----thomas Edison "The simlest solution is usuall the best solution"---albert Einstein Abstract Using a direct construction aroach, the author roves the original Beal conjecture that if Ax + B C, where ABCx,,,,, are ositive integers and x,, > 2, then A, Band C have a common rime factor. Two main tes of equations are involved, namel, the equation Ax + B C and an equation which will be called a tester equation. A tester equation has similar roerties as Ax + B C, and will be used to determine the roerties of Ax + B C. Also, two tes of tester equations, namel, a literal tester equation and a numerical tester equation will be alied. Each side of Ax + B C and a tester equation is reduced to unit b division. The non-unit sides are justifiabl equated to each other to roduce a new equation which will be called the master equation. The side of the master equation involving the terms of the tester equation will be called the tester side of the master equation. Three versions of the roof are resented. In Version roof, the tester equation was the literal equation Gm + Hn I, but in Versions 2 and roofs, the tester equations were the numerical tester equations, and + 6, resectivel. B insection, using an aroach in which the corresonding elements on the right and left sides of the master equation are equated to each other, it is determined that if Ax + B C, A, Band C have a common rime factor. The roof is ver simle, and occuies a single age, and high school students can learn it.

2 Beal Conjecture Original Directl Proved (Version ) (Proof using a literal tester equation) In this version, using a literal tester equation, the author roves directl the original Beal conjecture that if Ax + B C, where ABCx,,,,, are ositive integers and x,, > 2, then A, Band C have a common rime factor. Given: Ax + B C, where A, B, C, x,, are ositive integers and x,, > 2. Required: To rove that A, B, and C, have a common rime factor. Let G, H, I, m, n, be ositive integers such that m, n, > 2, and Gm + Hn I is true. The equation Gm + Hn I will be called the tester equation (a true equation having similar roerties as Ax + B C and which will be used to determine the roerties of Ax + B C). Consider the true equations Ax + B C (); and Gm + Hn I From (), one obtains A x + B C (); and similarl, from (2), one obtains G m + H n I (4) (Dividing both sides of each equation b the right side) Let r, s, t be rime factors of A, B and C resectivel such that A Dr, B Es, and C Ft, where D, E, F are ositive integers. Also, let h, q, w be rime factors of G, H and I resectivel such that G Jh, H Kq, and I Lw, where J, K, L are ositive integers, and h q w. Then equations () and (4) become and ( Jh ) m + ( Kq ) n Examle on the rincile alied below, resectivel. Since ( Dr ) x + ( Es ) and ( Jh ) m + ( Kq ) n If U + V + U, V, and W 8 or ( Jh) m + ( Kq) n (6) (Master equation) U, V, and W 8 (B the transitive equalit roert) U + V One will next show that r s t b insection, + + using a corresondence aroach in which the ( Jh) m,( Es) ( Kq) n,, or corresonding elements on the right and left sides of equation (6) are equated to each other. ( Kq) n,, ( Es) ( Jh) m,, A Dr Jh; x m; Note: D, E, F, r, s, t, J, K, L h, q, w Es Kq, n; Ft Lw, D J; E K; F L are all integers. x,, > 2; m, n, > 2. r h; s q; t w. h q w From above, r h, s q, t w. Since h q w (given), r s t. Therefore, Dr, Es, and Ft have a common rime factor. Also, since A Dr, B Es, and C Ft, A, B, and C, have a common rime factor..or B Dr Kq; x n; Es Jh, m; Ft Lw, Note: D, E, F, r, s, t, J, K, L h, q, w D K; E J; F L are all integers. x,, > 2; m, n, > 2. r q; s h; t w. h q w From above, r q, s h, t w. Since h q w (given), r s t. Therefore, Dr, Es, and Ft have a common rime factor. Also, since A Dr, B Es, and C Ft, A, B, and C have a common rime factor. Observe above that in Table A or Table B, it is shown that r s t; and therefore, if Ax + B C, then A, B, and C have a common rime factor. The roof is comlete. 2

3 Beal Conjecture Original Directl Proved (Version 2) (Proof using a numerical tester equation) In this version, using a numerical tester equation, the author roves the original Beal conjecture that if Ax + B C, where ABCx,,,,, are ositive integers and x,, > 2, then A, Band C have a common rime factor. Given: Ax + B C, where A, B, C, x,, be ositive integers such that x,, > 2. Required: To rove that A, B, and C, have a common rime factor. Consider the true equations Ax + B C (); and Equation (2) will be called a tester equation (a true equation having similar roerties as Ax + B C and which will be used to determine the roerties of Ax + B C). From (), one obtains A x + B C (); and similarl, from (2), one obtains (4.) (Dividing both sides of each equation b the right side) Let r, s, t be rime factors of A, B and C resectivel such that A Dr, B Es, and C Ft, where D, E, F are ositive integers. Then equation () becomes (). Since ( Dr ) x + ( Es ), and Tester 678side If U + V + (B the transitive equalit roert) U, V, and W 8 or U, V, and W 8 ( 2 ) 9 + ( 2 4) ( 2 2) (6) (Master equation) U + V + + (Note: D, E, F, r, s, t, are all integers; x,, > 2) One will next show that r s t b insection, using a corresondence aroach in which the corresonding elements on the right and left sides of equation (6) are equated to each other. A A Dr 2, x 9 B Es 8 2 4, D E 4 r 2 s 2 From above, r 2, s 2, t 2, and therefore, r s t rime factor, 2. Since A Dr B Es C Ft B A Dr 2 4, x B Es 2 2, 9 D 4 E r 2 s 2 From above, r 2, s 2, t 2, and therefore, r s t rime factor, 2. Since A Dr B Es C Ft Note: Examle on the rincile alied below x 9 ( Dr) 2,( Es) 8, 4, or 8, ( Es) 29, C Ft 4 2 2, F 2 t 2, and Dr, Es, and Ft have a common,, and, A, B, and C have a common rime factor; OR C Ft 4 2 2, F 2 t 2, and Dr, Es, and Ft have a common,, and, A, B, and C have a common rime factor. Observe above that in either Table A or Table B, it is shown that r s t; and therefore, if Ax + B C, then A, B, and C, have a common rime factor. The roof is comlete.

4 Beal Conjecture Original Directl Proved (Version ) (Proof using a numerical tester equation) In this version, using a numerical tester equation, the author roves the original Beal conjecture that if Ax + B C, where ABCx,,,,, are ositive integers and x,, > 2, then A, Band C have a common rime factor. Given: Ax + B C, where A, B, C, x,, be ositive integers such that x,, > 2. Required: To rove that A, B, and C, have a common rime factor. Consider the true equations Ax + B C (); and + 6 Equation (2) will be called a tester equation (a true equation having similar roerties as Ax + B C and which will be used to determine the roerties of Ax + B C). From (), one obtains A x + B C (); and similarl, from (2), one obtains + 6 (4.) (Dividing both sides of each equation b the right side) Let r, s, t be rime factors of A, B and C resectivel such that A Dr, B Es, and C Ft, where D, E, F are ositive integers. Then equation () becomes (). Note: Since ( Dr ) x + ( Es ), and 6 Examle on the rincile alied below + Tester 678side + 6 If U + V + (B the transitive equalit roert) U, V, and W 8 or U, V, and W 8 ( ) + ( 2) ( ) (6) (Master equation) U + V + + (Note: D, E, F, r, s, t, are all integers; x,, > 2) One will next show that r s t b insection, using, ( Es) 6,, or a corresondence aroach in which the corresonding elements on the right and left sides of equation (6) 6, ( Es), are equated to each other. A A Dr, x B Es 6 2, C Ft, D E 2 F r s t From above, r, s, t, and therefore, r s t, and Dr, Es, and Ft have a common rime factor,. Since A Dr, B Es, and C Ft, A, B, and C have a common rime factor; OR B A Dr 6 2, x B Es, C Ft, D 2 E F r s t From above, r, s, t, and therefore, r s t, and Dr, Es, and Ft have a common rime factor,. Since A Dr, B Es, and C Ft, A, B, and C have a common rime factor. Observe above that in either Table A or Table B, it is shown that r s t; and therefore, if Ax + B C, then A, B, and C, have a common rime factor. The roof is comlete. 4

5 Conclusion Using a direct construction aroach, the author roved the original Beal conjecture that if Ax + B C, where ABCx,,,,, are ositive integers and x,, > 2, then A, Band C have a common rime factor. Two main tes of equations were involved, namel, the equation Ax + B C and an equation which was called a tester equation. A tester equation has similar roerties as Ax + B C, and was used to determine the roerties of Ax + B C. Two tes of tester equations, namel, a literal tester equation and a numerical tester equation were alied. Each side of Ax + B C and a tester equation was reduced to unit b division. The non-unit sides were justifiabl equated to each other to roduce a new equation which was called the master equation. The side of the master equation involving the terms of the tester equation was called the tester side of the master equation. Three versions of the roof were resented. In Version roof, tester equation was the literal equation Gm + Hn I, but in Versions 2 and roofs, the tester equations were the numerical tester equations, and + 6, resectivel.. B insection, using an aroach in which the corresonding elements on the right and left sides of the master equation are equated to each other. An interesting observation was that it did not matter, so far as the determination of the common factors were concerned, whether the elements in the first term of the numerator on the left side of the master equation were equated to the elements in either the first or second term of the numerator on the right side of the master equation. The common factor results were alwas the same. It was determined that if Ax + B C, then A, Band C have a common rime factor. The roof is ver simle, and occuies a single age, and even high school students can learn it. PS Previousl, the author roved the equivalent Beal conjecture: vixra: Adonten

Beal Conjecture Original Proved. Abstract

Beal Conjecture Original Proved. Abstract Copyright by A. A. Frempong Beal Conjecture Original Proved "% of the people think; 10% of the people think that they think; and the other 8%would rather die than think."----thomas Edison "The simplest

More information

Beal Conjecture Original Proved. Abstract

Beal Conjecture Original Proved. Abstract Copyright by A. A. Frempong Beal Conjecture Original Proved "% of the people think; 10% of the people think that they think; and the other 8%would rather die than think."----thomas Edison "The simplest

More information

f(r) = a d n) d + + a0 = 0

f(r) = a d n) d + + a0 = 0 Math 400-00/Foundations of Algebra/Fall 07 Polynomials at the Foundations: Roots Next, we turn to the notion of a root of a olynomial in Q[x]. Definition 8.. r Q is a rational root of fx) Q[x] if fr) 0.

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

Sets of Real Numbers

Sets of Real Numbers Chater 4 Sets of Real Numbers 4. The Integers Z and their Proerties In our revious discussions about sets and functions the set of integers Z served as a key examle. Its ubiquitousness comes from the fact

More information

Excerpt from "Intermediate Algebra" 2014 AoPS Inc.

Excerpt from Intermediate Algebra 2014 AoPS Inc. Ecert from "Intermediate Algebra" 04 AoPS Inc. www.artofroblemsolving.com for which our grah is below the -ais with the oints where the grah intersects the -ais (because the ineuality is nonstrict), we

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6.2 Introduction We extend the concet of a finite series, met in Section 6., to the situation in which the number of terms increase without bound. We define what is meant by an infinite

More information

MATH 361: NUMBER THEORY THIRD LECTURE

MATH 361: NUMBER THEORY THIRD LECTURE MATH 36: NUMBER THEORY THIRD LECTURE. Introduction The toic of this lecture is arithmetic functions and Dirichlet series. By way of introduction, consider Euclid s roof that there exist infinitely many

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

ON FREIMAN S 2.4-THEOREM

ON FREIMAN S 2.4-THEOREM ON FREIMAN S 2.4-THEOREM ØYSTEIN J. RØDSETH Abstract. Gregory Freiman s celebrated 2.4-Theorem says that if A is a set of residue classes modulo a rime satisfying 2A 2.4 A 3 and A < /35, then A is contained

More information

Solvability and Number of Roots of Bi-Quadratic Equations over p adic Fields

Solvability and Number of Roots of Bi-Quadratic Equations over p adic Fields Malaysian Journal of Mathematical Sciences 10(S February: 15-35 (016 Secial Issue: The 3 rd International Conference on Mathematical Alications in Engineering 014 (ICMAE 14 MALAYSIAN JOURNAL OF MATHEMATICAL

More information

Diophantine Equations and Congruences

Diophantine Equations and Congruences International Journal of Algebra, Vol. 1, 2007, no. 6, 293-302 Diohantine Equations and Congruences R. A. Mollin Deartment of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada,

More information

Linear diophantine equations for discrete tomography

Linear diophantine equations for discrete tomography Journal of X-Ray Science and Technology 10 001 59 66 59 IOS Press Linear diohantine euations for discrete tomograhy Yangbo Ye a,gewang b and Jiehua Zhu a a Deartment of Mathematics, The University of Iowa,

More information

Arithmetic Consequences of Jacobi s Two-Squares Theorem

Arithmetic Consequences of Jacobi s Two-Squares Theorem THE RAMANUJAN JOURNAL 4, 51 57, 2000 c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Arithmetic Consequences of Jacobi s Two-Squares Theorem MICHAEL D. HIRSCHHORN School of Mathematics,

More information

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS #A13 INTEGERS 14 (014) ON THE LEAST SIGNIFICANT ADIC DIGITS OF CERTAIN LUCAS NUMBERS Tamás Lengyel Deartment of Mathematics, Occidental College, Los Angeles, California lengyel@oxy.edu Received: 6/13/13,

More information

MATH342 Practice Exam

MATH342 Practice Exam MATH342 Practice Exam This exam is intended to be in a similar style to the examination in May/June 2012. It is not imlied that all questions on the real examination will follow the content of the ractice

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6. Introduction We extend the concet of a finite series, met in section, to the situation in which the number of terms increase without bound. We define what is meant by an infinite series

More information

Elementary Proof That There are Infinitely Many Primes p such that p 1 is a Perfect Square (Landau's Fourth Problem)

Elementary Proof That There are Infinitely Many Primes p such that p 1 is a Perfect Square (Landau's Fourth Problem) Elementary Proof That There are Infinitely Many Primes such that 1 is a Perfect Square (Landau's Fourth Problem) Stehen Marshall 7 March 2017 Abstract This aer resents a comlete and exhaustive roof of

More information

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS #A47 INTEGERS 15 (015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS Mihai Ciu Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 5,

More information

The inverse Goldbach problem

The inverse Goldbach problem 1 The inverse Goldbach roblem by Christian Elsholtz Submission Setember 7, 2000 (this version includes galley corrections). Aeared in Mathematika 2001. Abstract We imrove the uer and lower bounds of the

More information

A LLT-like test for proving the primality of Fermat numbers.

A LLT-like test for proving the primality of Fermat numbers. A LLT-like test for roving the rimality of Fermat numbers. Tony Reix (Tony.Reix@laoste.net) First version: 004, 4th of Setember Udated: 005, 9th of October Revised (Inkeri): 009, 8th of December In 876,

More information

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems Int. J. Oen Problems Comt. Math., Vol. 3, No. 2, June 2010 ISSN 1998-6262; Coyright c ICSRS Publication, 2010 www.i-csrs.org Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various

More information

MATH 250: THE DISTRIBUTION OF PRIMES. ζ(s) = n s,

MATH 250: THE DISTRIBUTION OF PRIMES. ζ(s) = n s, MATH 50: THE DISTRIBUTION OF PRIMES ROBERT J. LEMKE OLIVER For s R, define the function ζs) by. Euler s work on rimes ζs) = which converges if s > and diverges if s. In fact, though we will not exloit

More information

By Evan Chen OTIS, Internal Use

By Evan Chen OTIS, Internal Use Solutions Notes for DNY-NTCONSTRUCT Evan Chen January 17, 018 1 Solution Notes to TSTST 015/5 Let ϕ(n) denote the number of ositive integers less than n that are relatively rime to n. Prove that there

More information

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS CASEY BRUCK 1. Abstract The goal of this aer is to rovide a concise way for undergraduate mathematics students to learn about how rime numbers behave

More information

arxiv: v2 [math.ho] 24 Nov 2014

arxiv: v2 [math.ho] 24 Nov 2014 arxiv:88.48v2 [math.ho] 24 Nov 24 There are infinitely many rime numbers in all arithmetic rogressions with first term and difference corime. (By Mr. Lejeune-Dirichlet) [Read to the Academy of Sciences

More information

RINGS OF INTEGERS WITHOUT A POWER BASIS

RINGS OF INTEGERS WITHOUT A POWER BASIS RINGS OF INTEGERS WITHOUT A POWER BASIS KEITH CONRAD Let K be a number field, with degree n and ring of integers O K. When O K = Z[α] for some α O K, the set {1, α,..., α n 1 } is a Z-basis of O K. We

More information

PARTITIONS AND (2k + 1) CORES. 1. Introduction

PARTITIONS AND (2k + 1) CORES. 1. Introduction PARITY RESULTS FOR BROKEN k DIAMOND PARTITIONS AND 2k + CORES SILVIU RADU AND JAMES A. SELLERS Abstract. In this aer we rove several new arity results for broken k-diamond artitions introduced in 2007

More information

A note on the random greedy triangle-packing algorithm

A note on the random greedy triangle-packing algorithm A note on the random greedy triangle-acking algorithm Tom Bohman Alan Frieze Eyal Lubetzky Abstract The random greedy algorithm for constructing a large artial Steiner-Trile-System is defined as follows.

More information

Existence of solutions to a superlinear p-laplacian equation

Existence of solutions to a superlinear p-laplacian equation Electronic Journal of Differential Equations, Vol. 2001(2001), No. 66,. 1 6. ISSN: 1072-6691. URL: htt://ejde.math.swt.edu or htt://ejde.math.unt.edu ft ejde.math.swt.edu (login: ft) Existence of solutions

More information

Primes - Problem Sheet 5 - Solutions

Primes - Problem Sheet 5 - Solutions Primes - Problem Sheet 5 - Solutions Class number, and reduction of quadratic forms Positive-definite Q1) Aly the roof of Theorem 5.5 to find reduced forms equivalent to the following, also give matrices

More information

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001 The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001 The Hasse-Minkowski Theorem rovides a characterization of the rational quadratic forms. What follows is a roof of the Hasse-Minkowski

More information

Real Analysis 1 Fall Homework 3. a n.

Real Analysis 1 Fall Homework 3. a n. eal Analysis Fall 06 Homework 3. Let and consider the measure sace N, P, µ, where µ is counting measure. That is, if N, then µ equals the number of elements in if is finite; µ = otherwise. One usually

More information

On the Square-free Numbers in Shifted Primes Zerui Tan The High School Attached to The Hunan Normal University November 29, 204 Abstract For a fixed o

On the Square-free Numbers in Shifted Primes Zerui Tan The High School Attached to The Hunan Normal University November 29, 204 Abstract For a fixed o On the Square-free Numbers in Shifted Primes Zerui Tan The High School Attached to The Hunan Normal University, China Advisor : Yongxing Cheng November 29, 204 Page - 504 On the Square-free Numbers in

More information

Turbulence in Fluid Flow Analyzed Simply Abstract

Turbulence in Fluid Flow Analyzed Simply Abstract Copright b A. A. Frempong Turbulence in Fluid Flow Analed Simpl "5% of the people think; 10% of the people think that the think; and the other 85% would rather die than think."----thomas Edison "The simplest

More information

QUADRATIC RECIPROCITY

QUADRATIC RECIPROCITY QUADRATIC RECIPROCIT POOJA PATEL Abstract. This aer is an self-contained exosition of the law of uadratic recirocity. We will give two roofs of the Chinese remainder theorem and a roof of uadratic recirocity.

More information

Math 104B: Number Theory II (Winter 2012)

Math 104B: Number Theory II (Winter 2012) Math 104B: Number Theory II (Winter 01) Alina Bucur Contents 1 Review 11 Prime numbers 1 Euclidean algorithm 13 Multilicative functions 14 Linear diohantine equations 3 15 Congruences 3 Primes as sums

More information

TAIL OF A MOEBIUS SUM WITH COPRIMALITY CONDITIONS

TAIL OF A MOEBIUS SUM WITH COPRIMALITY CONDITIONS #A4 INTEGERS 8 (208) TAIL OF A MOEBIUS SUM WITH COPRIMALITY CONDITIONS Akhilesh P. IV Cross Road, CIT Camus,Taramani, Chennai, Tamil Nadu, India akhilesh.clt@gmail.com O. Ramaré 2 CNRS / Institut de Mathématiques

More information

(Workshop on Harmonic Analysis on symmetric spaces I.S.I. Bangalore : 9th July 2004) B.Sury

(Workshop on Harmonic Analysis on symmetric spaces I.S.I. Bangalore : 9th July 2004) B.Sury Is e π 163 odd or even? (Worksho on Harmonic Analysis on symmetric saces I.S.I. Bangalore : 9th July 004) B.Sury e π 163 = 653741640768743.999999999999.... The object of this talk is to exlain this amazing

More information

A construction of bent functions from plateaued functions

A construction of bent functions from plateaued functions A construction of bent functions from lateaued functions Ayça Çeşmelioğlu, Wilfried Meidl Sabancı University, MDBF, Orhanlı, 34956 Tuzla, İstanbul, Turkey. Abstract In this resentation, a technique for

More information

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM JOHN BINDER Abstract. In this aer, we rove Dirichlet s theorem that, given any air h, k with h, k) =, there are infinitely many rime numbers congruent to

More information

Positive decomposition of transfer functions with multiple poles

Positive decomposition of transfer functions with multiple poles Positive decomosition of transfer functions with multile oles Béla Nagy 1, Máté Matolcsi 2, and Márta Szilvási 1 Deartment of Analysis, Technical University of Budaest (BME), H-1111, Budaest, Egry J. u.

More information

x 2 a mod m. has a solution. Theorem 13.2 (Euler s Criterion). Let p be an odd prime. The congruence x 2 1 mod p,

x 2 a mod m. has a solution. Theorem 13.2 (Euler s Criterion). Let p be an odd prime. The congruence x 2 1 mod p, 13. Quadratic Residues We now turn to the question of when a quadratic equation has a solution modulo m. The general quadratic equation looks like ax + bx + c 0 mod m. Assuming that m is odd or that b

More information

MA3H1 TOPICS IN NUMBER THEORY PART III

MA3H1 TOPICS IN NUMBER THEORY PART III MA3H1 TOPICS IN NUMBER THEORY PART III SAMIR SIKSEK 1. Congruences Modulo m In quadratic recirocity we studied congruences of the form x 2 a (mod ). We now turn our attention to situations where is relaced

More information

INTRODUCTORY LECTURES COURSE NOTES, One method, which in practice is quite effective is due to Abel. We start by taking S(x) = a n

INTRODUCTORY LECTURES COURSE NOTES, One method, which in practice is quite effective is due to Abel. We start by taking S(x) = a n INTRODUCTORY LECTURES COURSE NOTES, 205 STEVE LESTER AND ZEÉV RUDNICK. Partial summation Often we will evaluate sums of the form a n fn) a n C f : Z C. One method, which in ractice is quite effective is

More information

We collect some results that might be covered in a first course in algebraic number theory.

We collect some results that might be covered in a first course in algebraic number theory. 1 Aendices We collect some results that might be covered in a first course in algebraic number theory. A. uadratic Recirocity Via Gauss Sums A1. Introduction In this aendix, is an odd rime unless otherwise

More information

The Arm Prime Factors Decomposition

The Arm Prime Factors Decomposition The Arm Prime Factors Decomosition Arm Boris Nima arm.boris@gmail.com Abstract We introduce the Arm rime factors decomosition which is the equivalent of the Taylor formula for decomosition of integers

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #10 10/8/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #10 10/8/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #10 10/8/2013 In this lecture we lay the groundwork needed to rove the Hasse-Minkowski theorem for Q, which states that a quadratic form over

More information

ARITHMETIC PROGRESSIONS OF POLYGONAL NUMBERS WITH COMMON DIFFERENCE A POLYGONAL NUMBER

ARITHMETIC PROGRESSIONS OF POLYGONAL NUMBERS WITH COMMON DIFFERENCE A POLYGONAL NUMBER #A43 INTEGERS 17 (2017) ARITHMETIC PROGRESSIONS OF POLYGONAL NUMBERS WITH COMMON DIFFERENCE A POLYGONAL NUMBER Lenny Jones Deartment of Mathematics, Shiensburg University, Shiensburg, Pennsylvania lkjone@shi.edu

More information

BOUNDS FOR THE SIZE OF SETS WITH THE PROPERTY D(n) Andrej Dujella University of Zagreb, Croatia

BOUNDS FOR THE SIZE OF SETS WITH THE PROPERTY D(n) Andrej Dujella University of Zagreb, Croatia GLASNIK MATMATIČKI Vol. 39(59(2004, 199 205 BOUNDS FOR TH SIZ OF STS WITH TH PROPRTY D(n Andrej Dujella University of Zagreb, Croatia Abstract. Let n be a nonzero integer and a 1 < a 2 < < a m ositive

More information

DISCRIMINANTS IN TOWERS

DISCRIMINANTS IN TOWERS DISCRIMINANTS IN TOWERS JOSEPH RABINOFF Let A be a Dedekind domain with fraction field F, let K/F be a finite searable extension field, and let B be the integral closure of A in K. In this note, we will

More information

#A45 INTEGERS 12 (2012) SUPERCONGRUENCES FOR A TRUNCATED HYPERGEOMETRIC SERIES

#A45 INTEGERS 12 (2012) SUPERCONGRUENCES FOR A TRUNCATED HYPERGEOMETRIC SERIES #A45 INTEGERS 2 (202) SUPERCONGRUENCES FOR A TRUNCATED HYPERGEOMETRIC SERIES Roberto Tauraso Diartimento di Matematica, Università di Roma Tor Vergata, Italy tauraso@mat.uniroma2.it Received: /7/, Acceted:

More information

On the Rank of the Elliptic Curve y 2 = x(x p)(x 2)

On the Rank of the Elliptic Curve y 2 = x(x p)(x 2) On the Rank of the Ellitic Curve y = x(x )(x ) Jeffrey Hatley Aril 9, 009 Abstract An ellitic curve E defined over Q is an algebraic variety which forms a finitely generated abelian grou, and the structure

More information

CERIAS Tech Report The period of the Bell numbers modulo a prime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education

CERIAS Tech Report The period of the Bell numbers modulo a prime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education CERIAS Tech Reort 2010-01 The eriod of the Bell numbers modulo a rime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education and Research Information Assurance and Security Purdue University,

More information

p-adic Properties of Lengyel s Numbers

p-adic Properties of Lengyel s Numbers 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 17 (014), Article 14.7.3 -adic Proerties of Lengyel s Numbers D. Barsky 7 rue La Condamine 75017 Paris France barsky.daniel@orange.fr J.-P. Bézivin 1, Allée

More information

THE DIOPHANTINE EQUATION x 4 +1=Dy 2

THE DIOPHANTINE EQUATION x 4 +1=Dy 2 MATHEMATICS OF COMPUTATION Volume 66, Number 9, July 997, Pages 347 35 S 005-57897)0085-X THE DIOPHANTINE EQUATION x 4 +=Dy J. H. E. COHN Abstract. An effective method is derived for solving the equation

More information

Infinitely Many Quadratic Diophantine Equations Solvable Everywhere Locally, But Not Solvable Globally

Infinitely Many Quadratic Diophantine Equations Solvable Everywhere Locally, But Not Solvable Globally Infinitely Many Quadratic Diohantine Equations Solvable Everywhere Locally, But Not Solvable Globally R.A. Mollin Abstract We resent an infinite class of integers 2c, which turn out to be Richaud-Degert

More information

Finding Shortest Hamiltonian Path is in P. Abstract

Finding Shortest Hamiltonian Path is in P. Abstract Finding Shortest Hamiltonian Path is in P Dhananay P. Mehendale Sir Parashurambhau College, Tilak Road, Pune, India bstract The roblem of finding shortest Hamiltonian ath in a eighted comlete grah belongs

More information

A FEW EQUIVALENCES OF WALL-SUN-SUN PRIME CONJECTURE

A FEW EQUIVALENCES OF WALL-SUN-SUN PRIME CONJECTURE International Journal of Mathematics & Alications Vol 4, No 1, (June 2011), 77-86 A FEW EQUIVALENCES OF WALL-SUN-SUN PRIME CONJECTURE ARPAN SAHA AND KARTHIK C S ABSTRACT: In this aer, we rove a few lemmas

More information

POINTS ON CONICS MODULO p

POINTS ON CONICS MODULO p POINTS ON CONICS MODULO TEAM 2: JONGMIN BAEK, ANAND DEOPURKAR, AND KATHERINE REDFIELD Abstract. We comute the number of integer oints on conics modulo, where is an odd rime. We extend our results to conics

More information

CHAPTER 2: SMOOTH MAPS. 1. Introduction In this chapter we introduce smooth maps between manifolds, and some important

CHAPTER 2: SMOOTH MAPS. 1. Introduction In this chapter we introduce smooth maps between manifolds, and some important CHAPTER 2: SMOOTH MAPS DAVID GLICKENSTEIN 1. Introduction In this chater we introduce smooth mas between manifolds, and some imortant concets. De nition 1. A function f : M! R k is a smooth function if

More information

Ohno-type relation for finite multiple zeta values

Ohno-type relation for finite multiple zeta values Ohno-tye relation for finite multile zeta values Kojiro Oyama Abstract arxiv:1506.00833v3 [math.nt] 23 Se 2017 Ohno s relation is a well-known relation among multile zeta values. In this aer, we rove Ohno-tye

More information

RECIPROCITY LAWS JEREMY BOOHER

RECIPROCITY LAWS JEREMY BOOHER RECIPROCITY LAWS JEREMY BOOHER 1 Introduction The law of uadratic recirocity gives a beautiful descrition of which rimes are suares modulo Secial cases of this law going back to Fermat, and Euler and Legendre

More information

arxiv: v4 [math.nt] 11 Oct 2017

arxiv: v4 [math.nt] 11 Oct 2017 POPULAR DIFFERENCES AND GENERALIZED SIDON SETS WENQIANG XU arxiv:1706.05969v4 [math.nt] 11 Oct 2017 Abstract. For a subset A [N], we define the reresentation function r A A(d := #{(a,a A A : d = a a }

More information

SOME SUMS OVER IRREDUCIBLE POLYNOMIALS

SOME SUMS OVER IRREDUCIBLE POLYNOMIALS SOME SUMS OVER IRREDUCIBLE POLYNOMIALS DAVID E SPEYER Abstract We rove a number of conjectures due to Dinesh Thakur concerning sums of the form P hp ) where the sum is over monic irreducible olynomials

More information

A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO p. 1. Introduction

A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO p. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXI, (2002),. 3 7 3 A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO C. COBELI, M. VÂJÂITU and A. ZAHARESCU Abstract. Let be a rime number, J a set of consecutive integers,

More information

MATH 3240Q Introduction to Number Theory Homework 7

MATH 3240Q Introduction to Number Theory Homework 7 As long as algebra and geometry have been searated, their rogress have been slow and their uses limited; but when these two sciences have been united, they have lent each mutual forces, and have marched

More information

FERMAT S LAST THEOREM

FERMAT S LAST THEOREM FERMAT S LAST THEOREM REVISITED AGAIN Colin Newton 8/0/08 0 FERMAT S LAST THEOREM When Fermat wrote a note in the margin of his coy of Bachet s Arithmetica to the effect that he had a marvellous roof that

More information

arxiv: v5 [math.nt] 22 Aug 2013

arxiv: v5 [math.nt] 22 Aug 2013 Prerint, arxiv:1308900 ON SOME DETERMINANTS WITH LEGENDRE SYMBOL ENTRIES arxiv:1308900v5 [mathnt] Aug 013 Zhi-Wei Sun Deartment of Mathematics, Nanjing University Nanjing 10093, Peole s Reublic of China

More information

Some sophisticated congruences involving Fibonacci numbers

Some sophisticated congruences involving Fibonacci numbers A tal given at the National Center for Theoretical Sciences (Hsinchu, Taiwan; July 20, 2011 and Shanghai Jiaotong University (Nov. 4, 2011 Some sohisticated congruences involving Fibonacci numbers Zhi-Wei

More information

Turbulence in Fluid Flow Analyzed Simply Abstract

Turbulence in Fluid Flow Analyzed Simply Abstract Copright b A. A. Frempong Turbulence in Fluid Flow Analed Simpl "5% of the people think; 10% of the people think that the think; and the other 85% would rather die than think."----thomas Edison "The simplest

More information

Exponential Ratio Type Estimators of Population Mean under Non-Response

Exponential Ratio Type Estimators of Population Mean under Non-Response Oen Journal of Statistics, 0,, 97-0 Published Online Februar 0 (htt://www.scir.org/journal/ojs) htt://d.doi.org/0.6/ojs.0.00 Eonential Ratio Te Estimators of Poulation Mean under Non-Resonse Lovleen Kumar

More information

Then we characterize primes and composite numbers via divisibility

Then we characterize primes and composite numbers via divisibility International Journal of Advanced Mathematical Sciences, 2 (1) (2014) 1-7 c Science Publishing Cororation www.scienceubco.com/index.h/ijams doi: 10.14419/ijams.v2i1.1587 Research Paer Then we characterize

More information

LECTURE 10: JACOBI SYMBOL

LECTURE 10: JACOBI SYMBOL LECTURE 0: JACOBI SYMBOL The Jcobi symbol We wish to generlise the Legendre symbol to ccomodte comosite moduli Definition Let be n odd ositive integer, nd suose tht s, where the i re rime numbers not necessrily

More information

Approximating min-max k-clustering

Approximating min-max k-clustering Aroximating min-max k-clustering Asaf Levin July 24, 2007 Abstract We consider the roblems of set artitioning into k clusters with minimum total cost and minimum of the maximum cost of a cluster. The cost

More information

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding Outline EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Error detection using arity Hamming code for error detection/correction Linear Feedback Shift

More information

The Euler Phi Function

The Euler Phi Function The Euler Phi Function 7-3-2006 An arithmetic function takes ositive integers as inuts and roduces real or comlex numbers as oututs. If f is an arithmetic function, the divisor sum Dfn) is the sum of the

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Eötvös Loránd University Faculty of Informatics. Distribution of additive arithmetical functions

Eötvös Loránd University Faculty of Informatics. Distribution of additive arithmetical functions Eötvös Loránd University Faculty of Informatics Distribution of additive arithmetical functions Theses of Ph.D. Dissertation by László Germán Suervisor Prof. Dr. Imre Kátai member of the Hungarian Academy

More information

Geogebra as an aid tool for discovering mathematical solutions in teaching and learning of mathematics in Vietnamese schools

Geogebra as an aid tool for discovering mathematical solutions in teaching and learning of mathematics in Vietnamese schools Geogebra as an aid tool for discovering mathematical solutions in teaching and learning of mathematics in Vietnamese schools PhD. Le Tuan Anh Faculty of Mathematics and Informatics Hanoi National University

More information

arxiv: v5 [math.gm] 6 Oct 2018

arxiv: v5 [math.gm] 6 Oct 2018 Primes In Arithmetic Progressions And Primitive Roots N. A. Carella arxiv:70.0388v5 [math.gm] 6 Oct 208 Abstract: Let x be a large number, and let a < q be integers such that gcd(a,q) and q O(log c ) with

More information

Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation

Spectral Properties of Schrödinger-type Operators and Large-time Behavior of the Solutions to the Corresponding Wave Equation Math. Model. Nat. Phenom. Vol. 8, No., 23,. 27 24 DOI:.5/mmn/2386 Sectral Proerties of Schrödinger-tye Oerators and Large-time Behavior of the Solutions to the Corresonding Wave Equation A.G. Ramm Deartment

More information

DIVISIBILITY CRITERIA FOR CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS

DIVISIBILITY CRITERIA FOR CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS IVISIBILITY CRITERIA FOR CLASS NUMBERS OF IMAGINARY QUARATIC FIELS PAUL JENKINS AN KEN ONO Abstract. In a recent aer, Guerzhoy obtained formulas for certain class numbers as -adic limits of traces of singular

More information

GENERALIZED NORMS INEQUALITIES FOR ABSOLUTE VALUE OPERATORS

GENERALIZED NORMS INEQUALITIES FOR ABSOLUTE VALUE OPERATORS International Journal of Analysis Alications ISSN 9-8639 Volume 5, Number (04), -9 htt://www.etamaths.com GENERALIZED NORMS INEQUALITIES FOR ABSOLUTE VALUE OPERATORS ILYAS ALI, HU YANG, ABDUL SHAKOOR Abstract.

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions 1. True or false: (a) If a is a sum of three squares, and b is a sum of three squares, then so is ab. False: Consider a 14, b 2. (b) No number of the form 4 m (8n + 7) can be written

More information

7. Two Random Variables

7. Two Random Variables 7. Two Random Variables In man eeriments the observations are eressible not as a single quantit but as a amil o quantities. or eamle to record the height and weight o each erson in a communit or the number

More information

19th Bay Area Mathematical Olympiad. Problems and Solutions. February 28, 2017

19th Bay Area Mathematical Olympiad. Problems and Solutions. February 28, 2017 th Bay Area Mathematical Olymiad February, 07 Problems and Solutions BAMO- and BAMO- are each 5-question essay-roof exams, for middle- and high-school students, resectively. The roblems in each exam are

More information

Lilian Markenzon 1, Nair Maria Maia de Abreu 2* and Luciana Lee 3

Lilian Markenzon 1, Nair Maria Maia de Abreu 2* and Luciana Lee 3 Pesquisa Oeracional (2013) 33(1): 123-132 2013 Brazilian Oerations Research Society Printed version ISSN 0101-7438 / Online version ISSN 1678-5142 www.scielo.br/oe SOME RESULTS ABOUT THE CONNECTIVITY OF

More information

Brownian Motion and Random Prime Factorization

Brownian Motion and Random Prime Factorization Brownian Motion and Random Prime Factorization Kendrick Tang June 4, 202 Contents Introduction 2 2 Brownian Motion 2 2. Develoing Brownian Motion.................... 2 2.. Measure Saces and Borel Sigma-Algebras.........

More information

Legendre polynomials and Jacobsthal sums

Legendre polynomials and Jacobsthal sums Legendre olynomials and Jacobsthal sums Zhi-Hong Sun( Huaiyin Normal University( htt://www.hytc.edu.cn/xsjl/szh Notation: Z the set of integers, N the set of ositive integers, [x] the greatest integer

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information

Factorability in the ring Z[ 5]

Factorability in the ring Z[ 5] University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, and Student Research Paers in Mathematics Mathematics, Deartment of 4-2004 Factorability in the ring

More information

A Curious Property of the Decimal Expansion of Reciprocals of Primes

A Curious Property of the Decimal Expansion of Reciprocals of Primes A Curious Proerty of the Decimal Exansion of Recirocals of Primes Amitabha Triathi January 6, 205 Abstract For rime 2, 5, the decimal exansion of / is urely eriodic. For those rime for which the length

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

Group Theory Problems

Group Theory Problems Grou Theory Problems Ali Nesin 1 October 1999 Throughout the exercises G is a grou. We let Z i = Z i (G) and Z = Z(G). Let H and K be two subgrous of finite index of G. Show that H K has also finite index

More information

0.6 Factoring 73. As always, the reader is encouraged to multiply out (3

0.6 Factoring 73. As always, the reader is encouraged to multiply out (3 0.6 Factoring 7 5. The G.C.F. of the terms in 81 16t is just 1 so there is nothing of substance to factor out from both terms. With just a difference of two terms, we are limited to fitting this olynomial

More information

3 Properties of Dedekind domains

3 Properties of Dedekind domains 18.785 Number theory I Fall 2016 Lecture #3 09/15/2016 3 Proerties of Dedekind domains In the revious lecture we defined a Dedekind domain as a noetherian domain A that satisfies either of the following

More information

Mobius Functions, Legendre Symbols, and Discriminants

Mobius Functions, Legendre Symbols, and Discriminants Mobius Functions, Legendre Symbols, and Discriminants 1 Introduction Zev Chonoles, Erick Knight, Tim Kunisky Over the integers, there are two key number-theoretic functions that take on values of 1, 1,

More information

Sums of independent random variables

Sums of independent random variables 3 Sums of indeendent random variables This lecture collects a number of estimates for sums of indeendent random variables with values in a Banach sace E. We concentrate on sums of the form N γ nx n, where

More information

Jonathan Sondow 209 West 97th Street, New York, New York

Jonathan Sondow 209 West 97th Street, New York, New York #A34 INTEGERS 11 (2011) REDUCING THE ERDŐS-MOSER EQUATION 1 n + 2 n + + k n = (k + 1) n MODULO k AND k 2 Jonathan Sondow 209 West 97th Street, New York, New York jsondow@alumni.rinceton.edu Kieren MacMillan

More information