Perfect Constant-Weight Codes

Size: px
Start display at page:

Download "Perfect Constant-Weight Codes"

Transcription

1 56 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 004 Prfct Costat-Wght Cods Tuv Etzo, Fllo, IEEE, ad Mosh Schartz, Mmbr, IEEE Abstract I hs porg or from 973, Dlsart cocturd that thr ar o otrval prfct cods th Johso schm. May attmpts r mad, durg th yars hch follod, to prov Dlsart s coctur, but oly partal rsults hav b obtad. W survy all ths attmpts, ad prov som rsults havg th sam flavor. W also prst a mthod, tag a dffrt approach, hch hop ca lad to th sttlg of ths coctur. W sho ho ths mthod ruls out sts of paramtrs as ll as spcfc gv paramtrs. Idx Trms Costat-ght cods, Johso schm, -rgular cods, prfct cods, Str systms. I. INTRODUCTION I a gv mtrc, cods hch atta th sphr-pacg boud th mtrc ar calld prfct. Such cods hav alays dra th attto of codg thorsts ad mathmatcas. I th Hammg schm, all prfct cods ovr ft flds ar o []. Thy xst for oly a rlatvly small umbr of paramtrs, hl for othr paramtrs t as provd [] [4] that thy caot xst. Th oxstc proof s basd of Lloyd s polyomals. For o-fld alphabts oly trval cods ar o ad by smlar mthods t as provd [5] that for most othr paramtrs thy doot xst. Costat-ght cods ar buldg blocs for gral cods th Hammg schm. Thy ar also of trst a d rag of aras [6] [0]. A atural qusto s hthr thr xst prfct costatght cods. I th 970s ad 980s, most or o costat-ght cods cosdrd oly th bary cas. A bary costat-ght cod has thr paramtrs lgth, costat ght, ad mmum Hammg dstac d (Hammg dstac ll b calld H-dstac for short). If df th dstac bt to ords x ad y of ght, as half thr H-dstac, obta a mtrc hch s calld th Johso mtrc, ad th dstac s calld th J-dstac. It s vry covt to dscrb th Johso schm trms of sts. Wth th Johso schm assocat th Johso graph J(; ). Th vrtx st V of th Johso graph cossts of all -substs of a fxd -st. Tosuch -substs ar adact f ad oly f thr trscto has sz 0. A cod C of such -substs s calld a -prfct cod J(; ) (or th Johso schm) f th -sphrs th ctrs at th codords of C form a partto of V. I othr ords, C s a -prfct cod f for ach lmt v V thr xsts a uqu lmt c C such that th J-dstac bt v ad c s at most. Thr ar som trval prfct cods J(; ). ) V s 0-prfct. ) Ay fvg, v V,s-prfct. 3) If, odd, ay par of dsot -substs s -prfct th ( 0 ). It as cocturd by Dlsart [], that ths ar th oly prfct cods J(; ). Mauscrpt rcvd May, 003; rvsd May 3, 004. Th matral ths corrspodc as prstd part at th 99st AMS Mtg, Uvrsty of North Carola, Chapl Hll, NC, Octobr 003. Th authors ar th th Computr Scc Dpartmt, Tcho Isral Isttut of Tchology, 3000 Hafa, Isral (-mal tzo@cs.tcho.ac.l; moosh@cs.tcho.ac.l). Commucatd by C. Carlt, Assocat Edtor for Codg Thory. Dgtal Obct Idtfr 0.09/TIT Th ma purpos of ths corrspodc s to prst a tchqu hch could lad to th sttlg of th xstc qusto of prfct cods th Johso schm. I Scto II, gv a short survy of th o rsults ad tchqus cocrg th xstc of prfct cods th Johso schm. Paramtrs for hch prfct cods caot xst ar summarzd. I Scto III, prst som rsults usg smlar tchqus, hch rul out mor paramtrs for hch prfct cods caot xst. I Scto IV, prst a tchqu toprov that -prfct cods do ot xst J(; ). W sho hch gral paramtrs ca b ruld out by th tchqu. I Scto V, summarz th paramtrs for hch thr ar o -prfct cods J(; ). W alsodscrb a computr sarch, usg th tchqu, th hch r abl to sho th oxstc of -prfct cods J(; ) for ay gv spcfc,, ad that chcd. Cocluso s gv Scto VI. II. SURVEY OF KNOWN RESULTS I hs or from 973, Dlsart rot [, p. 55] Aftr havg rcalld that thr ar vry f prfct cods th Hammg schms, o must say that, for <<, thr s ot a sgl o o th Johso schms. It s tmptg to rs th coctur that such cods do ot xst. Crta rsults cotad th prst or could b usful to attac ths problm; spcally th gralzd Lloyd thorm of sc. 5.. ad thorm 4.7 about t-dsgs. Idd, Dlsart omttd th trval prfct cods ( ll omt thm too, so h say prfct cods ma otrval prfct cods) ad hs coctur o th oxstc of prfct cods th Johso schm has provdd lots of groud for rsarch th t yars hch follod. Du to th fact that th Hammg schm all paramtrs for hch prfct cods xst r o, spcal mphass as gv to th Johso schm. Hovr, most rsarch fald to produc sgfcat rsults. I th Hammg schm, th trval cods, th Hammg cods, ad th to Golay cods, ar th oly prfct cods ovr GF (q). Thr ar o prfct cods th othr paramtrs [] [4] (s also [] for th dtald proof). Morovr, for most paramtrs, t s o that thr ar o prfct cods ovr o-fld sz alphabts th Hammg schm [5]. Bggs [] shod that th atural sttg for th xstc problm of prfct cods s th class of dstac-trastv graphs. Lt 0 b a coctd graph. W dot by d 0(x; y) th lgth of th shortst path from x to y. 0 s sad tob dstac-trastv f, hvr x, x 0, y, y 0 ar vrtcs th d 0 (x; x 0 )d 0 (y; y 0 ), thr s a automorphsm of 0 th (x) y ad (x 0 )y 0. Bggs [] clams that th class of dstac-trastv graphs cluds all trstg schms, such as th Hammg schm ad th Johso schm. Ths graphs ar cotad aothr class of graphs. 0 s sad tob dstac-rgular f thr ar tgrs a, b, c (0 d, hr d s th damtr of 0) th th follog proprty hvr x ad x 0 ar vrtcs th d 0 (x; x 0 ), th y d 0 (x; y) ad d 0 (x 0 ;y) a; b; or c dpdg o hthr 0,,or +. A dstac-trastv graph s obvously dstac-rgular. Lt 0 b a dstac-rgular graph th a vrtx st V. A subst X of V s calld a atcod th damtr,f s th maxmum dstac occurrg bt vrtcs of X. Atcods th damtr havg maxmal sz ar calld optmal atcods. Th follog thorm s du to Dlsart [] /04$ IEEE

2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER Thorm Lt X ad Y b substs of V such that th ozro dstacs occurrg bt vrtcs of X do ot occur bt vrtcs of Y. Th X Y V. Bggs [] dvlopd a gral thory ad a smpl crtro for th xstc of prfct cods a dstac-trastv graph. H shod that ths crtro mpls Lloyd s thorm, hch s usd th Hammg schm to prov th oxstc of prfct cods all cass. Baa [3] provd th oxstc of -prfct cods J(0;) ad J(+;) for. H usd a aalog to Lloyd s thorm ad som umbr-thortc rsults. Hammod [4] mprovd ths rsult by provg th follog. Thorm Thr ar oprfct cods J( 0 ;), J( 0 ;), J( +;), ad J( +;). Hovr, th most sgfcat rsult, th frst 0 yars follog Dlsart s coctur, as gv 983 by Roos [5]. Thorm 3 If a -prfct cod xsts J(; ), th + ( 0 ) Th proof of Roos as basd o th follog thory gv by Dlsart [] by usg Thorm, Roos otcd that f a -prfct cod xsts, th th -sphrs should b optmal atcods th damtr. H procdd to fd atcods J(; ) ad obtad hs rsult by comparg thm to th -sphrs. I Scto III, ll gv a dffrt smpl proof to Thorm 3. Thr s a spcal trst th tchqu of Roos ad Thorm of Dlsart as ll dscuss Scto II-A. It too mor tha 0 yars to obta rsults. Etzo [6] too a approach. H provd that f thr xsts a otrval -prfct cod C J(; ), th may Str systms ar mbddd C. A Str systm S(t; ; ) s a collcto of -substs (calld blocs) ta from a -st, such that ach t-subst of th -st s cotad xactly o bloc. Th follog thorms ar ll o (s [] for rfrc). Thorm 4 If thr xsts a Str systm S(t; ; ) for t, th thr xsts a Str systm S(t 0 ;0 ;0 ). Thorm 5 A cssary codto for a Str systm S(t; ; ) toxst, s that th umbrs 0 t 0 must b tgrs, for all 0 t. 0 t 0 Usg Etzo s approach, th cssary codtos of Thorm 5 mply cssary codtos for th xstc of prfct cods th Johso schm. Morovr, Etzo dvlopd a cocpt calld cofgurato dstrbuto, hch s a to th cocpt of ght dstrbuto for cods th Hammg schm. Usg ths cocpt, combd th th cssary codtos drvd from Str systms, may paramtrs r foud, for hch -prfct cods do ot xst J(; ). W summarz th ma rsults gv [6]. Lmma If C s a -prfct cod th Johso schm, th ts mmum H-dstac s 4 +. A (; d; ) cod s a cod of lgth, costat ght, ad mmum H-dstac d. A(; d; ) dots th maxmum sz of a (; d; ) cod. Th follog lmma s a trval obsrvato. Lmma If C s a -prfct cod J(; ), th A(; 4 +;)C Hcforth, lt N f; ;...;g b th -st. From a Str systm S(t; ; ) costruct a costat-ght cod o coordats as follos. From ach bloc B costruct a codord th s th postos of B ad 0 s th postos of NB. Ths costructo lads to th follog ll-o thorm (s rfrc [7]). Thorm 6 ( 0 ) ( 0 t +) A(; ( 0 t +);) ( 0 ) ( 0 t +) f ad oly f a Str systm S(t; ; ) xsts. From Thorm 6 ad Lmmas ad, mmdatly fr th follog rsult. Lmma 3 If C s a -prfct cod J(; ) hch s alsoa Str systm, th t s a Str systm S( 0 ; ; ). Th xt lmma s a smpl obsrvato of a cosdrabl us. Lmma 4 Th complmt of a -prfct cod J(; ) s a -prfct cod J(; 0 ). Fally, d a f mor dftos hch ll us th proofs of th oxstc thorms th squl. For a gv partto of N totosubsts A ad B, such that A ad B 0, lt cofgurato (; ) cosst of all vctors th ght th postos of A ad ght th postos of B. For a -prfct cod C J(; ), say that u C J-covrs v V f th J-dstac bt u ad v s at most. I th squl, ll us a mxd laguag of st otato ad vctor otato. It should b udrstood from th cotxt hch o ar usg, ad ho to traslat th to dffrt otatos. Th follog rsults r provd [6]. Thorm 7 If a -prfct cod xsts J(; ), th a Str systm S(+; +;) ad a Str systm S(+; +;0) xst. Corollary If a -prfct cod xsts J(; ), th a Str systm S(; +; 0 +)ad a Str systm S(; +; 0 0 +)xst. Corollary If a -prfct cod xsts J(; ), th 0 (mod +)ad hc +dvds 0. Thorm 8 Excpt for th Str systms S(;;) ad S(; ; ), thr ar omor Str systms hch ar alsoprfct cods th Johso schm. Thorm 9 Thr ar o -prfct cods J( + p; ), p prm, J( +p; ), p prm, p 6 3, ad J( +3p; ), p prm, p 6 ; 3; 5. If comb Lmma 4 th th fact that th J-dstac bt ords of a -prfct cod s at last +, gt th follog. Corollary 3 If a -prfct cod xsts J(; ), th + ad 0 +. To gv th radr th flavor of th mthods usd [6], us smlar mthods to provd a much smplr proof of Thorm 3, ad toprov that thr ar v mor Str systms mbddd prfct cods th Johso schm (ths rsults r also prstd [7]). Thorm 0 If a -prfct cod xsts J(; ) th + ( 0 )

3 58 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 004 Proof Assum C s a -prfct cod J(; ). W partto N totosubsts A ad B, such that A 0 +, B 0, ad thr s a codord of cofgurato (+;00). Clarly, th J-dstac bt a vctor from cofgurato (+;00) ad a vctor from cofgurato (+0; 00+), 0 <, s strctly lss tha +,soc dos ot hav ay codord from cofgurato (+0; 0 0+). Thrfor, all th vctors from cofgurato (;0) ar J-covrd by codords from cofgurato ( +;0 0 ). To J-covr ach vctor from cofgurato (;0 ) xactly oc must hav xactly 0+ codords from cofgurato (+ + ; 0 0 ). Sc th mmum J-dstac of C s +,to codords from cofgurato ( +;0 0 ) caot trsct th zros of part B. Hc, 0 0+, hch s quvalt to + ( 0 ) +. Thorm If a -prfct cod xsts J(; ) ad < ( 0 )( +), th a S(;+;0 +)xsts. Proof Assum C s a -prfct cod J(; ). As th proof of Thorm, partto N totosubsts A ad B, such that A 0 +, B 0, ad thr ar 0+ + codords from cofgurato ( +;0 0 ). Sc <( 0 )( +),.., 0+ + < 0, hav at last o coordat B hch has os all th codords from cofgurato ( +; 0 0 ). W rmov ths coordat from B toobta B ad o t to A toobta A. A 0 +, B 0, ad C dos ot hav ay codord from cofgurato ( +0 ; 0 0 +), > 0. Thrfor, all th vctors from cofgurato (; 0 ) ar J-covrd by codords from cofgurato ( +;0 0 ). Sc ach vctor from cofgurato (;0) must b J-covrd by xactly o codord from cofgurato ( +;0 0 ), t follos that part A of th codords from cofgurato ( +;0 0 ) forms a Str systm S(;+;0 +). Corollary 4 If a -prfct cod xsts J( + a; ), a 0, th a S(;+;+)xsts. Mart also xamd th xstc problm h h cosdrd compltly rgular substs hs Ph.D. dssrtato [8]. H foud that f, th prfct cods must oby som umrcal formulas. Etzo [7] polshd som of th rsults from [6]. Rctly, Shmabuuro [9] shod that, as a applcato of Etzo s rsults, o ca obta that thr ar o prfct cods J( + 5p; ), p prm, p 6 3; J( + p ;), p prm. A. Str Systms ad Prfct Cods Str systms play a mportat rol rulg out th xstc of -prfct cods J(; ). Morovr, th Str systms S(;;), odd, ad S(; ; ), ar amog th trval prfct cods th Johso schm. Thorm 8 stats that thr ar o mor Str systms hch ar also prfct cods th Johso schm. By Thorm 6, ay Str systm s a optmal costat-ght cod. Obvously, ay -prfct cod J(; ) s alsoa optmal costat-ght cod. Sc a Str systm S(t; ; ) ach t-subst appars xactly o bloc, t ould b atural to th that Str systms ar prfct cods of som d. By Lmma, a -prfct cod J(; ) s a optmal (; 4 + ;) cod ad th sz of such a cod s clarly (; ; ) 0 0 By Thorm 6, a Str systm S(0; ; ) s a optmal (; 4+ ;) cod ad ts sz s s(; ; )!()! ( 0 +)!! If (; ; ) >s(; ; ) th thr s o -prfct cod J(; ) ad f s(; ; ) >(; ; ) th thr s ostr systm S( 0 ; ; ). Not that (; ; ) s(; ; ) h 4 + hch cas a trval Str systm S(; +; 4 +)ad a trval -prfct cod J(4 +; +)xst. No bouds for thr -prfct cods J(; ) or Str systms S( 0 ; ; ) ca b drvd from ths codtos. Rctly, Ahlsd, Ayda, ad Khachatra [0] gav a trstg dfto of damtr-prfct cods (D-prfct cods). Thy xamd a varat of Thorm. Lt 0 b a dstac-rgular graph th a vrtx st V. IfA s a atcod 0, dot by D(A) th damtr of A. No lt A 3 (D) maxfa D(A) Dg Thorm If C s a cod 0 th mmum dstac D +, th C V A 3 (D) 0. Thy cotud th th follog dfto for prfct cods. A cod C th mmum dstac D +s calld D-prfct f Thorm holds th qualty. Ths s a gralzato of th usual dfto of -prfct cods as -sphrs ar atcods th damtr. Ths dfto for prfct cods troducd som classs of prfct cods. Th trstg classs ar thos of cods hch atta som classcal boud. I th Johso schm, t as provd that all Str systms ar D-prfct, thus shog mor coctos bt Str systms ad prfct cods. III. NEW RESULTS I ths scto, cotu to prov rsults o th structur of -prfct cods J(; ). As a rsult, dtfy mor paramtrs of,, ad, hch such cods caot xst. A. N Uppr Boud o W frst sho that o otrval -prfct cod achvs Roos boud th qualty. Ths smgly slght mprovmt has may applcatos. Thorm 3 If thr xsts a -prfct cod J(; ) th + <(0) Proof If <th by Corollary 3 th clam s obvous. Assum C s a -prfct cod J(; ), hr + a, a 0, ad (0) +.Ifa 0, th ad (0) + mply that +,.., C s a trval prfct cod. By Thorm, hav that thr ar oprfct cods J(+;), ad, thrfor, a. Lt b +; by Corollary, a 0 0(modb), ad hc, b a. W substtut b +ad + a, ( 0 ) +, ad obta ab 0 a +b0. By prvous thorms, th follog Str systms must xst. By Corollary, thr xsts a Str systm S(;b+;ab0a + b +). Thus, by Thorm 5, ( ) must b a tgr. ( ) By Corollary thr also xsts a Str systm S(;b +; ab + b +). Thus, by Thorm 5, ( ) must b a tgr. ( )

4 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER By Corollary 4, thr also xsts a Str systm S(;b +; ab 0 a +b +). Thus, by Thorm 5, ( ) must b a ( ) tgr. Thrfor, ab+b+ b+ 0 s a tgr, ad hc, ab0a+b+ b+ a 0 a b +a + ab b + a 0 a b +a + ab 0 (mod b +) But, sc b 0 (mod b +), hav that W alsohav that ab0a+b+ b+ 3a + a 0 (mod b +) () 0 s a tgr, ad hc, ab0a+b+ b+ ab 0 a +3b + b + ab 0 a +3b + 0 (mod b +) Aga, b 0 (mod b +)hch mpls that By () ad () hav that 4a + 0 (mod b +) () 8(3a + a) 0 (6a 0 )(4a +) 0 (mod b +) (3) But, 8(3a +a)0(6a0)(4a+) ad clarly s ot dvsbl by b +, a cotradcto. Hc, <( 0 ) +. By combg Thorm, Corollary 4, ad Thorm 3 coclud as follos. Corollary 5 If a -prfct cod xsts J(; ), th a Str systm S(;+;+)ad a Str systm S(;+;0 +) xst. B. Applcatos Lmma 4 mpls that t s suffct toprov that thr ar o-prfct cods J(; ) for. Thrfor, th squl, assum that 0. Assum that a -prfct cod xsts J(; ).By Corollars ad 5, th follog Str systms must xst S(;+;+); S(;+;0 +) S(;+;0 +); S(;+;0 0 +) By Thorm 5, hav that ( + )( +)dvds ( + )( +). ( + )( +)dvds ( 0 + )( 0 +). ( + )( +)dvds ( 0 )( 0 +). ( + )( +)dvds ( 0 0 )( 0 0 +). Sc ( 0 + )( 0 +)0 ( + )( +)( + 3)( 0 ) t follos that ( + )( +)dvds ( + 3)( 0 ) (4) Sc ( 0 0 )( 0 0 +)0 ( 0 )( 0 +) ( 0 + )( 0 ) t follos that ( + )( +)dvds ( 0 + )( 0 ) (5) By Corollary, hav that +dvds 0 ad, thrfor, by (5) hav ( + )( +)dvds ( + 5)( 0 ) (6) Thus, from (4) ad(6) hav ( + )( +)dvds ( 0 ) (7) Thrfor, by Corollary, (4), ad(7), obta th follog thorm. Thorm 4 Assum thr xsts a -prfct cod J(; ). If s odd th s v ad ( + )( +)dvds 0. If s v ad s v th ( + )( +)dvds 0. If s v ad s odd th 0 ( mod 4) ad (+)(+) dvds 0. Corollary 6 Assum thr xsts a -prfct cod J(; ). If s v th ( + )( +)dvds 0. If s odd th 0 (mod 4) ad ( + )( +) dvds 0. Corollary 7 Thr ar oprfct cods J( + p ;), p s a prm ad ; J( + pq; ), p ad q prms, q<p, ad p 6 q 0. C. A Lor Boud o I ths subscto, gv a lor boud o f thr xsts a -prfct cod C J(; ). Ths boud ll b usd our applcato of th ma rsult Scto IV. W assum th xstc of a -prfct cod J(; ) ad as usual 0. Thorm 5 If thr xsts a -prfct cod J(; ), <0, th ( + )( +) > + + f s odd, ad >( + )( +)+ +f s v. Proof W prov th cas of odd. Th cas of v s provd smlarly. By Corollary 6, hav that (+)(+) dvds 0 ad, hc, ( + )( +) 0 By Thorm 3, hav that 0 < 00 (+)(+) < 00. Thus, ( + )( +) > + + ad hc W o hadl th cas of. W dot ++" ad 4 ++", hr " 0 by Corollary 3. W partto th st of coordats N totosubsts A ad B, such that A B, ad thr s a codord from cofgurato (; 0). Lt C() dot th umbr of codords th os th postos of A. No, o ca asly vrfy (s also[6]) that ( ++")!! C( 0 0 ) ( + )!( + ")! C( 0 0 ) C( 0 0 ) ( +) (" 0 ( +)") Sc C( 0 0 ) s obvously ogatv, hav " ( +)" W ot that ">0 or ls th cod s trval. Th Thrfor, hav th follog. " ( +) Thorm 6 If a -prfct cod xsts J(; ),, th +4 +

5 60 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 004 IV. -REGULAR CODES I ths scto, prst a approach to rul out th xstc of -prfct cods J(; ). W ot that all th o dvsblty codtos hch rul out prfct cods ar drvd from Str systms. I ths scto, vstgat th dvsblty codtos hch ar drvd from th sz of th cod as gv by th sphr-pacg boud. I J(; ), lt us dot 8 (; ) 0 0 th sz of a sphr of radus. Th umbr of codords of a -prfct cod C J(; ) s C 8 (; ) by th sphr-pacg boud, ad hc hav that 8 (; ) (8) Hovr, may do much bttr tha ths by troducg th oto of -rgular cods. Dfto Lt C b a cod J(; ) ad lt A b a subst of th coordat st N f;...; g. For all 0 A df Also, for ach I A df C A () fc C c \A g C A(I) fc C c \A Ig Dfto A cod C J(; ) s sad tob -rgular, f th follog to codtos hold. (c.) Thr xst umbrs (0);...;() such that f A N, A, th C A() () for all 0. (c.) For ay gv -subst A of N, thr xst umbrs A(0);...; A() such that f I Ath C A(I) A(I). Not that f a cod s -rgular,, th t s also ( 0 )-rgular. No, (8) s a smpl rsult of th follog thorm ad th fact that all cods ar trvally 0-rgular. Thorm 7 If a -prfct cod C J(; ) s -rgular, th 8 (; ) 0 0 for all 0. Proof Lt C b a -prfct cod J(; ) hch s -rgular. Lt 0, ad by codto (c.), lt dot th umbr of lgth all-os ords apparg a procto of C oto coordats. W may, thrfor, rt th follog quato, hch couts to dffrt ays th total umbr of lgth all-os ords apparg all th proctos of C oto coordats Thrfor, for ach, 0. 8 (; ) (; ) For th rst of our dscusso, xam -prfct cods J(+ a; ). W df th follog polyomal hch plays a crucal rol (; a; ) (0) a Thorm 8 Lt C b a -prfct cod J( + a; ), ad lt. If (; a; m) 6 0for all th tgrs m, th C s -rgular. Proof W prov th thorm by ducto o. Lt C b a -prfct cod J( + a; ). W partto th coordat st to tosubsts A ad B, such that A ad B + a 0. Th bass for th ducto s. W obta th follog to quatos + a 0 C A (0) C A () 0 C A (0) + C A () + a + + a 0 +a 8 ( + a; ) Th frst quato dscrbs th ay codords of cofgurato (0;) ad (; 0 ) J-covr ords of cofgurato (0;). Th scod quato smply rlats C A (0) ad C A () toth total umbr of codords. To s that ths quato st has xactly o soluto hav tosho that th dtrmat 0 +a a + s ozro. But th dtrmat s smply (; a; ) hch s ozro by th codtos of th thorm. Sc our soluto dos ot dpd o th partto, s mmdatly that th codtos of Dfto ar satsfd. Thrfor th bass s provd. No, for th ducto hypothss, assum that C s ( 0 )-rgular. Hc, thr xst umbrs 0 (0);...; 0 ( 0 ), such that for ach (0)-subst A 0 of N,havC A () 0 (), for all 0 0. W o prov th ducto stp,.., that C s also -rgular. Aga, lt A ad B b a partto of th coordat st N totosubsts, th A ad B + a 0. W start by shog that codto (c.) Dfto for rgularty s satsfd. Ths s do by ducto o th ght of th A part. For ght 0 th clam s obvous. No assum th clam holds for ght,.., ach of th lgth ght ords appars th A part of th codords th sam umbr of tms. W prov that th clam holds for ght +. Lt A 0 A, A 0 0, ad B 0 B, B 0 + a 0 +, b a partto of th coordats hch s obtad from A ad B by movg o coordat from A to B. Wth ths toparttos, fx a lgth 0 ght ord! th A 0 part. Th umbr of codords havg ths ord thr A 0 part s gv by 0 () 0 sc th cod s ( 0 )-rgular. By our last ducto assumpto cocrg ght, th umbr of codords cotag! th A 0 part ad a 0 coordat s gv by C A (). Hc, th umbr of codords cotag! thr A 0 part ad a coordat s th dffrc 0 () 0 (9) 0 CA() W o ot that th choc of coordat has obarg o th last argumts,.., ca us ay coordat of A 0 stad of. Thrfor, th umbr of codords cotag a gv ght +ord th A part s C A ( +). Hc, codto (c.) for rgularty + s satsfd. Aga, ot that (c.) may hold hl (c.) s ot satsfd. I fact, hav provd that f (c.) ad (c.) hold for, th (c.) also holds for +. Thrfor, hav quatos +varabls C A() CA( +) () 0 ; for all 0 0 (0)

6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER Just l th ducto bass, ordr to prov codto (c.) for rgularty add th follog quato m(;) 0 CA() a a 0 () Ths st of quatos has xactly o soluto f ad oly f ts dtrmat s ozro. Ths dtrmat s asly s to b qual to 0 0 (0) a (; a; ) By our assumpto o, hav a uqu soluto to th st of (0) (). Sc th partto dos ot affct th abov argumts, codto (c.) for rgularty holds ad C s -rgular. A. -Prfct Cods W o focus o -prfct cods ad sho that thy ar -rgular for a rlatvly d rag of valus of. Thorm 9 If a -prfct cod xsts J( + a; ), th t s -rgular for all 0 < + a +0 (a +) +4( 0 ) Proof Accordg to Thorm 8, a -prfct cod s -rgular J( + a; ) h (; a; ) 0 ( + a +) + ( + a) + has o tgr roots [;]. Cosdrd as a polyomal, th smallr of th to possbl roots s +a+0p (a+) +4(0), soth rag of dscrbd th thorm cotas o tgr roots. Corollary 8 If a -prfct cod xsts J(; ), + a, th 8 (; ) +( 0 ) 0 0 for all 0 < +a+0p (a+) +4(0). Th follog thorm o bomal coffcts ll b usd to dtrm odvsblty of bomal coffcts by pors of prms. Th thorm as gv by Kummr, ad t ca b foud [, p.45]. Thorm 0 Lt p b a prm. Th umbr of tms p appars a th factorzato of b quals th umbr of carrs h addg b to a 0 b bas p. By [6], alrady o that for -prfct cods, 0 (mod6). Hc, 8 (; ) 0 (mod ). W gv a strogr rsult th follog thorm. Thorm Thr ar o -prfct cods J(; ), h 8 (; ) +( 0 ) 0 (mod 4) Proof Assum thr xsts a -prfct cod J(; ), + a for m m+ 0. W hav th follog to cass. Cas m0. I ths cas 0 m0 < + a +0 (a +) +4(0 ) ; so by Corollary 8 +( 0 ) Thorm 0 mpls that ad so 0 + m0 0 + m0 m0 m0 6 0 (mod 4) +( 0 ) 6 0 (mod 4) Cas m0 0. Not that accordg to Thorm 3, also hav a<0 3. If at to us Corollary 8, hav to sho that 0 ( m 0 ) < + a +0 (a +) +4(0 ) but, aftr rarragg, ths s quvalt toshog that + a + (a +) +4( 0 ) < m+ 0 W o otc th follog + a + (a +) +4( 0 ) < ( 0 ) +4( 0 ) sc a< m+ 0 7 sc m0 0 < m+ 0 as atd to sho. Hc, () holds, ad th by Corollary 8 +( 0 ) Thorm 0 mpls that ad so m m 0 m m (mod 4) +( 0 ) 6 0 (mod 4) () Corollary 9 If thr xsts a -prfct cod J(; ) th thr 0 (mod)or 0 7 (mod ). B. -Prfct Cods, I ths subscto, dscuss otrval -prfct cods h As Scto IV-A, sho that f such a cod xsts, t must b -rgular for a d rag of valus of. Thorm If a -prfct cod,, xsts J( + a; ), th t s -rgular for all 0 < 0. Proof Our am s tosho that (; a; ) 6 0 for all [;0 ) for th rqurd rag of paramtrs (, a, ad ). W actually sho a strogr clam. W sho that s strctly postv th rqurd rag of paramtrs. W start by otg that th polyomal may b rrtt th follog mar by summg a dffrt ordr (; a; ) 0 m(;) 0 (0) a 0 + W cotu ad sho that th r sum, ach of th postv summads s gratr tha ts follog gatv summad absolut valu. Ths s quvalt toshog that a0++ +a0+ <

7 6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 004 Sc 0,, a 0, ad < Sot suffcs tosho that but ths s quvalt to hch alays holds. +a0++ +a0+ ( 0 )( 0 )( + a 0 + +) ( + )( 0 )( + a ) < ( 0 )( ) ( 0 + ) ( 0 )( ) ( 0 + ) ( 0 ) + ( +) 0 ; Corollary 0 If a -prfct cod xsts J(; ), th t s -rgular. Proof Assum thr xsts a -prfct cod J(; ) By Thorms 5 ad 6, hav that > ad by Thorm such a cod s -rgular for all < 0, ad hc th cod s -rgular. I th xt thorm xtd th rag of rgularty gv Thorm. W us Corollary 0 as th startg pot for th proof. Th mthod usd th proof of Thorm o logr ors for th xtdd rag, so a asymptotc approach s usd. W start by gvg tosmpl ll-o dtts, hch ca b provd by basc combatoral tchqus. Lmma 5 0 p m p 0 (0) 0 m 0 Lmma 6 Vadrmod s covoluto m p 0 0 p m 0 p p Thorm 3 For all, thr xsts W > 0 such that for all W, all -prfct cods J( + a; ) ar -rgular. Proof Our proof starts sstally th sam as th proof of Thorm. W actually at to sho, that for a larg ough, th a 0 ad (; a; ) 0 > 0 m(;) 0 (0) a 0 + By Corollary 0, may cosdr, so hav tosho that (0) Th lft-had sd ca b rrtt as 0 + a 0 (0) 0 + a > 0 +a0+ +a0 W cotu by provg that for all 0, th r sum s postv,.., No (0) 0 0 v 0 0 (0) a0+ +a a0+ +a odd +a0+ +a0 +a0+ +a0 0 0 odd odd hr th last stp s ta by usg Lmma 5. Soo t s ough to prov that +a0+ +a0 0 0 odd 0 0 < 0 W ot that th sum may b rrtt th follog mar 0 odd (0) Pluggg ths to(3) hav toprov that, +a0+ +a Fally, hav th follog cha of qualts +a0+ +a a a a a `0 0 ` + a a (3) by Lmma < (4) 0 (5) 0 00` (6) (0) a0+ +a0 > `0 0 ` ` 0 (7)

8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER a a a a (8) 0 (9) hr th trasto from (5) to (6) s by Lmma 6, th trasto from (7) to (8) s by Nto s bomal dtty, ad th trasto from (8) to (9) s by usg a 0,, ad. Thrfor, t s ough that sho that For a fxd valu of lm! ad hc, a W xsts as rqurd < (0) 0 0 W ot that Thorm 3 may b asly xtdd to sho that for all ad 0 < <, thr xsts W ; > 0 such that for all W ;, all -prfct cods J( + a; ) ar bc-rgular. Hovr, for th follog, s suffct. Thorm 4 Thr ar o -prfct cods J(; ),, hch ar also bc-rgular, h 8 (; ) 0(mod4). Proof Lt C b a bc-rgular -prfct cod J(; ), + a,for m m+ 0. W dstgush bt tocass. Cas m0. I ths cas 0 m0 Sc th cod s bc-rgular, th by Thorm 7 8 (; ) Thorm 0 mpls that ad so 0 + m0 0 + m0 m0 m0 6 0 (mod 4) 8 (; ) 6 0 (mod 4) Cas m0 0. Not that by Thorm 3, also hav a< 0 ( +) < If at tous Thorm 7, hav tosho that But o 0 ( m 0 ) () 0 + a 0 < <m 0 Hc, () holds, ad th by Thorm 7 8 (; ) Thorm 0 mpls that ad so m m 0 m m (mod 4) 8 (; ) 6 0 (mod 4) Thorm 5 Thr ar o -prfct cods J(; ),, hch ar also bc-rgular, h 8 (; ) 0 (mod p ), p 3 a prm. Proof Lt C b a -prfct cod J(; ), forp m p m+ 0. No,f p m0 0, th hav < p hch s mpossbl for p 3 by Thorm 3. Hc, lt p m0 ( +)p m0 0, for som p 0. I ths cas 0 p m0 Sc th cod s bc-rgular, th by Thorm 7 8 (; ) Thorm 0 mpls that ad so 0 + p m0 0 + p m0 p m0 p m0 6 0 (mod p ) 8 (; ) 6 0 (mod p ) Corollary Thr ar o -prfct cods J(; ),, hch ar also bc-rgular, h 8 (; ) 0 (mod p ), p a prm. To prov th xt thorm d aothr trstg thorm o bomal coffcts. Ths thorm s du to Lucas []. Lt a 0 b som tgr. W th dot by p (a; ), th th dgt of a h rtt bas p. Hc, a 0 p(a; )p Thorm 6 Lt p b a prm, ad m 0 totgrs, th m 0 p(; ) p(m; ) (mod p) Thorm 7 Lt p b a prm, ad 0 (mod p ).Ifa-prfct cod xsts J(; ), th 8 (; ) 0 (mod p ) Proof Lt C b a -prfct cod J(; ). By Corollary, (mod +)ad hc + 0 +

9 64 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 004 0(modp ). I othr ords, th to last sgfcat dgts th rprstato bas p of,, ad 0, ar both p 0,.., p(; 0) p(; ) p( 0 ; 0) p ( 0 ; ) p (; 0) p (; ) p 0 () Lt 0 <b som tgr such that 0 (mod p).no p0 p 0 + p p by (4) 0 (mod p ) Fally, usg th fact that modulo p quals 0 + p by (3) 0 (mod p ), th sphr sz ( 0 )( 0 0 ) ( +) Hovr, ot that 0, 0 0, ad +ar coprm to p. Furthrmor, ( + ) (mod p ). Hc, 0 Ths may b rpatd togt (mod p ) 0 8 (; ) 0 p 0 0< 0 0 (modp ) 0 (mod p ) p p 0 (mod p ) (3) No lt 0 < b som tgr such that 0 (mod p ). Not that all th umbrs of th form + p, h 0 p 0, oly th scod dgt bas p chags hl th frst dgt s alays zro. W xam th follog sum modulo p usg Thorm 6 p0 0 + p p0 0 `0 p p p 0 ` (p 0 ) p 0 ` p(; `) p( + p; `) p(; `) p( + p; `) p(; `) p( + p; `) p( 0 ; `) p( + p; `) p( 0 ; `) p( + p; `) p( 0 ; `) p( + p; `) (mod p) Hovr, p((p 0 ); 0) p 0 <p0 p (p 0 ; 0), ad thrfor, by Thorm 0 (p 0 ) p 0 0 (mod p) Hc, th prvous sum s cogrut to 0 modulo p. No, for som tgr p0 0 + p 0 + p p (4) W cotu by xamg th follog sum modulo p p p0 p0 ` p + ` 0 + p + ` Corollary For ay gv, 0 (mod p ), p prm, thr ar ftly may otrval -prfct cods th Johso graph. V. APPLICATIONS A smpl obsrvato s that th lft-had sd of (0) s a mootoously dcrasg fucto. Hc, a smpl computr sarch ca fd th valu of W of Thorm 3 ad valdat that (; a; ) has o tgr roots for ad W. Such a computr sarch as do for 3; 7; 8 ad, dd, o such roots r foud. Thrfor, coclud th follog. Proposto Thr ar ootrval 3-prfct, 7-prfct, ad 8-prfct cods th Johso graph. Aothr computr sarch as coductd hch tstd th dvsblty codtos of Thorm 7. Th rsults of ths sarch ar gv th xt to propostos. Proposto Thr ar o -prfct cods J(; ) for all Proposto 3 Thr ar o -prfct cods J(; ) for all Ths s a sgfcat mprovmt ovr th prvous mthod usg Str systms, hch lft for all 0 (mod 6) as caddats, ad for all 0 ; 6; 50 (mod 60) as caddats. W blv that furthr umbr-thortc aalyss of th rgularty mthod ll rul out all prfct cods. Fally, for gv ad a, xam hch graphs J( + a; ) th xstc of -prfct cods as ot ruld out. Th rsults of Sctos III ad IV ad carful aalyss sho th follog. Thorm 8 For a 35, thr ar o -prfct cods J( + a; ) th th follog possbl xcptos -prfct cods ad -prfct cods J(+;) ad J(+4;), ad 4-prfct cods J( +5;) ad J( +30;). VI. CONCLUSION Th ma purpos of ths corrspodc as to attac Dlsart s 30 yars old coctur o th oxstc of otrval prfct cods th Johso schm. W shod varous rsults hch rul out -prfct cods J(; ) for varous valus of,, ad. A ovl tchqu usg -rgular cods as troducd. For practcal us, ths tchqu s abl to rul out ay gv st of paramtrs.

10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER Th ma problm that should b th focus of furthr rsarch s to prov that thr ar o otrval prfct cods th Johso schm by usg th cocpt of -rgular cods. Cocyclc Smplx Cods of Typ Ovr ad Nmalsr Paala ad Asha Rao ACKNOWLEDGMENT Th authors ould l to tha th to aoymous rfrs hos commts hav amdd ths corrspodc. REFERENCES [] F. J. MacWllams ad N. J. A. Sloa, Th Thory of Error-Corrctg Cods. Amstrdam, Th Nthrlads North-Hollad, 978. [] J. H. va Lt, Noxstc thorms for prfct rror-corrctg cods, Computrs Algbra ad Numbr Thory, vol. IV, SIAM-AMS Procdgs, 97. [3] A. Ttävä, O th oxstc of prfct cods ovr ft flds, SIAM J. Appl. Math., vol. 4, pp , 973. [4] V. A. Zovv ad V. K. Lotv, Th oxstc of prfct cods ovr Galos flds, Probl. Cotrol ad Iform. Thory, vol., pp. 3 3, 973. [5] M. R. Bst, Prfct cods hardly xst, IEEE Tras. Iform. Thory, vol. IT-9, pp , May 983. [6] Q. A. Nguy, L. Györf, ad J. L. Massy, Costructos of bary costat-ght cyclc cods ad cyclcally prmutabl cods, IEEE Tras. Iform. Thory, vol. 38, pp , May 99. [7] A. E. Brour, J. B. Sharr, N. J. A. Sloa, ad W. D. Smth, A tabl of costat-ght cods, IEEE Tras. Iform. Thory, vol. 36, pp , Nov [8] F. R. K. Chug, J. A. Salh, ad V. K. W, Optcal orthogoal cods Dsg, aalyss, ad applcatos, IEEE Tras. Iform. Thory, vol. 35, pp , May 989. [9] T. Etzo, Costructos of rror-corrctg DC-fr bloc cods, IEEE Tras. Iform. Thory, vol. 36, pp , July 990. [0] H. C. A. va Tlborg ad M. Blaum, O rror-corrctg balacd cods, IEEE Tras. Iform. Thory, vol. 35, pp , Spt [] P. Dlsart, A algbrac approach to assocato schms of codg thory, Phlps J. Rs., vol. 0, pp. 97, 973. [] E. Bggs, Prfct cods graphs, J. Comb. Thory Sr. B, vol. 5, pp , 973. [3] E. Baa, Cods b-partt dstac-rgular graphs, J. Lodo Math. Soc., vol., pp. 97 0, 977. [4] P. Hammod, O th oxstc of prfct cods ad arly prfct cods, Dscr. Math., vol. 39, pp , 98. [5] C. Roos, A ot o th xstc of prfct costat ght cods, Dscr. Math., vol. 47, pp. 3, 983. [6] T. Etzo, O th oxstc of prfct cods th Johso schm, SIAM J. Dscr. Math., vol. 9, o., pp. 0 09, May 996. [7], O prfct cods th Johso schm, DIMACS Srs Dscrt Mathmatcs ad Thortcal Computr Scc, vol. 56, pp. 5 30, 00. [8] W. J. Mart, Compltly rgular substs, Ph.D. dssrtato, Uv. Watrloo, Watrloo, ON, Caada, 99. [9] O. Shmabuuro, O th oxstc of prfct cods J( +p ;), Ars Combatora, tob publshd. [0] R. Ahlsd, H. K. Ayda, ad L. H. Khachatra, O prfct cods ad rlatd cocpts, Ds., Cods Cryptogr., vol., o. 3, pp. 37, Ja. 00. [] R. L. Graham, D. E. Kuth, ad O. Patash, Cocrt Mathmatcs A Foudato for Computr Scc. Radg, MA Addso-Wsly, 994. [] N. J. F, Bomal coffcts modulo a prm, Amr. Math. Mothly, vol. 54, pp , 947. Abstract Ovr th past dcad, cocyls hav b usd to costruct Hadamard ad gralzd Hadamard matrcs. Ths, tur, has ld to th costructo of cods slf-dual ad othrs. Hr xplor ths das furthr to costruct cocylc complx ad Butso Hadamard matrcs, ad subsqutly us th matrcs to costruct smplx cods of typ ovr Z ad Z, rspctvly. Idx Trms Butso, cocycl, complx Hadamard, xpot, quatrary, slf-orthogoal, smplx cods, trac. I. INTRODUCTION Varous authors [], [], [], [] hav studd th costructo of cocyclc Hadamard ad cocyclc gralzd Hadamard matrcs ad th us of ths matrcs th costructo of cocyclc cods. Hr xtd ths costructos to obta cocyclc Butso ad cocyclc complx Hadamard matrcs. Smplx cods of typ r studd by Gupta [9], but o mthods of costructos r gv. W us th cocyclc complx ad cocyclc Butso Hadamard matrcs to costruct smplx cods of typ ovr Z 4 ad Z, rspctvly. W assum that th radr s famlar th th basc facts of th thory of Hadamard matrcs (s, for xampl, [5]) ad of bary lar cods (s [3]). If G s a ft group (rtt multplcatvly th dtty ) ad C s a Abla group, a cocycl (ovr G) s a st mappg GG!C hch satsfs (a; b) (ab; c) (a; bc) (b; c); 8a; b; c G A cocycl s ormalzd f (; ). A cocycl may b rprstd as a cocyclc matrx M [ (a; b)] a;bg oc a dxg of th lmts of G has b chos. Lt C p b th multplcatv group of all complx pth roots of uty, C p f;x;x ;...; x p0 g, hr x xp(p) ad p s a tgr. A squar matrx H [h ] of ordr th lmts from C p s calld a Butso Hadamard matrx (BH(; p)) (s [5]) f ad oly f HH 3 I, H 3 bg th cougat traspos of H ad I th dtty matrx of ordr. Wh p ad ; or a multpl of 4, BH(; p) s a Hadamard matrx. A complx Hadamard matrx H of ordr s a matrx th trs from f;;0; 0g that satsfs HH 3 I, hr p 0 ad H 3 s th cougat traspos of H. It s cocturd that a complx Hadamard matrx xsts for vry v ordr. I [5], t s sho that vry complx Hadamard matrx has ordr or dvsbl by. A complx Hadamard matrx s a spcal cas of a Butso Hadamard matrx BH(; p) for p 4. Lt H [h ; ] b a squar matrx ovr C p, hr p s a fxd tgr p >. Th matrx E [ ;]; ; Z p, hch s obtad from H [x ][h ; ], hr x xp(p), s calld th xpot matrx assocatd th H. Th lmts of th xpot matrx E l th Galos rg GR (p; ) (Galos fld GF (p), forp prm), ad ts ro vctors ca b vd as th codords of a cod ovr th tgrs modulo p /04$ IEEE Mauscrpt rcvd Dcmbr 0, 003; rvsd May 5, 004. Th authors ar th th Dpartmt of Mathmatcs ad Statstcs, Royal Mlbour Isttut of Tchology, GPO Box 476V, Mlbour, VIC 300, Australa. Commucatd by C. Carlt, Assocat Edtor for Codg Thory. Dgtal Obct Idtfr 0.09/TIT

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since 56 Chag Ma J Sc 0; () Chag Ma J Sc 0; () : 56-6 http://pgscccmuacth/joural/ Cotrbutd Papr Th Padova Sucs Ft Groups Sat Taș* ad Erdal Karaduma Dpartmt of Mathmatcs, Faculty of Scc, Atatürk Uvrsty, 50 Erzurum,

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

Different types of Domination in Intuitionistic Fuzzy Graph

Different types of Domination in Intuitionistic Fuzzy Graph Aals of Pur ad Appld Mathmatcs Vol, No, 07, 87-0 ISSN: 79-087X P, 79-0888ol Publshd o July 07 wwwrsarchmathscorg DOI: http://dxdoorg/057/apama Aals of Dffrt typs of Domato Itutostc Fuzzy Graph MGaruambga,

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Integral points on hyperbolas over Z: A special case

Integral points on hyperbolas over Z: A special case Itgral pots o hprbolas ovr Z: A spcal cas `Pag of 7 Kostat Zlator Dpartmt of Mathmatcs ad Computr Scc Rhod Islad Collg 600 Mout Plasat Avu Provdc, R.I. 0908-99, U.S.A. -mal addrss: ) Kzlator@rc.du ) Kostat_zlator@ahoo.com

More information

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data saqartvlos mcrbata rovul akadms moamb, t 9, #2, 2015 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 9, o 2, 2015 Mathmatcs O Estmato of Ukow Paramtrs of Epotal- Logarthmc Dstrbuto by Csord

More information

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4. Coutg th compostos of a postv tgr usg Gratg Fuctos Start wth,... - Whr, for ampl, th co-ff of s, for o summad composto of aml,. To obta umbr of compostos of, w d th co-ff of (...) ( ) ( ) Hr for stac w

More information

On the Possible Coding Principles of DNA & I Ching

On the Possible Coding Principles of DNA & I Ching Sctfc GOD Joural May 015 Volum 6 Issu 4 pp. 161-166 Hu, H. & Wu, M., O th Possbl Codg Prcpls of DNA & I Chg 161 O th Possbl Codg Prcpls of DNA & I Chg Hupg Hu * & Maox Wu Rvw Artcl ABSTRACT I ths rvw artcl,

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1 Th robablty of Ra's hyothss bg tru s ual to Yuyag Zhu Abstract Lt P b th st of all r ubrs P b th -th ( ) lt of P ascdg ordr of sz b ostv tgrs ad s a rutato of wth Th followg rsults ar gv ths ar: () Th

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

Frequency hopping sequences with optimal partial Hamming correlation

Frequency hopping sequences with optimal partial Hamming correlation 1 Frqucy hoppg squcs wth optmal partal Hammg corrlato Jgju Bao ad ju J arxv:1511.02924v2 [cs.it] 11 Nov 2015 Abstract Frqucy hoppg squcs (FHSs) wth favorabl partal Hammg corrlato proprts hav mportat applcatos

More information

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Suzan Mahmoud Mohammed Faculty of science, Helwan University Europa Joural of Statstcs ad Probablty Vol.3, No., pp.4-37, Ju 015 Publshd by Europa Ctr for Rsarch Trag ad Dvlopmt UK (www.ajourals.org ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN WEIBULL DISTRIBUTION

More information

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto   {t-asano, School of Iformato Scc Chal Capacty 009 - Cours - Iformato Thory - Ttsuo Asao ad Tad matsumoto Emal: {t-asao matumoto}@jast.ac.jp Japa Advacd Isttut of Scc ad Tchology Asahda - Nom Ishkawa 93-9 Japa http://www.jast.ac.jp

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

On Approximation Lower Bounds for TSP with Bounded Metrics

On Approximation Lower Bounds for TSP with Bounded Metrics O Approxmato Lowr Bouds for TSP wth Boudd Mtrcs Mark Karpsk Rchard Schmd Abstract W dvlop a w mthod for provg xplct approxmato lowr bouds for TSP problms wth boudd mtrcs mprovg o th bst up to ow kow bouds.

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Estimation Theory. Chapter 4

Estimation Theory. Chapter 4 Estmato ory aptr 4 LIEAR MOELS W - I matrx form Estmat slop B ad trcpt A,,.. - WG W B A l fttg Rcall W W W B A W ~ calld vctor I gral, ormal or Gaussa ata obsrvato paramtr Ma, ovarac KOW p matrx to b stmatd,

More information

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 9 4. Matrx tgrals Lt h N b th spac of Hrmta matrcs of sz N. Th r product o h N s gv by (A, B) = Tr(AB). I ths scto w wll cosdr tgrals of th form Z

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations Appld Mathmatcal Sccs ol. 9 5 o. 43 75-73 HKAR Ltd www.m-hkar.com http://dx.do.org/.988/ams.5.567 Thr-Dmsoal Thory of Nolar-Elastc Bods Stablty udr Ft Dformatos Yu.. Dmtrko Computatoal Mathmatcs ad Mathmatcal

More information

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays Itratoal Cofrc o Appld Mathmatcs, Smulato ad Modllg (AMSM 6) Group Cossus of Scod-Ordr Mult-agt Ntworks wth Multpl Tm Dlays Laghao J* ad Xyu Zhao Chogqg Ky Laboratory of Computatoal Itllgc, Chogqg Uvrsty

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model Th Op Orgac hmstry Joural 0 5 (Suppl -M6) 87-87 Op Accss Advacs of lar's Aromatc Sxtt Thory ad Radc 's ougatd rcut Modl Fu Zhag a Xaofg Guo a ad Hpg Zhag b a School of Mathmatcal Sccs Xam Uvrsty Xam Fua

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

A Measure of Inaccuracy between Two Fuzzy Sets

A Measure of Inaccuracy between Two Fuzzy Sets LGRN DEMY OF SENES YERNETS ND NFORMTON TEHNOLOGES Volum No 2 Sofa 20 Masur of accuracy btw Two Fuzzy Sts Rajkumar Vrma hu Dv Sharma Dpartmt of Mathmatcs Jayp sttut of formato Tchoy (Dmd vrsty) Noda (.P.)

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

International Journal of Mathematical Archive-6(5), 2015, Available online through ISSN

International Journal of Mathematical Archive-6(5), 2015, Available online through  ISSN Itratoal Joural of Mathmatal Arhv-6), 0, 07- Avalabl ol through wwwjmafo ISSN 9 06 ON THE LINE-CUT TRANSFORMATION RAPHS B BASAVANAOUD*, VEENA R DESAI Dartmt of Mathmats, Karatak Uvrsty, Dharwad - 80 003,

More information

Chapter 6. pn-junction diode: I-V characteristics

Chapter 6. pn-junction diode: I-V characteristics Chatr 6. -jucto dod: -V charactrstcs Tocs: stady stat rsos of th jucto dod udr ald d.c. voltag. ucto udr bas qualtatv dscusso dal dod quato Dvatos from th dal dod Charg-cotrol aroach Prof. Yo-S M Elctroc

More information

Ordinary Least Squares at advanced level

Ordinary Least Squares at advanced level Ordary Last Squars at advacd lvl. Rvw of th two-varat cas wth algbra OLS s th fudamtal tchqu for lar rgrssos. You should by ow b awar of th two-varat cas ad th usual drvatos. I ths txt w ar gog to rvw

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution Itratoal Joural of Statstcs ad Applcatos, (3): 35-3 DOI:.593/j.statstcs.3. Baysa Shrkag Estmator for th Scal Paramtr of Expotal Dstrbuto udr Impropr Pror Dstrbuto Abbas Najm Salma *, Rada Al Sharf Dpartmt

More information

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY Colloquum Bomtrcum 44 04 09 7 COMPISON OF SEVEL ESS FO EQULIY OF COEFFICIENS IN QUDIC EGESSION MODELS UNDE HEEOSCEDSICIY Małgorzata Szczpa Dorota Domagała Dpartmt of ppld Mathmatcs ad Computr Scc Uvrsty

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES AYMPTOTIC AD TOLERACE D-MODELLIG I ELATODYAMIC OF CERTAI THI-WALLED TRUCTURE B. MICHALAK Cz. WOŹIAK Dpartmt of tructural Mchacs Lodz Uvrsty of Tchology Al. Poltrchk 6 90-94 Łódź Polad Th objct of aalyss

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Superbosonization meets Free Probability

Superbosonization meets Free Probability Suprbosoato mts Fr Probablty M Zrbaur jot wor wth S Madt Eulr Symposum St Ptrsburg Ju 3 009 Itroducto From momts to cumulats Larg- charactrstc fucto by fr probablty Suprbosoato Applcato to dsordrd scattrg

More information

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source: Cour 0 Shadg Cour 0 Shadg. Bac Coct: Lght Sourc: adac: th lght rg radatd from a ut ara of lght ourc or urfac a ut old agl. Sold agl: $ # r f lght ourc a ot ourc th ut ara omttd abov dfto. llumato: lght

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of Do Bgyoko () FOURIER SERIES I. INTRODUCTION Srs psos r ubqutous too o scc d grg. Th kds o pso to utz dpd o () th proprts o th uctos to b studd d (b) th proprts or chrctrstcs o th systm udr vstgto. Powr

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach ISSN 168-8 Joural of Statstcs Volum 16, 9,. 1-11 Cosstcy of th Mamum Lklhood Estmator Logstc Rgrsso Modl: A Dffrt Aroach Abstract Mamuur Rashd 1 ad Nama Shfa hs artcl vstgats th cosstcy of mamum lklhood

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 -

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 - Statstcal Thrmodyamcs sstal Cocpts (Boltzma Populato, Partto Fuctos, tropy, thalpy, Fr rgy) - lctur 5 - uatum mchacs of atoms ad molculs STATISTICAL MCHANICS ulbrum Proprts: Thrmodyamcs MACROSCOPIC Proprts

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Backlund Transformations for Non-Commutative (NC) Integrable Eqs.

Backlund Transformations for Non-Commutative (NC) Integrable Eqs. Backlud Trasormatos or No-Commutatv NC Itral Es. asas HAANAKA Uvrsty o Naoya vst Glaso utl. 3 ad IHES 3 - ar3 9 Basd o Clar R.Glso Glaso H ad oata.c.nmmo Glaso ``Backlud trs or NC at-sl-dual AS Ya-lls

More information

A Stochastic Approximation Iterative Least Squares Estimation Procedure

A Stochastic Approximation Iterative Least Squares Estimation Procedure Joural of Al Azhar Uvrst-Gaza Natural Sccs, 00, : 35-54 A Stochastc Appromato Itratv Last Squars Estmato Procdur Shahaz Ezald Abu- Qamar Dpartmt of Appld Statstcs Facult of Ecoomcs ad Admstrato Sccs Al-Azhar

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Adagba O Henry /International Journal Of Computational Engineering Research / ISSN: OPERATION ON IDEALS

Adagba O Henry /International Journal Of Computational Engineering Research / ISSN: OPERATION ON IDEALS Adagba O Hry /Itratoal Joural Of Computatoal Egrg Rsarh / ISSN 50 3005 OPERATION ON IDEALS Adagba O Hry, Dpt of Idustral Mathmats & Appld Statsts, Eboy Stat Uvrsty, Abakalk Abstrat W provd bas opratos

More information

' 1.00, has the form of a rhomb with

' 1.00, has the form of a rhomb with Problm I Rflcto ad rfracto of lght A A trstg prsm Th ma scto of a glass prsm stuatd ar ' has th form of a rhomb wth A th yllow bam of moochromatc lght propagatg towards th prsm paralll wth th dagoal AC

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE 7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE Isttut of Ecoomc Forcastg Roxaa IDU Abstract I ths papr I aalyz th dffuso of a product ovato that was rctly mad avalabl for lcsd purchas wth a

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Design of Functionally Graded Structures in Topology Optimization

Design of Functionally Graded Structures in Topology Optimization EgOpt 2008 - Itratoal Cofrc o Egrg Optmzato Ro d Jaro, Brazl, 0-05 Ju 2008. Dsg of Fuctoally Gradd Structurs Topology Optmzato Sylva R. M. d Almda, Glauco H. Paulo 2, Emlo C. N. Slva 3 Uvrsdad Fdral d

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 St Ssts o Ordar Drtal Equatos Novbr 7 St Ssts o Ordar Drtal Equatos Larr Cartto Mcacal Er 5A Sar Er Aalss Novbr 7 Outl Mr Rsults Rvw last class Stablt o urcal solutos Stp sz varato or rror cotrol Multstp

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data Itratoal Rfrd Joural of Egrg ad Scc (IRJES) ISSN (Ol) 319-183X, (Prt) 319-181 Volum, Issu 10 (Octobr 013), PP. 6-30 Tolrac Itrval for Expotatd Expotal Dstrbuto Basd o Groupd Data C. S. Kaad 1, D. T. Shr

More information

Irregular Boundary Area Computation. by Quantic Hermite Polynomial

Irregular Boundary Area Computation. by Quantic Hermite Polynomial It. J. Cotmp. Mat. Sccs, Vol. 6,, o., - Irrgular Boudar Ara Computato b Quatc Hrmt Polomal J. Karwa Hama Faraj, H.-S. Faradu Kadr ad A. Jamal Muamad Uvrst of Sulama-Collg of Scc Dpartmt of Matmatcs, Sualma,

More information

The R Package PK for Basic Pharmacokinetics

The R Package PK for Basic Pharmacokinetics Wolfsggr, h R Pacag PK St 6 h R Pacag PK for Basc Pharmacotcs Mart J. Wolfsggr Dpartmt of Bostatstcs, Baxtr AG, Va, Austra Addrss of th author: Mart J. Wolfsggr Dpartmt of Bostatstcs Baxtr AG Wagramr Straß

More information

More Statistics tutorial at 1. Introduction to mathematical Statistics

More Statistics tutorial at   1. Introduction to mathematical Statistics Mor Sttstcs tutorl t wwwdumblttldoctorcom Itroducto to mthmtcl Sttstcs Fl Soluto A Gllup survy portrys US trprurs s " th mvrcks, drmrs, d lors whos rough dgs d ucompromsg d to do t thr ow wy st thm shrp

More information

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables Sogklaaka J. Sc. Tchol. 4 () 4-48 Ma. -. 8 Ogal tcl Nw bouds o Posso aomato to th dstbuto of a sum of gatv bomal adom vaabls * Kat Taabola Datmt of Mathmatcs Faculty of Scc Buaha Uvsty Muag Chobu 3 Thalad

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM OPERTIONS RESERH o.287/opr.8.559c pp. c c8 -copao ONLY VILLE IN ELETRONI FORM fors 28 INFORMS Elctroc opao Optzato Mols of scrt-evt Syst yacs by Wa K (Vctor ha a L Schrub, Opratos Rsarch, o.287/opr.8.559.

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Power Spectrum Estimation of Stochastic Stationary Signals

Power Spectrum Estimation of Stochastic Stationary Signals ag of 6 or Spctru stato of Stochastc Statoary Sgas Lt s cosr a obsrvato of a stochastc procss (). Ay obsrvato s a ft rcor of th ra procss. Thrfor, ca say:

More information

Graphs of q-exponentials and q-trigonometric functions

Graphs of q-exponentials and q-trigonometric functions Grahs of -otals ad -trgoomtrc fuctos Amla Carola Saravga To ct ths vrso: Amla Carola Saravga. Grahs of -otals ad -trgoomtrc fuctos. 26. HAL Id: hal-377262 htts://hal.archvs-ouvrts.fr/hal-377262

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Note on the Computation of Sample Size for Ratio Sampling

Note on the Computation of Sample Size for Ratio Sampling Not o th Computato of Sampl Sz for ato Samplg alr LMa, Ph.D., PF Forst sourcs Maagmt Uvrst of B.C. acouvr, BC, CANADA Sptmbr, 999 Backgroud ato samplg s commol usd to rduc cofdc trvals for a varabl of

More information

On the Design of Finite-State Shaping Encoders for Partial-Response Channels

On the Design of Finite-State Shaping Encoders for Partial-Response Channels O th Dsg of Ft-Stat Shapg Ecodrs for Partal-Rspos Chals Josph B. Soraga Qualcomm, Ic. 5775 Morhous Drv, Sa Dgo, CA 922 Emal: jsoraga@qualcomm.com Paul H. Sgl Ctr for Magtc Rcordg Rsarch Uvrsty of Calfora,

More information

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS Chaptr 4 NUMERICL METHODS FOR SOLVING BOUNDRY-VLUE PROBLEMS 00 4. Varatoal formulato two-msoal magtostatcs Lt th followg magtostatc bouar-valu problm b cosr ( ) J (4..) 0 alog ΓD (4..) 0 alog ΓN (4..)

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS

FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS FILTER BANK ULTICARRIER WITH LAPPED TRANSFORS aurc Bllagr, CNA Davd attra, aro Tada, Uv.Napol arch 5 Obctvs A multcarrr approach to mprov o OFD for futur wrlss systms - asychroous mult-usr accss - spctral

More information

T and V be the total kinetic energy and potential energy stored in the dynamic system. The Lagrangian L, can be defined by

T and V be the total kinetic energy and potential energy stored in the dynamic system. The Lagrangian L, can be defined by From MEC '05 Itrgratg Prosthtcs ad Mdc, Procdgs of th 005 MyoElctrc Cotrols/Powrd Prosthtcs Symposum, hld Frdrcto, Nw Bruswc, Caada, ugust 7-9, 005. EECROMECHNIC NYSIS OF COMPEE RM PROSHESIS (EMS) Prmary

More information

Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields in Relativistic Quantum Approach

Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields in Relativistic Quantum Approach Po Producto va Proto Sychrotro Radato Strog Magtc Flds Rlatvstc Quatum Approach Partcl Productos TV Ergy Rgo Collaborators Toshtaka Kajo Myog-K Chou Grad. J. MATHEWS Tomoyuk Maruyama BRS. Nho Uvrsty NaO,

More information

Lecture #11. A Note of Caution

Lecture #11. A Note of Caution ctur #11 OUTE uctos rvrs brakdow dal dod aalyss» currt flow (qualtatv)» morty carrr dstrbutos Radg: Chatr 6 Srg 003 EE130 ctur 11, Sld 1 ot of Cauto Tycally, juctos C dvcs ar formd by coutr-dog. Th quatos

More information

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( )

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( ) Sprg Ch 35: Statstcal chacs ad Chcal Ktcs Wghts... 9 Itrprtg W ad lw... 3 What s?... 33 Lt s loo at... 34 So Edots... 35 Chaptr 3: Fudatal Prcpls of Stat ch fro a spl odl (drvato of oltza dstrbuto, also

More information