Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Size: px
Start display at page:

Download "Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4."

Transcription

1 Coutg th compostos of a postv tgr usg Gratg Fuctos Start wth,... - Whr, for ampl, th co-ff of s, for o summad composto of aml,. To obta umbr of compostos of, w d th co-ff of (...) ( ) ( ) Hr for stac w obta (.) from products (. ), (. ), ad (. ). So co-ff of /(-) s, whch s umbr of two summad compostos of ),,,. Cotug wth th thr summad compostos w ow am (...) ( ) ( ) Oc aga w look at th was coms about aml, from products (.. ), (.. ), ad (.. ). So hr co-ff of s, whch accouts for th thr summad compostos,, ad (of ). Fall th co-ff of blow fucto s, (...) ( ) ( ) for o four summad composto (of ). Ths rsult tll us that th co-ff of ( ) s 8 ( ), th umbr of compostos of. I fact ths s also th co-ff of th abov qu. Gralzg th stuato w fd that th umbr of compostos of a postv tgr s th co-ff of th gratg fucto f ( )...(). ( ) But f w st /(-), th t follows that

2 f ( ) ( - ) ( ) ( ) [ ( ) ( ) ( )...]... So th umbr of tgr compostos of a postv tgr s th co-ff of f() ad ths s - as drvd th quato prvous sld. Lt us am th dtt -... Wh s rplacd b ths th rsult tlls - that for all blogg to Z, Whr do w us ths? Cosdr th spcal compostos of tgrs 6 ad 7, that rad sam lft to rght as rght to lft. 6 7 Ths ar paldroms for 6 ad 7. W fd that for 7 thr ar () () (-) paldroms. Thr s o paldrom wth o summad, 7. Thr s also o paldrom whr ctr summad s ad whr w plac o composto of o thr sd of ths summad (paldrom ). For th ctr summad w plac o of th two compostos of o th rght ad th match t o th lft, wth sam composto, rvrs ordr. (paldroms ad ) fall wh th ctr summad s, w put a gv composto of o th rght sd f ths ad match o lft sd wth sam composto, rvrs ordr. Thr ar - compostos of (paldroms,6,7,8). Th stuato s sam for paldroms of 6 cpt cas whr sg appars as ctr. So - for 6,

3 )Ctr summad 6 paldrom )Ctr summad (-) paldrom ) Ctr summad (-) paldrom v) sg at Ctr (-) paldrom So thr ar () (-) paldroms for 6. Now w look at th gral stuato. For thr s o paldrom. If k, for k blogg to Z, th thr s o paldrom wth ctr summad. for t k, thr ar t- paldroms of wth ctr summad -t. Hc th total umbr of paldroms of s (. k- ) ( k -) k (-)/ Now cosdr v, sa k for k blogg to Z. Hr thr s o paldrom wth ctr summad -s (o paldrom for ach of s- compostos of s). I addto thr ar k- paldroms whr a sg s at th ctr (o paldrom for ach of th k- compostos of k).i total, has (. k- k- ) ( k -) k / / Obsrv that for Z, has paldroms. Parttos of ItgrsPartto a postv tgr to postv summads ad skg th umbr of such parttos, wthout rgard to ordr. Ths umbr s dotd b p(). For ampl, p(): p(): p(): p(): p()7: W should lk to obta p() for a gv wthout havg to lst all th parttos. W d a tool to kp track of th umbrs of 's, 's,..., 's that ar usd as summads for kp track of 's : kp track of 's : kp track of k's : For ampl, p() s th coffct of. f ( ) ( )( ) ( ( ) ( I gral, P( ) ) ( k ) ( k 6 k ). ( ) ) grat th squc p(), p(),

4 Eampl:Fd th gratg fucto for th umbr of was a advrtsg agt ca purchas muts of ar tm f tm slots for commrcals com blocks of, 6, or scods. Lt scods rprst o tm ut. Th th aswr s th umbr of tgr solutos to th quato a b c wth a, b, c. Th assocatd gratg fucto f ( ) ( )( ad th coffct of )( 8 s ) s th aswr. Eampl: Fd th gratg fucto for p d (), th umbr of parttos of a postv tgr to dstct summads. Lt us cosdr parttos of 6: ) ) ) ) ) 6) 7) 8) 9) ) )6 Parttos 6,7,9 ad hav dstct summads, so P d (6)

5 For a k Z, Thr ar two posblts thr k s ot usd as a summad or t s. Ths ca b accoutd for b th polomal Cosqutl, th gratg fucto s P ( ) ( )( d for ach Z, p )( ( )( )...( wh 6, th coff of fucto for th squc p P () ( ( Now bcaus, -, w hav, d ) ( ) s th coff of ( ) ). ad p (). 6 - d ( )( )...( Cosdrg th parttos, w s that thr ar four parttos of 6 to odd summads, aml,, 6 ad th prvous ampl. W also hav p (6). lt p () dot th umbr of parttos of to odd (),p...)(...). -, (),p. - -, k...)( ) s. summads, wh. W df p (). Th gratg 7 P ( ) ( )( d P () p () p (), for all. )( )( From qualt of gratg fuctos, d 8... )... 6 d (),...s gv b ). Eampl: Partto to odd summads but ach such odd summads must occur a odd umbr of tms-or ot at all. Hr, for ampl, thr s o such partto of tgr, aml, thr ar o parttos of, thr ar two such parttos for tgr, aml ad. o partto for tgr aml. Th gratg fucto for th parttos dscrbd s gv b

6 f ( ) ( )( 9 )( ( )( ) ) k. k Usg Gratg fuctos, w wll also b abl to dal wth a sampl spac that s dscrt but ot ft. Eampl:Suppos that Braa taks a amato utl sh passs t. Furthr, suppos th probablt that sh passs th amatos o a gv attmpt s.8 ad th rsult of ach attmpt, aftr th frst, s dpdt of a prvous attmpt. If w lt P dot pass ad F dot fal, for a gv attmpt, th our sampl spac ma b prssd as {P, FP, FFP, FFFP,.}Whr, for ampl, Pr(FFP) s th probablt that sh fals th ams s twc bfor sh passs t, whch s gv b (.) (.8). I addto, th sum of probablts for th outcoms s Now suppos w wat to kow th probablt sh passs th am o a v umbrd attmpt. That s w wat Pr(A) whr A s th vt {FP, FFFP,.}. At ths pot w troduc th dscrt radom varabl Y whr Y couts th umbr of attmpts up to ad cludg th o whr sh passs th am. Th th probablt dstrbuto for Y s gv b Pr(Y) (.) - (.8),. So Pr(A) ca b dtrmd as follows: Pr(A) Pr( ) (.) (.8) (.8) (.) (.8) (.8)(.) (.) [(.) (.) (.)...] [ (.) (.)...] (.8)(.) (.) (.8)(.).96 6 Cotug wth Y, ow w d lk to fd E(Y), th umbr of tm sh pcts to tak am bfor sh passs t. To dtrm E(Y) w ll start wth th formula,

7 t t t... t takg th drvatv both sds, w fd that (-)(- t) - ( ) ( t) d dt t t t whr ths srs covrgs for t <. Thrfor, E(Y) (.8) (.8) t (.) [ (.) (.) (.)...] (.8) (.).Pr(Y ).8 (.8) (.) (.8) so sh pcts to tak am. tms bfor sh passs t. Fall,todtrmVar(Y),wfdfrst E(Y ). Todosomltpl b t thdffrt atdprvousrsult. th, t (- t) t t t t... Dffrt atboth sds,ow wgt, (- t) () t()( t)( ) t ( t) ( t) t t adthsaslocovrgsfor t <. d t dt( t) t...

8 [ ] 8 (.8)..) (-. (.8)... (.) (.) (.) (.8) (.) (.8) (.8) (.) ) Pr(Y ) E(Y So ow w hav, [E(Y)] ) E(Y Var(Y) Cosqutl,

9 Epotal Gratg Fuctos: Th gratg fuctos w hav dalt ow ar calld ordar Gratg fuctos, whch aros slcto problms whr ordr was rrlvat. Now lt us tur to th problms whr ordr s rlvat ad crucal. W sk a tool. To fd such a tool lt us cosdr th bomal thorm. For ach blogs to Z, ( )..., so ( ) s th ordar gratg fucto for th squc, Wh dalg wth,,,,...,,,,... ths w wrot that C(,r) rprstd th umbr of combatos of objcts tak r at a tm wth r. Cosqutl () gratd th squc C(,), C(,), C(,), C(,),.., C(,) Now for all r,! C(, r) P(,r), r!( - r)! r! whr P(, r) dots th prmutatos of objcts tak r at a tm.so, C(,) C(,) C(,) C(,)... C(, ) P(,) P(,) P(,) P(,)... P(, ).!!! O th bass of ths obsrvato W hav th followg dfto. ( ) For a squc a,a,a,a,a,a,...of ral umbrs, f() a a a a... a,!!! s calld th potal gratg fucto for th gv squc. Eg :Th Maclaura srs paso for s,... a!!!! so s th potal gratg fucto for th squc,,,,,... Th fucto s th ordar gratg fucto for th squc,,,,,,,...!!!! Eampl: I how ma was ca four lttrs of ENGINE b arragd? Th followg tabl shows lst of possbl slctos of sz from th lttrs E,N,G,I,N,E, alog wth umbr of arragmts thos lttrs dtrm.

10 E E N N!/(!!) E G N N!/! E E G N!/! E I N N!/! E E I N!/! G I N N!/! E E G I!/! E I G N! Lt us obta th soluto b usg potal g. fu. For th lttr E w us [( /!)], bcaus thr ar, or E s to arrag. Th umbr of dstct was to arrag two E s s (co-ff of th trm /).For th lttr N w us [( /!)], bcaus Thr ar, or N s to arrag. Th umbr of dstct was to arrag two N s s (co-ff of th trm /).Th arragmts for ach of th lttrs G ad I ar rprstd b ().Cosqutl, th potal gratg fucto s, f () [ (! )] ( ) th aswr s co - ff of! Cosdr two of th ght was whch th trm /! arss th paso of f () [ (! )] [ (! )]( )( ) (! )(! )( )( ) ) From th product whr! s tak from frst two factors tabl ( ) ad s tak from last two factors. Th (! )(! )( )( ) (!! )( )( ) (!!! ). (! ) Ad th co-ff of /! s!/(!!) whch s th umbr of was o ca arrag four lttrs E, E, N, N. ) From th product (! )( )( )( ) whr (! ) s tak from frst factor,s tak from scod factor ad s tak from last two factors. Hr ( /!)()()() /! (!/!)( /!) So th co-ff of /! s!/! Whch s th umbr of was th four lttrs E, E, G, I ca b arragd.i th complt paso of th f(), th trm volvg ad cosqutl!!!!!!!! /!, s!!!!!!!!!!!!!!!!! Whr th co-ff of /! Is th aswr ( arragmts) producd b th ght rsults th

11 Eampl: Cosdr th Maclaura srs pasos of ad !!!!!! add ths srs togthr w gt,...!!...!! subtract th srs w gt...!! Ths rsults hlp us followg ampls Eampl: A shp carrs 8 flags, ach of th colors rd, blu, wht ad black. of ths flags ar placd o a vrtcal pol ordr to commucat a sgal to othr shps. a) How ma of ths sgals us a v umbr of blu flags ad a odd umbr of black flags? Epotal gratg fucto, f() !!!!!! cosdrs all sgal mad up of flags,. Th last two factors rstrct to v o. of blu ad odd o. of black flags. Sc, f() ( ) ( )( ) ( ) ( ) ( )!! Th co-ff of /! f() lds (/)( ) sgals mad up of flags wth v o. blu & odd o. black flags b) How ma of th sgals hav at last wht flags, or o wht flags at all?

12 Epotal gratg fucto, f()......!!!!! ( )!! ( ) ( ) ( )!!! Hr th factor,...!!! rstrcts th sgals to thos that cota thr or mor of th wht flags, or o at all. Th aswr for th o. sgals hr s th co - ff of! f(). As w cosdr ach summad, w fd ( ) ( ) ), hr w hav a trm,!!! so th co - ff of s.! ( ) ). I ths, ordr to cosdr th trm!,! w d to cosdr th trm ( ) ( ) ( ) ()()!!! ( ) ad hr th co - ff of s ()().!!...

13 ( ) ),! w d to cosdr th trm ( ) ( ) ( )( )( ),!!! whr th co - ff of s ( )( )( ).! cosqutl, th umbr of flag sgals wth at last wht flags, or o at all,s Rsult of Rsult of Rsult of ( ) ( )( )( ),7,8. for ths last summad, ordr to gt trm,! Eampl: Compa hrs w mplos, ach of whom s to b assgd to o of th four subdvsos. Each subdvso wll gt at last o w mplo. I how ma was ca ths assgmts b mad? Callg th subdvsos A, B, C ad D, w ca quvaltl cout th lttr squcs whch thr s at last o occurrc of ach lttrs A, B, C, ad D. Th potal gratg fucto for ths arragmt s: f () ( ) 6 f ()... th aswr s th co - ff of f() :!!!! 6 ( ) ( ) ( ) ( ) ( )

14 Eampl: Dtrm th squcs gratd b followg potal gratg a)f (). ( ) so l : f ()! ths producs th squc,,,,... fuctos. b)f () ( 8) ( ) so l : f () 7 7!! th squc s wth,,,... whch s ( ) ( ).,,, 76,... c)f () so l : f ()! so th squc s,, ( ),,,,... d)f() so l : f() ! so squc s,( 9), 8,,... Summato Oprator,,,-,9,... ( 6 ), ( ) I ths scto w troduc a tchqu that hlps us to go from ordar gratg fucto for squc a, a,a, a,. to gratg fucto for th squc a, a a, a a a, a a a a,. 6

15 for f() f() (- a f(). ) [ a a a a...][...] a a f() so, grats (- ) (- ) Thus w rfr to as summato oprator. (- ) W kow that s th g. fu. for th squc,,,... - Appl th summato oprator, w gt, -. s th g. fu. for th squc,,, s th g. fu. for th squc,,, ( - ) a a ( a ) ( ) ( ) a a a a a a a a th squc a,( a a ), ( a a a ),......, Appl aga th summato oprator, w gt, f() cosdr, th fucto. (- ) Cosdr th g.fu., for th squc,,,,,... whch s g.fu. for th squc ( ),,,,...,,,,, Appl th summato oprator, w gt, ( ) whch s g. fu for,,,,.... th squc,,,,,... 7

16 Appl aga th summato fucto, w gt, ( ) ( ) whch s th g. fu.for th squc,,,,....,,, 9,... Ths suggsts that for, (k -) k Eampl: Fd a formula to prss as a fucto of. W start wth so s th g. fu. for th squc,,,,,... (- ) g()... th, - - dg() (-)(- ) ( )... ( ) d Rpatg ths tchqu w fd that, d dg() ( )... d d ( ) ( ) so ( ) grats,,,,... Appl summato oprator to ths, w gt, ( ) ( ). ( ) ( ) ( ) ths garats,,,,... ( ) Hc co - ff of s ( ) 8

17 9 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( s, of ff so th co -... ca also b calcualtd as, ff But ths co - ( ) ( ) ( )( )( ) ( )( )( ) [ ] ( )( ) ( ) ( ) [ ] ( )( ) )!!(! )!!(! Eampl: Fd a formula for th sum of frst atural umbrs usg th gratg fucto for th squc,,, 6,,,. grats,,,6,,,... ) (- Th grats,,6,,,... ) (- th fucto Thus ) (- w hav,, for ) (- W kow that,

18 Now, k k co - ff of co - ff of co - ff of ( - ) ( - ) ( - ) ( ) ( ) ( ) ( )( ) (-)- - Summars (m objcts, cotars) Objcts Cotars Som Numbr Ar Ar Cotars of Dstct Dstct Ma B Empt Dstrbutos Ys Ys Ys m Ys Ys No!S(m,) Ys No Ys S(m,)S(m,)...S(m,) Ys No No S(m,) m No Ys Ys m (m ) No Ys No m No No Ys () p(m), for m No No No () p(m,)p(m,)...p(m,), <m p(m,) p(m.):umbr of parttos of m to actl summads

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since 56 Chag Ma J Sc 0; () Chag Ma J Sc 0; () : 56-6 http://pgscccmuacth/joural/ Cotrbutd Papr Th Padova Sucs Ft Groups Sat Taș* ad Erdal Karaduma Dpartmt of Mathmatcs, Faculty of Scc, Atatürk Uvrsty, 50 Erzurum,

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data saqartvlos mcrbata rovul akadms moamb, t 9, #2, 2015 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 9, o 2, 2015 Mathmatcs O Estmato of Ukow Paramtrs of Epotal- Logarthmc Dstrbuto by Csord

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM OPERTIONS RESERH o.287/opr.8.559c pp. c c8 -copao ONLY VILLE IN ELETRONI FORM fors 28 INFORMS Elctroc opao Optzato Mols of scrt-evt Syst yacs by Wa K (Vctor ha a L Schrub, Opratos Rsarch, o.287/opr.8.559.

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

Chapter 6. pn-junction diode: I-V characteristics

Chapter 6. pn-junction diode: I-V characteristics Chatr 6. -jucto dod: -V charactrstcs Tocs: stady stat rsos of th jucto dod udr ald d.c. voltag. ucto udr bas qualtatv dscusso dal dod quato Dvatos from th dal dod Charg-cotrol aroach Prof. Yo-S M Elctroc

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

A Stochastic Approximation Iterative Least Squares Estimation Procedure

A Stochastic Approximation Iterative Least Squares Estimation Procedure Joural of Al Azhar Uvrst-Gaza Natural Sccs, 00, : 35-54 A Stochastc Appromato Itratv Last Squars Estmato Procdur Shahaz Ezald Abu- Qamar Dpartmt of Appld Statstcs Facult of Ecoomcs ad Admstrato Sccs Al-Azhar

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

Integral points on hyperbolas over Z: A special case

Integral points on hyperbolas over Z: A special case Itgral pots o hprbolas ovr Z: A spcal cas `Pag of 7 Kostat Zlator Dpartmt of Mathmatcs ad Computr Scc Rhod Islad Collg 600 Mout Plasat Avu Provdc, R.I. 0908-99, U.S.A. -mal addrss: ) Kzlator@rc.du ) Kostat_zlator@ahoo.com

More information

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS Chaptr 4 NUMERICL METHODS FOR SOLVING BOUNDRY-VLUE PROBLEMS 00 4. Varatoal formulato two-msoal magtostatcs Lt th followg magtostatc bouar-valu problm b cosr ( ) J (4..) 0 alog ΓD (4..) 0 alog ΓN (4..)

More information

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto   {t-asano, School of Iformato Scc Chal Capacty 009 - Cours - Iformato Thory - Ttsuo Asao ad Tad matsumoto Emal: {t-asao matumoto}@jast.ac.jp Japa Advacd Isttut of Scc ad Tchology Asahda - Nom Ishkawa 93-9 Japa http://www.jast.ac.jp

More information

Estimation Theory. Chapter 4

Estimation Theory. Chapter 4 Estmato ory aptr 4 LIEAR MOELS W - I matrx form Estmat slop B ad trcpt A,,.. - WG W B A l fttg Rcall W W W B A W ~ calld vctor I gral, ormal or Gaussa ata obsrvato paramtr Ma, ovarac KOW p matrx to b stmatd,

More information

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black Stf-Boltzm lw stts tht th powr mttd pr ut r of th surfc of blck body s proportol to th fourth powr of th bsolut tmprtur: 4 S T whr T s th bsolut tmprtur d th Stf-Boltzm costt= 5 4 k B 3 5c h ( Clcult 5

More information

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 9 4. Matrx tgrals Lt h N b th spac of Hrmta matrcs of sz N. Th r product o h N s gv by (A, B) = Tr(AB). I ths scto w wll cosdr tgrals of th form Z

More information

Different types of Domination in Intuitionistic Fuzzy Graph

Different types of Domination in Intuitionistic Fuzzy Graph Aals of Pur ad Appld Mathmatcs Vol, No, 07, 87-0 ISSN: 79-087X P, 79-0888ol Publshd o July 07 wwwrsarchmathscorg DOI: http://dxdoorg/057/apama Aals of Dffrt typs of Domato Itutostc Fuzzy Graph MGaruambga,

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source: Cour 0 Shadg Cour 0 Shadg. Bac Coct: Lght Sourc: adac: th lght rg radatd from a ut ara of lght ourc or urfac a ut old agl. Sold agl: $ # r f lght ourc a ot ourc th ut ara omttd abov dfto. llumato: lght

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find BSE SMLE ER SOLUTONS LSS-X MTHS SET- BSE SETON Gv tht d W d to fd 7 7 Hc, 7 7 7 Lt, W ow tht Thus, osd th vcto quto of th pl z - + z = - + z = Thus th ts quto of th pl s - + z = Lt d th dstc tw th pot,,

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 St Ssts o Ordar Drtal Equatos Novbr 7 St Ssts o Ordar Drtal Equatos Larr Cartto Mcacal Er 5A Sar Er Aalss Novbr 7 Outl Mr Rsults Rvw last class Stablt o urcal solutos Stp sz varato or rror cotrol Multstp

More information

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

On Approximation Lower Bounds for TSP with Bounded Metrics

On Approximation Lower Bounds for TSP with Bounded Metrics O Approxmato Lowr Bouds for TSP wth Boudd Mtrcs Mark Karpsk Rchard Schmd Abstract W dvlop a w mthod for provg xplct approxmato lowr bouds for TSP problms wth boudd mtrcs mprovg o th bst up to ow kow bouds.

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES AYMPTOTIC AD TOLERACE D-MODELLIG I ELATODYAMIC OF CERTAI THI-WALLED TRUCTURE B. MICHALAK Cz. WOŹIAK Dpartmt of tructural Mchacs Lodz Uvrsty of Tchology Al. Poltrchk 6 90-94 Łódź Polad Th objct of aalyss

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

Entropy Equation for a Control Volume

Entropy Equation for a Control Volume Fudamtals of Thrmodyamcs Chaptr 7 Etropy Equato for a Cotrol Volum Prof. Syoug Jog Thrmodyamcs I MEE2022-02 Thrmal Egrg Lab. 2 Q ds Srr T Q S2 S1 1 Q S S2 S1 Srr T t t T t S S s m 1 2 t S S s m tt S S

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Suzan Mahmoud Mohammed Faculty of science, Helwan University Europa Joural of Statstcs ad Probablty Vol.3, No., pp.4-37, Ju 015 Publshd by Europa Ctr for Rsarch Trag ad Dvlopmt UK (www.ajourals.org ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN WEIBULL DISTRIBUTION

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Superbosonization meets Free Probability

Superbosonization meets Free Probability Suprbosoato mts Fr Probablty M Zrbaur jot wor wth S Madt Eulr Symposum St Ptrsburg Ju 3 009 Itroducto From momts to cumulats Larg- charactrstc fucto by fr probablty Suprbosoato Applcato to dsordrd scattrg

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Lecture #11. A Note of Caution

Lecture #11. A Note of Caution ctur #11 OUTE uctos rvrs brakdow dal dod aalyss» currt flow (qualtatv)» morty carrr dstrbutos Radg: Chatr 6 Srg 003 EE130 ctur 11, Sld 1 ot of Cauto Tycally, juctos C dvcs ar formd by coutr-dog. Th quatos

More information

Linear Prediction Analysis of Speech Sounds

Linear Prediction Analysis of Speech Sounds Lr Prdcto Alyss of Sch Souds Brl Ch 4 frcs: X Hug t l So Lgug Procssg Chtrs 5 6 J Dllr t l Dscrt-T Procssg of Sch Sgls Chtrs 4-6 3 J W Pco Sgl odlg tchqus sch rcogto rocdgs of th I Stbr 993 5-47 Lr Prdctv

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

Iranian Journal of Mathematical Chemistry, Vol. 2, No. 2, December 2011, pp (Received September 10, 2011) ABSTRACT

Iranian Journal of Mathematical Chemistry, Vol. 2, No. 2, December 2011, pp (Received September 10, 2011) ABSTRACT Iraa Joral of Mathatcal Chstry Vol No Dcbr 0 09 7 IJMC Two Tys of Gotrc Arthtc dx of V hylc Naotb S MORADI S BABARAHIM AND M GHORBANI Dartt of Mathatcs Faclty of Scc Arak Ursty Arak 856-8-89 I R Ira Dartt

More information

Gradebook & Midterm & Office Hours

Gradebook & Midterm & Office Hours Your commnts So what do w do whn on of th r's is 0 in th quation GmM(1/r-1/r)? Do w nd to driv all of ths potntial nrgy formulas? I don't undrstand springs This was th first lctur I actually larnd somthing

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( )

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( ) Sprg Ch 35: Statstcal chacs ad Chcal Ktcs Wghts... 9 Itrprtg W ad lw... 3 What s?... 33 Lt s loo at... 34 So Edots... 35 Chaptr 3: Fudatal Prcpls of Stat ch fro a spl odl (drvato of oltza dstrbuto, also

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Ordinary Least Squares at advanced level

Ordinary Least Squares at advanced level Ordary Last Squars at advacd lvl. Rvw of th two-varat cas wth algbra OLS s th fudamtal tchqu for lar rgrssos. You should by ow b awar of th two-varat cas ad th usual drvatos. I ths txt w ar gog to rvw

More information