Frequency hopping sequences with optimal partial Hamming correlation

Size: px
Start display at page:

Download "Frequency hopping sequences with optimal partial Hamming correlation"

Transcription

1 1 Frqucy hoppg squcs wth optmal partal Hammg corrlato Jgju Bao ad ju J arxv: v2 [cs.it] 11 Nov 2015 Abstract Frqucy hoppg squcs (FHSs) wth favorabl partal Hammg corrlato proprts hav mportat applcatos may sychrozato ad multpl-accss systms. I ths papr, w vstgat costructos of FHSs ad FHS sts wth optmal partal Hammg corrlato. W frst stablsh a corrspodc btw FHS sts wth optmal partal Hammg corrlato ad multpl partto-typ balacd std cyclc dffrc packgs wth a spcal proprty. By vrtu of ths corrspodc, som FHSs ad FHS sts wth optmal partal Hammg corrlato ar costructd from varous combatoral structurs such as cyclc dffrc packgs, ad cyclc rlatv dffrc famls. W also dscrb a drct costructo ad two rcursv costructos for FHS sts wth optmal partal Hammg corrlato. As a cosquc, our costructos yld w FHSs ad FHS sts wth optmal partal Hammg corrlato. Idx Trms Frqucy hoppg squcs (FHSs), partal Hammg corrlato, partto-typ cyclc dffrc packgs, cyclc rlatv dffrc famls, cyclotomy. I. INTRODUCTION FREQUENCY hoppg (FH) multpl-accss s wdly usd th modr commucato systms such as ultrawdbad (UWB), mltary commucatos, Blutooth ad so o, for xampl, [5], [17], [29]. I FH multplaccss commucato systms, frqucy hoppg squcs ar mployd to spcfy th frqucy o whch ach sdr trasmts a mssag at ay gv tm. A mportat compot of FH sprad-spctrum systms s a famly of squcs havg good corrlato proprts for squc lgth ovr sutabl umbr of avalabl frqucs. Th optmalty of corrlato proprty s usually masurd accordg to th wll-kow mpl-grbrgr boud ad Pg-Fa bouds. Durg ths dcads, may algbrac or combatoral costructos for FHSs or FHS sts mtg ths bouds hav b proposd, s [7]-[11], [14]-[15], [18], [20]-[21], [0]- [], ad th rfrcs thr. Compard wth th tradtoal prodc Hammg corrlato, th partal Hammg corrlato of FHSs s much lss wll studd. Nvrthlss, FHSs wth good partal Hammg corrlato proprts ar mportat for crta applcato scaros whr a approprat wdow lgth shortr tha th total prod of th squcs s chos to mmz th sychrozato tm or to rduc th hardwar complxty of Ths work was supportd by th NSFC udr Grats , , ad a projct fudd by th prorty acadmc program dvlopmt of Jagsu hghr ducato sttutos. J. Bao ad. J ar wth th Dpartmt of Mathmatcs, Soochow Uvrsty, Suzhou , P. R. Cha. E-mal: baojgju@hotmal.com; jlju@suda.du.c. th FH-CDMA rcvr [16]. Thrfor, for ths stuatos, t s cssary to cosdr th partal Hammg corrlato rathr tha th full-prod Hammg corrlato. I 2004, Eu t al. [16] gralzd th mpl-grbrgr boud o th prodc Hammg autocorrlato to th cas of partal Hammg autocorrlato, ad obtad a class of FHSs wth optmal partal autocorrlato [28]. I 2012, Zhou t al. [4] xtdd th Pg-Fa bouds o th prodc Hammg corrlato of FHS sts to th cas of partal Hammg corrlato. Basd o m-squcs, Zhou t al. [4] costructd both dvdual FHSs ad FHS sts wth optmal partal Hammg corrlato. Vry rctly, Ca t al. [6] mprovd lowr bouds o partal Hammg corrlato of FHSs ad FHS sts, ad basd o gralzd cyclotomy, thy costructd FHS sts wth optmal partal Hammg corrlato. I ths papr, w prst som costructos for FHSs ad FHS sts wth optmal partal Hammg corrlato. Frst of all, w gv combatoral charactrzatos of FHSs ad FHS sts wth optmal partal Hammg corrlato. Scodly, by mployg partto-typ balacd std cyclc dffrc packgs, cyclc rlatv dffrc famls, ad cyclc rlatv dffrc packgs, w obta som FHSs ad FHS sts wth optmal partal Hammg corrlato. Fally, w prst two rcursv costructos for FHS sts, whch cras thr lgths ad alphabt szs, ad prsrv thr optmal partal Hammg corrlatos. Our costructos yld optmal FHSs ad FHS sts wth w ad flxbl paramtrs ot covrd th ltratur. Th paramtrs of FHSs ad FHS sts wth optmal partal Hammg corrlato from th kow rsults ad th w os ar lstd th tabl. Th rmadr of ths papr s orgazd as follows. Scto II troducs th kow bouds o th partal Hammg corrlato of FHSs ad FHS sts. Scto III prsts combatoral charactrzatos of FHSs ad FHS sts wth optmal partal Hammg corrlato. Scto IV gvs som combatoral costructos of FHSs ad FHS sts wth optmal partal Hammg corrlato by usg partto-typ balacd std cyclc dffrc packgs, cyclc rlatv dffrc famls ad cyclotomc classs. Scto V prsts a drct costructo of FHS sts wth optmal partal Hammg corrlato. Scto VI prsts two rcursv costructos of FHS sts wth optmal partal Hammg corrlato. Scto VII cocluds ths papr wth som rmarks. II. OWER BOUNDS ON THE PARTIA HAMMING CORREATION OF FHSS AND FHS SETS I ths scto, w troduc som kow lowr bouds o th partal Hammg corrlato of FHSs ad FHS sts.

2 2 KNOWN AND NEW FHSs WITH OPTIMA PARTIA HAMMING CORREATION gth Alphabt H max ovr corrlato Numbr of sz wdows of lgth squcs Costrats Sourc q 2 1 q+1 q 1 [16] q m 1 q m 1 (q 1) q m 1 1 [4] q m 1 q m 1 (q 1) d (q 1), d q m 1 d gcd(d,m) 1 [4] v v v f [6] 2v 2v +1 v v 2v+1 2v 8v+1 8v 2v+1 2v v+1 v 4 4v+2 4v 6v 2v +1 p(p m 1) p m v v v 4v 16v v 2v v p m 1 1 Thorm Thorm p 1 (mod 12) s a prm Thorm p 1 (mod 6) s a prm Thorm p 1 (mod 12) s a prm Thorm p 1 (mod 4) s a prm Thorm p 7 (mod 12) s a prm Thorm p 5 (mod 8) s a prm Thorm 6.5 p m 1 m 2 Thorm 5.1 vw (v 1)w+ w r vw f q 1 p 1 > 2, v > ( 2) ad gcd(w,) 1 v qm 1 vq m 1 (q 1) m > 1, ad q m p 1 d v(q m 1) d q m 1 d p 1 for 1 s q s a prm powr; v s a tgr wth prm factor dcomposto v p m1 1 pm2 2 p ms s wth p 1 < p 2 <... < p s ;,f ar tgrs such that > 1 ad gcd(p 1 1,p 2 1,...,p s 1), ad f p1 1 ; w s a tgr wth prm factor dcomposto w q 1 1 q2 2 qt t wth q 1 < q 2 <... < q t ; r s a tgr such that r > 1 ad r gcd(,q 1 1,q 2 1,...,q t 1); p s a prm; d, m ar postv tgrs. Corollary 6.6 Corollary 6.11 For ay postv tgr l 2, lt F {f 0,f 1,...,f l 1 } b a st of l avalabl frqucs, also calld a alphabt. A squc X {x(t)} t0 1 s calld a frqucy hoppg squc (FHS) of lgthovrf f x(t) F for all 0 t 1. For ay two FHSs X {x(t)} t0 1 ad Y {y(t)} 1 t0 of lgth ovr F, th partal Hammg corrlato fucto of X ad Y for a corrlato wdow lgth startg at j s dfd by H X,Y (τ;j ) j+ 1 tj h[x(t),y(t+τ)],0 τ <, (1) whr,j ar tgrs wth 1, 0 j <, h[a,b] 1 f a b ad 0 othrws, ad th addto s prformd modulo. I partcular, f, th partal Hammg corrlato fucto dfd (1) bcoms th covtoal prodc Hammg corrlato [24]. If x(t) y(t) for all 0 t 1,.., X Y, w call H X,X (τ;j ) th partal Hammg autocorrlato of X; othrws, w say H X,Y (τ;j ) th partal Hammg cross-corrlato ofx ad Y. For ay two dstct squcs X,Y ovr F ad gv tgr 1, w df ad H(X;) max 0 j< max 1 τ< {H X,X(τ;j )} H(X,Y;) max 0 j< max 0 τ< {H X,Y(τ;j )}. That s, H(X; ) dots th maxmum partal Hammg autocorrlato of X alog wth a arbtrary corrlato wdow of lgth, ad H(X,Y;) dots th maxmum partal Hammg cross-corrlato of X ad Y alog wth a arbtrary corrlato wdow of lgth. For ay FHS of lgth ovr a alphabt of sz l ad ach wdow lgth wth 1, Eu tal. [16] ( ǫ)(+ǫ l) l( 1) drvd a lowr boud: H(X; ), whr ǫ s th last ogatv rsdu of modulo l, whch s a gralzato of th mpl-grbrgr boud [24]. Rctly, such a lowr boud was mprovd by Ca t al. [6] as follows.

3 mma 2.1: ([6]) t X b a FHS of lgth ovr a alphabt of sz l. Th, for ach wdow lgth wth 1, H(X;) ( ǫ)(+ǫ l) l( 1), (2) whr ǫ s th last ogatv rsdu of modulo l. Rcall that th corrlato wdow lgth may chag from cas to cas accordg to th chal codtos practcal systms. Hc, t s vry dsrabl that th volvd FHSs hav optmal partal Hammg corrlato for ay wdow lgth. Th followg dfto s orgatd from th trmology of strctly optmal FHSs [16]. Dfto 2.2: t X b a FHS of lgth ovr a alphabt F. It s sad to b strctly optmal or a FHS wth optmal partal Hammg corrlato f th boud mma 2.1 s mt for a arbtrary corrlato wdow lgth wth 1. Wh, th boud mma 2.1 s xactly th mpl-grbrgr boud [24]. It s clar that ach strctly optmal FHS s also optmal wth rspct to th mpl- Grbrgr boud, but ot vc vrsa [16]. t S b a st of M FHSs of lgth ovr a alphabt F of sz l. For ay gv corrlato wdow lgth, th maxmum otrval partal Hammg corrlato H(S; ) of th squc st S s dfd by H(S;) max{max H(X;), max H(X,Y;)}. X S X,Y S, X Y Throughout ths papr, w us (,M,;l) to dot a st S of M FHSs of lgth ovr a alphabt F of sz l, whr H(S;), ad w us (,;l) to dot a FHS X of lgth ovr a alphabt F of sz l, whr H(X;). Wh, Pg ad Fa [26] dscrbd th followg bouds o H(S; ), whch tak to cosdrato th umbr of squcs th st S. mma 2.: ([26]) t S b a st of M squcs of lgth ovr a alphabt F of sz l. Df I M l. Th (M l) H(S;) (M 1)l ad 2IM (I +1)Il H(S;). (M 1)M I 2012, Zhou t al. [4] xtdd th Pg-Fa bouds to th cas of th partal Hammg corrlato. Thy obtad H(S; ) (M l) (M 1)l ad H(S; ) 2IM (I+l)Il (M 1)M. Rctly, such lowr bouds wr mprovd by Ca t al. [6]. mma 2.4: ([6]) t S b a st of M FHSs of lgth ovr F of sz l. Df I M l. Th, for a arbtrary wdow lgth wth 1, (M l) H(S;) () (M 1)l ad H(S;) 2IM (I +1)Il (M 1)M. (4) Paralll to th oto of strctly optmal dvdual FHSs, Ca t al. gav th followg dfto of strctly optmal FHS sts [6]. Dfto 2.5: A FHS st S s sad to b strctly optmal or a FHS st wth optmal partal Hammg corrlato f o of th bouds mma 2.4 s mt for a arbtrary corrlato wdow lgth wth 1. Not that, wh, th bouds mma 2.4 ar xactly th Pg-Fa bouds. It turs out that ach strctly optmal FHS st s also optmal wth rspct to th Pg-Fa bouds, but ot vc vrsa. III. COMBINATORIA CHARACTERIZATIONS A. A combatoral charactrzato of Strctly optmal FHSs A covt way of vwg FHSs s from a st-thortc prspctv. I 2004, Fuj-Hara t al. [18] rvald a cocto btw FHSs ad partto-typ cyclc dffrc packgs. I ths subscto, w gv a combatoral charactrzato of strctly optmal FHSs. Throughout ths papr w always assum that I l {0,1,2,...,l 1} ad Z s th rsdual-class rg of tgrs modulo. For tgrs s,, th otato s mas that s dvsbl by s. For A Z, τ Z ad a postv tgr, A+τ s dfd to b {a+τ : a A} ad [A] 1 A, whr s th multst uo. A (,;l)-fhs, X (x(0),x(1),...,x( 1)), ovr a frqucy lbrary F ca b trprtd as a st B of l sts B 0,B 1,...,B l 1 such that ach st B corrspods to frqucy F ad th lmts ach st B spcfy th posto dcs th FHS X at whch frqucy appars. Th corrlato proprty ca b rphrasd ths st-thortc framwork. As statd [18, mma 2.1], th st B s a partto of Z ad H X,X (τ;0 ) l 1 B (B +τ) 0 0 for 1 τ <,.., B satsfs th followg proprty trms of dffrcs: ach τ Z \ {0} ca b rprstd as a dffrc b b, b,b B, 0 l 1, at most ways. Ths obsrvato rvals a cocto btw FHSs ad combatoral structurs calld partto-typ cyclc dffrc packgs. Assocatd wth a o-mpty subst B Z, th dffrc lst of B from combatoral dsg thory s dfd to b th multst (B) {a b : a,b B ad a b}. For ay famly B {B 0,B 1,...,B l 1 } of l o-mpty substs (calld bas blocks) of Z, df th dffrc lst of B to b th uo of multsts (B) I l (B ). If th dffrc lst (B) cotas ach o-zro rsdu of Z at most tms, th B s sad to b a (,K,)-CDP (cyclc dffrc packg), whr K { B : I l }. Wh K {k}, w smply wrt k stad of {k}. Th umbr l of th bas blocks B s rfrd to as th sz of th CDP.

4 4 If th dffrc lst (B) cotas ach o-zro rsdu of Z xactly tms, th B s a cyclc dffrc famly ad dotd by (, K, )-CDF. A (,K,)-CDP B {B 0,B 1,...,B l 1 } s calld a partto-typ cyclc dffrc packg f vry lmt of Z s cotad xactly o block B. I 2004, Fuj-Hara t al. [18] rvald a cocto btw FHSs ad partto-typ cyclc dffrc packgs as follows. Thorm.1: ([18]) Thr xsts a (,;l)-fhs ovr a frqucy lbrary F f ad oly f thr xsts a partto-typ (,K,)-CDP of sz l, B {B 0,B 1,...,B l 1 } ovr Z, whr K { B : 0 l 1}. Fuj-Hara t al. [18] also gav a smplfd vrso of th mpl-grbrgr boud as follows. mma.2: ([18]) For a arbtrary (,;l)-fhs, t holds that { k f l, ad 0 f l, whr kl + ǫ, 0 ǫ l 1. Ths mpls that wh > l, th squc s optmal f k. mma.: ([18]) t kl + l 1 wth k 1. Th thr xsts a optmal (,k;l)-fhs f ad oly f thr xsts a partto-typ (,{k,k+1},k)-cdf whch l 1 blocks ar of sz k +1 ad th rmag o s of sz k. For a u-tupl T (a 0,a 1,...,a u 1 ) ovr Z, th multst (T) {a j+ a j : 0 j u 1} s calld -apart dffrc lst of th tupl, whr 1 u, j + s rducd modulo u, ad a j+ a j s tak as th last postv rsdu modulo. For a partto-typ CDP of sz l ovr Z, B {B 0,B 1,...,B l 1 }, for 1 τ 1, lt D(τ) {a : 0 a <,{a, a+τ} B,B B}, D(τ) (a0,a 1,...,a u 1 ),whr 0 a 0 < < a u 1 < ad {a 0,a 1,...,a u 1 } D(τ),ad d B m 1 τ< m{g : g {} ( D(τ))}, for 1 max{ D(τ) : 1 τ < }, whr ( D(τ)) f D(τ) or > D(τ). W call D(τ) th orbt cycl of τ B ad d B th mmal -apart dstac of all orbts. Not that D( τ) D(τ)+τ (mod ) ad m{g : g {} ( D(τ))} m{g : g {} ( D( τ))}. W llustrat th dfto of d B th followg xampl. Exampl.4: I ths xampl, w costruct a partto-typ (0,11,2)-CDP, B, wth d B 15 for 0 < 2. St B {{1,2,14},{,7,9},{4,2,26},{6,1,27}, {16,17,29},{18,22,24},{8,11,19},{12,21,28}, {0,5},{15,20},{10,25}}. It s radly chckd that B s a (0,11,2)-CDP. By th fact m{g : g {} ( D(τ))} m{g : g {} ( D( τ))}, w oly d to comput D(τ) for1 τ 15, so as to obta d B. Smpl computato shows that D(1) (1,16), D(2) (7,22), D() (8,2), D(4) (,18), D(5) (0,15), D(6) (,18), D(7) (6,21), D(8) (11,26),D(9), D(10), D(11) (8,2), D(12) (2,17), D(1) (1,16), D(14) (1,28), D(15) (10,25). Th, d B 15 for 0 < 2. By drct chck or by Thorm.5, th corrspodg FHS s a strctly optmal (0, 2; 11)- FHS. W ar a posto to gv a combatoral charactrzato of strctly optmal FHSs. Thorm.5: Thr s a strctly optmal (, l ;l)-fhs wth rspct to th boud (2) f ad oly f thr xsts a partto-typ (,K, l )-CDP of sz l, B {B 0,B 1,...,B l 1 } ovr Z, such that d B for l 1 l, whr K { Br : 0 r l 1}. Proof: t X b a FHS of lgth ovr F I l. t B r {t : x(t) r,0 t 1} for ach r F. Th B r s th st of posto dcs th squc X (x(0),...,x( 1)) at whch th frqucy r appars. By Thorm.1, th squc X s a (, l ;l)-fhs ovr F f ad oly f B {B 0,B 1,...,B l 1 } s a partto-typ (,K, l )-CDP of sz l, whr K { Br : 0 r l 1}. It s lft to show that X s strctly optmal wth rspct to th boud (2) f ad oly f d B for 1 l. l Dot l. By mma 2.1, X s strctly optmal wth rspct to boud (2) f ad oly f H(X;) for 1,.., for 1, th qualty H(X;) holds for ( 1) <. W show that th qualty H(X;) holds for ( 1) < f ad oly f d B. By th dfto of H X,X (τ;j ) ad D(τ), w hav H X,X (τ;j ) D(τ;j ), whr D(τ;j ) D(τ) {j,j + 1,j + 2,...,j + 1} ad th arthmtc j + t (1 t 1) s rducd modulo. Dot d (τ) m{g : g {} ( D(τ))}. Clarly, max { D(τ;j ) } f ad oly f d (τ). Hc, 0 j< H(X;) max max 1 τ<0 j< { D(τ;j ) } f ad oly f d (τ) for 1 τ <,.., d B m{d (τ) : 1 τ < }. It follows that H(X;) for ( 1) < f ad oly f d B. Ths complts th proof. A (mg, g, K, )-cyclc rlatv dffrc packg (brfly CRDP) s a (mg,k,)-cdp ovr Z mg, B {B : I u }, such that o lmt of mz mg occurs (B), whr mz mg {0,m,...,(g 1)m}. Th umbr u of th bas blocks B s rfrd to as th sz of th CRDP. If (B) cotas ach lmt of Z mg \mz mg xactly tms ad o lmt of mz mg occurs, th B s calld a (mg,g,k,)- cyclc rlatv dffrc famly (brfly CRDF).

5 5 O mportac of a CRDP s that w ca put a approprat CDP o ts subgroup to drv a w CDP. W stat a smpl but usful fact th followg lmma. mma.6: t B b a (mg, g, K, 1)-CRDP of sz u ovr Z mg rlatv to mz mg, whos lmts of bas blocks, togthr wth 0,m,...,(s 1)m, form a complt systm of rprstatvs for th costs of smz mg Z mg, whr s g. t A b a partto-typ (g,k, g s )-CDP of sz r ovr Z g wth d A s for 1 g s. Th thr xsts a partto-typ (mg,k K, g s )-CDP of sz gu s +r, D such that dd sm for 1 g s. Proof: t B {B + jsm : B B,0 j < g s }, A {ma : A A} ad D B A. Sc B s a (mg,g,k,1)-crdp of sz u ovr Z mg rlatv to mz mg ad all lmts of bas blocks, togthr wth 0,m,2m,...,(s 1)m, form a complt systm of rprstatvs for th costs of smz mg Z mg, w hav that (B) Z mg \mz mg ad B s a partto of Z mg \mz mg. Clarly, (B ) cotas ach τ (B) xactly g s tms ad o lmt of Z mg \ (B). Sc A s a partto-typ (g,k, g s )-CDP of sz r ovr Z g, w gt (ma) m (A) ada s a partto ofmz mg. A A Hc, D s a partto-typ (mg,k K, g s )-CDP of sz gu s +r. Clarly, f τ (B), th th orbt cycl D(τ) of τ D s of th form (a 0,a 0 +sm,a 0 +2sm,...,a 0 +mg sm), ad f τ (A ), th th orbt cycl D(τ) of τ D s of th form (mb 0,mb 1,...,mb s 1), whr (b 0,b 1,...,b s 1) s th orbt cycl of τ m A, othrws D(τ). Hc, dd (τ) sm for τ (B), d D (τ) sm for τ (A ) bcaus d A s for 1 g s, ad dd (τ) mg for τ / (D), whr d D (τ) m{g : g {mg} ( D(τ))}. It follows that d D m{d D (τ) : 0 < τ < mg} sm for 1 g s. Thrfor, D s th rqurd partto-typ (mg,k K, g s )- CDP. Ths complts th proof. t B b a (mg,g,k,1)-crdf wth k 1 g, f all lmts of bas blocks, togthr wth 0,m,...,(s 1)m, form a complt systm of rprstatvs for th costs of smz mg Z mg, whr s g k 1, th ths (mg,g,k,1)-crdf s sad to b rsolvabl. Thr ar svral costructos for rsolvabl (mg, g, k, 1)-CRDFs []-[4]. For xampl, th st B {{1,2,14},{,7,9},{4,2,26}, {6,1,27}} s a rsolvabl (0,6,,1)-CRDF ovr Z 0. It s asy to s that A {{0,1},{,4},{2,5}} s a (6,2,2)- CDP wth d A for 1 2. By mma.6, w also obta a (0,{2,},2)-CDP of sz 11 such that d 15 for 1 2, whch s th sam as that Exampl.4. By vrtu of th combatoral charactrzato of strctly optmal FHSs, th xstc of a strctly optmal(kv,k; kv+1 k+1 )- FHS s quvalt to th xstc of a rsolvabl (kv,k,k+ 1,1)-CRDF. Thorm.7: t k ad v b postv tgrs wth k+1 v 1. Th thr xsts a strctly optmal(kv,k; kv+1 k+1 )-FHS f ad oly f thr xsts a rsolvabl (kv,k,k +1,1)-CRDF. Proof: : By mma. ad Thorm.5, thr s a strctly optmal (kv,k; kv+1 k+1 )-FHS f ad oly f thr s a partto-typ (kv,{k,k +1},k)-CDF ovr Z kv wth d v for 1 k, whch kv k k+1 blocks ar of sz k + 1 ad th rmag o s of sz k. W shall prov that such a partto-typ (kv,{k, k + 1}, k)-cdf xsts f ad oly f thr s a rsolvabl (kv,k,k + 1,1)-CRDF rlatv to vz kv {0,v,...,(k 1)v}. tb b such a partto-typ(kv,{k,k+1},k)-cdf whr B {B 0,B 1,...,B (kv k)/(k+1) }. By th dfto of CDF, for 1 τ kv 1, ach dffrc τ occurs xactly k tms, thus D(τ) (a 0,a 1,...,a k 1 ) s a k-tupl vctor of dstct lmts. Clarly, d 1 (τ) m{g : g {kv} 1 ( D(τ))} kv k v. Sc d v, w hav d 1 (τ) v. Ths lads to a j+1 a j +v for 0 j k 1. Hc, for ay par {a,b} cotad som bas block of B, th par {a+v,b+v} s also cotad a bas block of B. Sc B s a partto-typ CDF, th st B j +v s also a bas block of B ad o bas block of B s of th form vz kv +t. Wthout loss of gralty, lt B (kv k)/(k+1) vz kv +t ad B j +v B j+ v 1 for 0 k+1 j < (kv k)/(k+1), whr j+ v 1 kv k k+1 s rducd modulo k+1. It s asy to s that {B 0 t,b 1 t,...,b (v k 2)/(k+1) t} s th st of bas blocks of a rsolvabl (kv,k,k+1,1)-crdf rlatv to vz kv. Covrsly, suppos that thr s a rsolvabl (kv,k,k + 1,1)-CRDF ovr Z kv rlatv to vz kv. Th s k k 1. Sc A {Z k } s th trval partto-typ (k,k,k)-cdf wth d A for 1 k, applyg mma.6 ylds a partto-typ (kv,{k,k +1},k)-CDF of sz kv+1 k+1 that d D v for 1 k. Ths complts th proof., D, such B. A combatoral charactrzato of strctly optmal FHS sts I 2009, G t al. [21] rvald a cocto btw FHS sts ad famls of partto-typ balacd std cyclc dffrc packgs. I ths subscto, w xtd th combatoral approach usd Scto III-A for dsgg strctly optmal FHSs to gv a combatoral charactrzato of strctly optmal FHS sts. t S b a (,M,;l)-FHS st ovr F I l. For X S, lt Br X {t : x(t) r,0 j 1} for ach r F. Th Br X s th st of posto dcs th squc X (x(0),...,x( 1)) at whch th frqucy r appars. For two dstct FHSs X,Y S, t s asy to s that th Hammg cross-corrlato H X,Y (τ;0 ) l 1 (B X +τ) B Y for 0 τ <,.., {BX : I l } ad {B Y : I l } satsfy th followg proprty trms of xtral dffrcs: ach τ Z ca b rprstd as a dffrc b b, (b,b ) B X B Y, 0 l 1, at most ways. Ths obsrvato rvals a cocto btw FHS sts ad combatoral structurs calld famls of partto-typ balacd std cyclc dffrc packgs. ta,b b two substs ofz v. Th lst of xtral dffrc of ordrd par (A,B) s th multst 0 E (A,B) {y x : (x,y) A B}. Not that th lst of xtral dffrc E (A,B) may cota zro. For ay rsdu τ Z v, th umbr of occurrcs of τ E (A,B) s clarly qual to (A+τ) B.

6 6 t B j,0 j M 1, b a collcto of l substs B j 0,...,Bj l 1 of Z, rspctvly. Th lst of xtral dffrc of ordrd par (B j,b j ), 0 j j < M, s th uo of multsts E (B j,b j ) E (B j,bj ). I l If ach B j s a (,K j,)-cdp of sz l, ad E (B j,b j ) cotas ach rsdu of Z at most tms for 0 j j < M, th th st {B 0,...,B M 1 } of CDPs s sad to b balacd std wth dx ad dotd by (,{K 0,...,K M 1 },)-BNCDP. If ach B j s a parttotyp CDP for 0 j < M, th th (,{K 0,...,K M 1 },)- BNCDP s calld partto-typ. For covt, th umbr l of th bas blocks B j s also sad to b th sz of th BNCDP. I 2009, G t al. [21] rvald a cocto btw FHS sts ad partto-typ BNCDPs as follows. Thorm.8: ([21]) Thr xsts a (,M,;l)-FHS st ovr a frqucy lbrary F f ad oly f thr xsts a partto-typ (,{K 0,K 1,...,K M 1 },)-BNCDP of sz l. t B {B X : X S} b a famly of M partto-typ CDPs of sz l ovr Z, whr B X {B0 X,BX 1,...,BX l 1 },X S. For two dstct partto-typ CDPs B X, B Y, ad for 0 τ 1, lt D (X,Y) (τ) {a : 0 a <, (a, a+τ) B X B Y, for som I l }, D (X,Y) (τ) (a 0,a 1,...,a u 1 ), d (X,Y) whr 0 a 0 < < a u 1 < ad {a 0,a 1,...,a u 1 } D (X,Y) (τ), m m{g : g {} ( D (X,Y) (τ))}, 0 τ< for 0 max{ D (X,Y) (τ) : 0 τ < },ad d B m{m X Y {d(x,y) },m X S {dx }}. whr ( D (X,Y) (τ)) f D (X,Y) (τ) or > D (X,Y) (τ). If X Y, th D (X,X) (τ), D (X,X) (τ) ad ar th sam as D(τ), D(τ) ad d X, rspctvly. Not that D (Y,X) ( τ) D (X,Y) (τ) + τ (mod ) ad m{g : g {} ( D (X,Y) (τ))} m{g : g d (X,X) {} ( D (Y,X) ( τ))}. W llustrat th dfto of d B of a st of CDPs th followg xampl. Exampl.9: I ths xampl, w costruct a partto-typ (24,{{2,},{2,},{2,}},)-BNCDP, B, wth d B 8 for 1. St B j j {4,8}, Bj 1+j {0,20}, Bj 2+j {12,16}, B j +j {9,22,2},Bj 4+j {1,14,15},Bj 5+j {6,7,17}, B j 6+j {2,19,21},Bj 7+j {11,1,18},Bj 8+j {,5,10}, whr j {0, 1, 2} ad th addto th subscrpt s prformd modulo 9. t B j {B j r : 0 r 8} for j {0,1,2} ad B {B 0,B 1,B 2 }. Clarly, (B j ) [{±1,±2,±4,±5,±10,±11,±17}], E(B 0,B 1 ) E(B 0,B 2 ) E(B 1,B 2 ) [Z 24 \{0,8,16}]. Th B s a partto-typ (24,{{2,},{2,},{2,}},)- BNCDP. For achτ (B j ),0 j <, th orbt cycl D (Bj,B j)(τ) of τ s of th form (a,a + 8,a + 16) for som a, for xampl, D (B j,b j )(4) (4,12,20). For τ E (B k,b j ), 0 k < j 2, th orbt cycl D (B k,b j)(τ ) of τ s also of th form (a,a+8,a+16) for som a, for xampl, D (B 0,B 1 )(22) (4,12,20). Thrfor, ( D (Bj,B j )(τ)) ( D (B k,b j )(τ )) 8 for 1. So, for 0 k,j 2 ad 1, w hav d (Bk,B j ) m m{g : g {24} ( D (B 0 τ<24 k,b j )(τ))} 8, d B m{ m k 0 k<j 2 {d(b,b j ) j 0 j 2 {d(b,b j ) }, m }} 8. By drct chck or by Thorm.10, th corrspodg FHS st s a strctly optmal (24,,;9)-FHS st wth rspct to th boud (4). Th followg thorm clarfs th cocto btw strctly optmal FHS sts ad partto-typ BNCDPs wth a spcal proprty. Thorm.10: Thr s a strctly optmal (,M,;l)-FHS st S wth rspct to th boud (4) f ad oly f thr xsts a partto-typ (,{K X : X S},)-BNCDP of sz l, B {B X {B0 X,BX 1,...,BX l 1 } : X S} ovr Z wth d B l 1}, for 1, whr KX { Br X : 0 r 2IM (I+1)Il (M 1)M ad I M l. Proof: t S b a st of M squcs of lgth ovr F I l. t Br X {t : x(t) r,0 t 1} for ach r F ad X S. Th Br X s th st of posto dcs th squc X (x(0),...,x( 1)) at whch th frqucy r appars. By Thorm.8, th st S of M squcs s a (,M,;l)-FHS st ovr F f ad oly f {B X {B0 X,...,BX l 1 } : X S} s a partto-typ (,{K X : X S},)-BNCDP, whr K X { Br X : 0 r l 1}. It s lft to show that S s strctly optmal wth rspct to th boud (4) f ad oly f d B for 1, whr B {B X : X S}. By mma 2.4, S s strctly optmal wth rspct to th boud (4) f ad oly f H(S;) for 1,.., for 1, th qualty H(S;) holds for ( 1) <. W show that th qualty H(S;) holds for ( 1) < f ad oly f d B. By th dfto of H X,Y (τ;j ) ad D (X,Y) (τ), w hav H X,Y (τ;j ) D (X,Y) (τ;j ), whr 0 < τ < f X Y, 0 τ < f X Y, D (X,Y) (τ;j ) D (X,Y) (τ) {j,j + 1,...,j + 1} ad th arthmtc j + t (1 t 1) s rducd modulo. Dot d (X,Y) (τ) m{g : g {} ( D (X,Y ) (τ))}. Th, max { D (X,Y)(τ;j ) } f ad oly d (X,Y ) (τ). 0 j< Hc, H(X,Y;) max max { D (X,Y)(τ;j ) } f τ 0 j<

7 7 ad oly f d (X,Y) (τ) for 0 τ < f X Y ad for 1 τ < f X Y,.., d (X,Y) m{d (X,Y ) τ (τ)}. It follows that H(X,Y;) for ( 1) < (X,Y) f ad oly f d. Hc, H(S;) max {H X,X (τ;j )}, max {H X,Y (τ;j )}} { max 0 j< X S for 1 τ<, ( 1) 0 τ<, X Y f ad oly f d (X,Y ), < for X,Y S, whch s quvalt to d B m{d (X,Y) X,Y S}. Ths complts th proof. : t B j b a (mg,g,k j,1)-crdp ovr Z mg for 0 j < M, whr B j {B j 0,Bj 1,...,Bj u 1 }. Th st {B 0,...,B M 1 } s rfrrd to as a (mg,g,{k 0,K 1,...,K M 1 },1)-BNCRDP (balacd std cyclc rlatv dffrc packg) ovr Z mg, f (B j,b j ) cotas ach lmt of Z mg \mz mg at most oc ad o lmt of mz g occurs for 0 j j < M. For covt, th umbr u of th bas blocks B j s also sad to b th sz of th BNCDP. O mportac of a BNCRDP s that w ca put a approprat BNCDP o ts subgroup to drv a w BNCDP. mma.11: Suppos that thr xsts a (mg,g,{k 0,...,K M 1 },1)-BNCRDP of sz u, {B 0,...,B M 1 }, such that all lmts of bas blocks of B j, togthr wth 0,m,...,(s 1)m, form a complt systm of rprstatvs for th costs of smz mg Z mg for 0 j < M, whr s g. If thr xsts a partto-typ (g,{k 0,...,K M 1 }, g s )-BNCDP of sz l, A such that d A s for 1 g s. Th thr xsts a partto-typ (mg,{k 0 K 0,...,K M 1 K M 1 }, g s )-BNCDP of sz gu s +l, D such that dd sm for 1 g s. Proof: Dot B j {B j k : 0 k < u} for 0 j < M ad lt A {A 0,A 1,...,A M 1 } b a parttotyp (g,{k 0,...,K M 1 }, g s )-BNCDP of sz l ovr Z g wth d A s for 1 g s, whr A j {A j r : 0 r < l}. For 0 j < M, st A j {maj r : 0 r < l}, B j (k, ) Bj k + sm for 0 k < u ad 0 < g s, ad D j {B j (k,) : 0 k < u,0 < g s } A j, th th sz of D j s gu s +l. t D {D j : 0 j < M}. It rmas to prov that D s a partto-typ (mg,{k 0 K 0,...,K M 1 K M 1 }, g s )- BNCDP ovr Z mg wth d D sm for 1 g s. Sc all lmts of bas blocks of B j, togthr wth 0,m,...,(s 1)m, form a complt systm of rprstatvs for th costs of smz mg Z mg, w hav {B j (k,) : 0 k < u,0 < g s } s a partto of Z mg \ mz mg. Sc A j s a partto-typ (g,{k 0,...,K M 1 }, g s )-BNCDP, w hav that A j s a partto of mz mg ad D j s a partto of Z mg. For 0 j j < M, E (D j,d j ) ( ) g u 1 s 1 E (B j (k, ),Bj (k, ) ) E (A j,a j ) k0 0 ( g s 1 0 E (B j + sm,b j + sm)) E (A j,a j ), g s [ E(B j,b j )] (m E (A j,a j )). Sc {B j : 0 j < M} s a (mg,g,{k 0,...,K M 1 },1)- BNCRDP, w hav that (B j ) Z mg \ mz mg ad E (B j,b j ) Z mg \ mz mg for 0 j j < M. Sc {A j : 0 j M 1} s a (g,{k 0,...,K M 1 }, g s )- BNCDP, w hav that (A j ) m (A j) cotas ach ozro lmt of mz mg at most g s tms ad E(A j,a j ) m (A j,a j ) cotas ach lmt ofmz mg at most g s tms for j j. It follows that E (D j,d j ) cotas ach lmt of Z mg at most g s tms. Smlarly, (D j) cotas ach ozro lmt of Z mg at most g s tms. Hc, D s a parttotyp (mg,{k 0 K 0,...,K M 1 K M 1 }, g s )-BNCDP of sz gu s +l ovr Z mg. From th costructo, t s asy to s that f τ E (B j,b j ), th th orbt cycl D (j,j )(τ) of τ (D j,d j ) s of th form (a 0,a 0 +sm,a 0 +2sm,...,a 0 +mg sm), ad f τ E (A j,a j ) th th orbt cycl D (j,j )(τ) of τ (D j,d j ) s of th form (mb 0,mb 1,...,mb s 1) whr (b 0,b 1,...,b s 1) s th orbt cycl of τ m (A j,a j ), othrws D (j,j )(τ). Th d (Dj,D j ) (τ) sm for τ (B j,b j ), d (Dj,D j ) (τ) sm for τ E (A j,a j ) bcaus d(aj,a j ) s for 1 g s ad d (Dj,D j ) (τ) mg for τ / E (D j,d j ). It follows that d (Dj,D j ) m{d (Dj,D j ) (τ) : 1 τ < mg} sm for 1 g s. Smlarly, t s radly chckd that d Dj sm for 1 g s. Thrfor, d D j ) m{ m {d(dj,d 0 j j }, m <M 0 j<m {ddj }} sm for 1 g s, ad D s th rqurd BNCDP. Ths complts th proof. IV. COMBINATORIA CONSTRUCTIONS A. Drct costructos of strctly optmal (,2; 2 )-FHSs Costructo A1: t u b a postv tgr ad lt X {x(t)} t0 2u 1 b th FHS of lgth 2u ovr Z u dfd by x(t) x(2t 1 + t 0 ) ( 1) t0 t 1, whr t 2t 1 + t 0, 0 t 0 < 2, 0 t 1 < u. Thorm 4.1: For a postv tgr u, th FHS X Costructo A1 s a strctly optmal (2u, 2; u)-fhs, ad H(X;) u for 1 2u. Proof: For 0 r < u, dot B r {t : x(t) r,0 t < 2u}, th w hav B j {2j,1 2j} (mod 2u) for 0 j < u, D(1 4j) (2j,2j +u) (mod 2u) for 0 j u 1 2, D(1 4j) (2j u,2j) (mod 2u) for u+1 2 j < u, D(k), f k ±(1 4j), 0 j < u.

8 8 By th fact m{g : g {2u} ( D(τ))} m{g : g {2u} ( D( τ))}, w hav d 1 u ad d 2 2u. Th, {B 0,,B u 1 } s a partto-typ (2u,2,2)-CDP of sz u 2u wth d u for 0 < 2. Thrfor, by Thorm 2u u.5, X s strctly optmal wth rspct to th boud (2). Rmark: Wh u s a odd tgr, a strctly optmal (2u,2;u)-FHS ca b also obtad from [6]. Costructo A2: t b a odd tgr ad lt X {x(t)} t0 1 b th FHS of lgth ovr Z ( 1)/2 dfd by x(t) j for t B j, 0 j < 1 2, whr B j ar dfd as follows: If 8a+1, th B 0 {0,4a+1,8a}; B 1 {4a 1,4a}; B 1+r {r,2a 2+2r} for 1 r a; B a+1+r {a+r,2a 1+2r} for 1 r a 1; B 2a+r B 1+r +4a+1 (mod ) for 1 r 2a 1. If 8a+, th B 0 {0,4a+1,4a+2}; B 1 {2a,6a+}; B 2 {2a+1,6a+1}; B {6a+2,6a+4}; B +r {r,4a+1 r} for 1 r 2a 1; B 2a+2+r B +r +4a+2 (mod ) for 1 r 2a 2. If 8a+5, th B 0 {0,4a+2,4a+}; B 1 {2a+1,6a+5}; B 2 {2a+2,6a+}; B {1,6a+4}; B +r {2a+2+r,6a+ r} for 1 r 2a 1; B 2a+2+r B +r +4a+ (mod ) for 1 r 2a 1. If 8a+7, th B 0 {0,4a+,4a+4}; B r {r,2a+2r} for 1 r a+1; B a+r {a+1+r,2a+1+2r} for 1 r a; B 2a+r B r +4a+4 (mod ) for 1 r 2a+1. Thorm 4.2: For ay odd tgr 5, th FHS X Costructo A2 s a strctly optmal (,2; 1 2 )-FHS ad H(X;) 2 for 1. Proof: By Thorm.5, w oly d to show that {B j : 0 j < 1 2 } s a partto-typ (,{2,},2)-CDP wth d ( 1)/2 2 for 1 ( 1)/2 2. Clarly, B {B j : 0 j < 1 2 } s a partto of Z. By th fact m{g : g {} ( D(τ))} m{g : g {} ( D( τ))}, w oly d to comput D(τ) for 1 τ 1 2, so as to obta d. Accordg to th costructo, w dvd t to four cass. Cas 1: 8a+1. By Costructo A2, w hav that D(1) (4a 1,8a), D(4a) (1+4a), D(4a 1) (1+4a), D(2a 2+r) (r,r +4a+1),1 r a, ad D(a 1+r) (a+r,5a+1+r),1 r a 1. Th, t holds that d 1 4a ad max{ D(τ) : 0 < τ < 4a} 2. Thrfor, by Thorm.5, th squc X s strctly optmal wth rspct to th boud (2). Cas 2: 8a+. By Costructo A2, w hav D(1) (4a+1), D(4a+1) (0,2+4a), D(2) (2+6a), D(4a) (1+2a,+6a), D() (2a 1), ad D(4a+1 2r) (r,r+4a+2),1 r 2a 2. Th, t holds that d 1 4a+1 ad max{ D(τ) : 0 < τ < 4a + 1} 2. Thrfor, by Thorm.5, th squc X s strctly optmal wth rspct to th boud (2). Cas : 8a+5. By Costructo A2, w hav D(1) (4a+2), D(4a+2) (0,+4a), D(2a+2) (4+6a), D(4a+1) (2a+2,5+6a), ad D(4a+1 2r) (2a+2+r,r+6a+5),1 r 2a 1. Th, t holds that d 1 4t+2 ad max{ D(τ) : 0 < τ < 4a + 2} 2. Thrfor, by Thorm.5, th squc X s strctly optmal wth rspct to th boud (2). Cas 4: 8t+7. By Costructo A2, w hav D(1) (4t+), D(4t+) (0,4+4t), D(2t+r) (r,r+4t+4) for 1 r t+1, ad D(t+r) (t+1+r,r+5t+5), 1 r t. Th, t holds that d 1 4a+ ad max{ D(τ) : 0 < τ < 4t+} 2. Thrfor, by Thorm.5, th squc X s strctly optmal wth rspct to th boud (2). Ths complts th proof. B. Strctly optmal FHSs from rsolvabl CRDFs I ths subscto, w costruct rsolvabl CRDFs by usg cyclotomc classs ordr to obta strctly optmal FHSs. Rsolvabl CRDFs hav b tsvly studd dsg thory, s [12]. W quot som rsults of rsolvabl CRDFs th followg lmma. mma 4.: (1) Thr xsts a rsolvabl (v,2,,1)-crdf for all v of th form 2 k p 1 p 2 p s whr k {1,5} ad ach p j 1 (mod 12) s a prm ([], [4]). (2) Thr xsts a rsolvabl (v,2,,1)-crdf for all v of th form 8p 1 p 2 p s whr ach p j 1 (mod 6) s a prm ([]). () Thr xsts a rsolvabl (v,,4,1)-crdf for all v of th form p 1 p 2 p s whr ach p j 1 (mod 4) s a prm ([4]). Th applcato of mma.6 to th CRDFs mma 4. ylds th followg strctly optmal FHSs. Thorm 4.4: (1) Thr xsts a strctly optmal(v,2; v+1 )- FHS for all v of th form 2 k p 1 p 2 p s whr k {1,5} ad ach p 1 (mod 12) s a prm. (2) Thr xsts a strctly optmal (v,2; v+1 )-FHS for all v of th form 8p 1 p 2 p s whr ach p 1 (mod 6) s a prm.

9 9 () Thr xsts a strctly optmal (v,; v+1 4 )-FHS for all v of th form p 1 p 2 p s whr ach p 1 (mod 4) s a prm. t q b a prm powr wth q f + 1 ad GF(q) b th ft fld of q lmts. Gv a prmtv lmt α of GF(q), df C0 {αj : 0 j f 1}, th multplcatv group gratd by α, ad C α C 0 for 1 1. Th C0,C 1,...,C 1 partto GF(q) GF(q) \{0}. Th C (0 < ) ar kow as cyclotomc classs of dx (wth rspct to GF(q)). Gv a lst {a 1,a 2,...,a } of lmts GF(q), f ach cyclotomc class C, 0, cotas xactly o lmt of th lst, th w say that th lst forms a complt systm of dstct rprstatv of cyclotomc classs. I th thory of cyclotomy, th umbrs of solutos of x+1 y, x C, y C j ar calld cyclotomc umbrs of ordr rspct to GF(q) ad dotd by (,j). mma 4.5: Thr xsts a rsolvabl (4p, 4,, 1)-CRDF for ay prm p 7 (mod 12). Proof: t ε b a prmtv sxth root of uty Z p. Clarly, ε 5 s also a prmtv sxth root of uty ad 1 ε + ε 2 ε 0. Thus, 5 +1 ε+1 ε2 +1 ε+1 1 ε ε 2 C1 2 sc 1 C1 2. Wthout loss of gralty, w may assum that ε + 1 C0 2. Sc gcd(4,p) 1, w hav that Z 4p s somorphc to Z 4 Z p. Dot by R a complt systm of rprstatvs for th costs of {1,ε 2,ε 4 } C0 2, ths mpls that {rε 2j : r R,0 j < } C0 2. (5) St Th B {{(0,r),(0,rε 2 ),(0,rε 4 )} : r R} {{(1, rε 2 ),(2, r),(, rε)} : r R} B B {{(1, rε 4 ),(2, rε 2 ),(, rε )} : r R} {{(1, r),(2, rε 4 ),(, rε 5 )} : r R}. B ( {1} { r, rε, rε 2, rε, rε 4, rε 5 }) ( {0} {r,rε 2,rε 4, r, rε 2, rε 4 }) (mod {(0,0),(2,0)}). I vw of (5), s ad 1,ε C2 1, w hav B {(0,0),(1,0)} B B 1 {} Z p (mod {(0,0),(2,0)}). 0 Hc, all lmts of bas blocks of B, togthr wth (0,0) ad (1, 0), form a complt systm of rprstatvs for th costs {(0,0),(2,0)} Z 4 Z p. It s lft to chck that B s a (4p,4,,1)-CRDF. It s straghtforward that (B) {z} z, z0 whr j0 j0 1. j0 2 {±rε 2j (1 ε 2 )}, 2 {rε 2j (ε 2 1),rε 2j (1 ε)}, 2 {±rε 2j (ε 2 ε)}, I vw of (5), 1 C 2 1 ad ε+1 C 2 0, th w hav: (B) Z 4 (Z p \{0}). Thrfor, B s a rsolvabl (4p,4,,1)-CRDF. mma 4.6: Thr xsts a rsolvabl (6p, 6,, 1)-CRDF for ay prm p 5 (mod 8). Proof: For p 5, t xsts by Exampl.4. For othr prm p 5 (mod 8), lt ε b a prmtv fourth root of uty Z p, th ε C1 2. t ε C4 a ad 1 + ε C4 2 j, whr a {1,} ad j {0,1,2,}. W frst show that thr 2ε 1+ε (z +1), 2ε xsts a lmt z such that 1+ε (zε) C4 2. For ths purpos, w d th cyclotomc umbrs (j a,j) 4. For ay prm p 5 (mod 8), thy ar gv pag 48 of [27] (0,1) 4 (,2) 4 p+1+2x 8y 16, (0,) 4 (1,2) 4 p+1+2x+8y 16, ad (1,0) 4 (2,1) 4 (2,) 4 (,0) 4 p 2x 16, whr p x 2 +4y 2 wth x 1 (mod 4). Sc p x 2 +4y 2, w hav that x p ad (x ± 4y) 2 5(x 2 + 4y 2 ) 5p. Thus p+1+2x±8y 16 p+1 2 5p 16 > 0 ad p 2x 16 p 2 p 16 > 0 for p 29,.., for ay 0 j < 4, th cyclotomc umbr (j a,j) 4 > 0 f p 29. Hc, thr xsts a lmt z j Cj a 4 such that z j+1 Cj 4. Thus, for ach p 5 (mod 8) wth p 29 thr xsts a lmt z 2ε such that 1+ε (z +1), 2ε 1+ε (zε) C4 2. For p 1, tak ε 8 ad z 11. Th 2ε 1+ε (z +1), 2ε 1+ε (zε) C4 2. Sc gcd(6,p) 1, w hav that Z 6p s somorphc to Z 6 Z p. St B {{(0,w),(0, w),(1,wε)} : w C 4 0 } {{(1, w),(,wε),(, wε)} : w C 4 0 } {{(2, wε(2z +1)),(4, wε),(5,wε(2z +1))} : w C 4 0 } Th B B {{(2,w(2z +1)),(4,w),(5, w(2z +1))} : w C 4 0 }. B w C 4 0 ( w C 4 0 {0,1} {w, w,wε, wε} {2} {w(2z +1), w(2z +1), w(2z +1)ε, w(2z +1)ε}) (mod {(0,0),(,0)}).

10 10 Sc ε C1 2 ad 1 C4 2, w hav ( B) {(0,0),(1,0),(2,0)} B B 2 {} Z p (mod {(0,0),(,0)}). 0 Hc, all lmts of bas blocks of B, togthr wth (0,0),(1,0) ad (2,0), form a complt systm of rprstatvs for th costs {(0,0),(,0)} Z 6 Z p. It s lft to chck that B s a (6p,6,,1)-CRDF. It s straghtforward that whr 0 1 w C w C 4 0 w C 4 0 (B) 5 {b} b, w C 4 0 b0 {±2w, ±2wε}, {w(ε 1),w(1+ε),wε(2z +2), w(2z +2)}, {w(1+ε),w(1 ε),2wzε, 2wz)}, {±2wε(2z +1),±2w(2z +1)}, 4 2, ad 5 1. Sc ε C1 2, 1 C4 (2z+2)ε 2, ε(1+ε) ε 1 ad 1+ε, 2z 1+ε C2 4. W hav that (B) Z6 (Zp \{0}). Thrfor, B s a rsolvabl (6p,6,,1)-CRDF. Th applcato to th CRDFs ths subscto ylds th followg strctly optmal FHSs. Corollary 4.7: (1) Thr xsts a strctly optmal (4p,2; 4p+2 )-FHS for ay prm p 7 (mod 12). (2) Thr xsts a strctly optmal (6p,2;2p+ 1)-FHS for ay prm p 5 (mod 8). Proof: I th followg, w oly prov th cas (1). Th othr cas ca b hadld smlarly. By mma 4.5, thr xsts a rsolvabl (4p,4,,1)-CRDF for ay prm p 7 (mod 12). By Thorm 4.1 ad Thorm.5, thr s a partto-typ (4,2,2)-CDP of sz 2 ovr Z 4 wth d 2 for 1 2. By applyg mma.6 wth s 2, w obta a partto-typ (4p,{2,},2)-CDP ovr Z 4p wth d 2p for 1 2. Furthr, applyg Thorm.5 ylds a strctly optmal (4p,2; 4p+2 )-FHS. C. A cyclotomc costructo of strctly optmal FHS sts I ths subscto, w obta a class of partto-typ BNCDPs wth a spcal proprty by usg cyclotomc classs, from whch w obta a w costructo of strctly optmal FHS sts. t v b a odd tgr wth v > 1 ad dot by U(Z v ) th st of all uts Z v. A lmt g U(Z v ) s calld a prmtv root modulo v f ts multplcatv ordr modulo v s ϕ(v), whr ϕ(v) dots th Eulr fucto whch couts th umbr of postv tgrs lss tha ad coprm to v. It s wll kow that for a odd prm p, thr xsts a lmt g such that g s a prmtv root modulo p b for all b 1 [1]. t v b a odd tgr of th form v p m1 1 pm2 2 p ms s for s postv tgrs m 1,m 2,...,m s ad s dstct prms p 1,p 2,...,p s. t b a commo factor of p 1 1,p 2 1,...,p s 1 ad > 1. Df f m{ p 1 : 1 s}. For 1 s, lt g b a prmtv root modulo p m. By th Chs Rmadr Thorm, thr xst uqu lmts g,a U(Z v ) such that g g fpm 1 (mod p m ) for all 1 s, a g (mod p m ) for all 1 s, th th multplcatv ordr of g modulo v s, th lst of dffrcs arsg from G {1,g,...,g 1 } s a subst of U(Z v ) ad a t g c g c U(Z v ) for 1 t < f ad 0 c,c <. mma 4.8: t v b a postv tgr of th form v p m1 1 pm2 2 p ms s for s postv tgrs m 1,m 2,...,m s ad s dstct prms p 1,p 2,...,p s. t u b a postv tgr such that gcd(u,v) 1. t b a commo factor of u,p 1 1,p 2 1,...,p s 1 ad > 1, ad lt f m{ p 1 : 1 s}. Th thr xsts a (uv,u,{k 0,...,K f 1 },1)-BNCRDP of sz v 1 such that all lmts of bas blocks of ach CRDP, togthr wth 0, form a complt systm of rprstatvs for th costs of vz uv Z uv whr K 0 K f 1 {}. Proof: t g ad a b dfd as abov ad dot G {1,g,...,g 1 }. Th G s a multplcatv cyclc subgroup of ordr of Z v ad (G) U(Z v ). For x,y Z v \ {0}, th bary rlato dfd by x y f ad oly f thr xsts a g G such that xg y s a quvalc rlato ovr Z v \ {0}. Th ts quvalc classs ar th substs xg,x Z v \ {0}, of Z v. Dot by R a systm of dstct rprstatvs for th quvalc classs modulo G of Z v \ {0}, th R v 1 ad {ra b g j : r R, 0 j < } Z v \{0}, (6) for ay tgr b. Sc gcd(u,v) 1, w hav that Z uv s somorphc to Z u Z v. t B b r {(ju,rab g j ) : 0 j < } for r R ad 0 b < f, B b {B b r : r R}. W clam that {B b : 0 b < f} s a (uv,u,{{},{},...,{}},1)-bncrdp such that all lmts of bas blocks of B t, togthr wth (0,0), form a complt systm of rprstatvs for th costs of Z u {0} Z u Z v. I vw of qualty (6), t holds that Br b {(0,0)} {( ju,rab g j ) : 0 j < } {(0,0)} {0} Z v (mod Z u {0}). It follows that all lmts of bas blocks of B t, togthr wth (0,0), form a complt systm of rprstatvs for th costs of Z u {0} Z u Z v. For 0 b < f, w show that (B b ) cota ach o-zro lmt of Z u Z v at most oc.

11 11 I vw of qualty (6), w gt (B b ) ({( ju,rab g j ) : 0 j < }) {( j u,rab g j ) ( ju,rab g j ) : 0 j j < } {( (j j)u,ra b (g j g j )) : 0 j j < } {( cu,rab g j (g c 1)) : 0 j <,1 c < } ( u Z u \{0}) (Z v \{0}). Hc, ach B b s a (uv,u,,1)-crdp. For 0 b b < f, accordg to qualty (6) ad a b b g c 1 U(Z v ), w gt (B b,b b ) (Br,B b r b ) {( ku,rab g k ) ( ju,rab g j ) : 0 j,k < } {( (k j)u,r(a b g k a b g j )) : 0 j,k < } {( cu,rab g j (a b b g c 1)) : 0 j <,0 c < } ( u Z u) (Z v \{0}). Hc, (B b,b b ) cotas ach lmt of Z u Z v at most oc. Ths complts th proof. Start wth a (uv,u,{k 0,...,K f 1 },1)-BNCRDP mma 4.8 whr K 0 K f 1 {}. t A k { u j + k : 0 j < } ad A b {A k : 0 k < u } for 0 b < f, t s asy to s that {A 0,...,A f 1 } s a partto-typ (u,{k 0,...,K f 1 },u)-bncdp of sz u wth d for 1 u. Applyg mma.11 wth g u ad s 1 ylds th followg corollary. Corollary 4.9: Suppos that th paramtrs v,, f, u ar th sam as thos th hypothss of mma 4.8. Th thr xsts a (uv,{k 0,...,K f 1 },u)-bncdp of sz uv wth d v for 1 u whr K 0 K f 1 {}. Furthrmor, wh u, by Thorm.10 th BNCDP Corollary 4.9 s a strctly optmal FHS st. So, w hav th followg corollary. Corollary 4.10: ([6]) Suppos that th paramtrs v,, f ar th sam as thos th hypothss of mma 4.8. Th thr xsts a strctly optmal (v, f, ; v)-fhs st S wth partal Hammg H(S;) v for 1 v. mma 4.8 trprts th gralzd cyclotomc costructo [6] for FHS sts va cyclotomc costss. I comparso, our mthod s qut at ad mor clar to udrstad. V. A DIRECT CONSTRUCTION OF STRICTY OPTIMA FHS SETS I ths scto, w us ft flds to gv a drct costructo of strctly optmal FHS sts. Costructo B t p b a prm ad lt m b a tgr wth m > 1. t α b a prmtv lmt of GF(p m ) ad dot R { m 1 1 a α : a GF(p),1 < m}. t S {X a : a R} b a st of p m 1 FHSs of lgth p(p m 1), whr X a {X a (t)} p(pm 1) 1 t0 s dfd by X a (t) α t p m 1 + t p + a ad z u dots th last ogatv rsdu of z modulo u for ay postv tgr u ad ay tgr z. Thorm 5.1: t p b a prm prm ad lt m b a tgr wth m > 1. Th th FHS st Costructo B s a strctly optmal (p(p m 1),p m 1,p;p m )-FHS st wth rspct to th boud (4) ovr th alphabt GF(p m ). Proof: Frstly, w prov that H(S;) p m 1 for 1 p(p m 1). For 0 τ,j p(p m 1) 1 ad a,b R, th partal Hammg corrlato H X a,xb(τ) s gv by H X a,x j+ 1 tj j+ 1 tj j+ 1 b(τ : j ) tj h[x a (t),x b (t+τ)] h[α t p m 1 + t p +a,α t+τ p m 1 + t+τ p +b] h[a b τ p,α t p m 1 (α τ p m 1 1)]. Dot τ 0 τ pm 1 ad τ 1 τ p. Accordg to th valus of a,b ad τ, w dstgush four cass. Cas 1: a b ad τ 1 0. I ths cas τ 0 0 ad α τ0 1 GF(p m )\{0}. Th H Xa,X j+ 1 a(τ : j ) 0. tj h[0,α t p 1 (α τ 0 1)] Cas 2: a b ad τ 1 0. If τ 0 0, th H Xa,X j+ 1 a(τ : j ) tj h[ τ 1,0] 0. Othrws, lt t 0 b a tgr such that τ 1 α t0 p m 1 (α τ 0 1). Th H Xa,X j+ 1 a(τ : j ) tj j+ 1 tj p m 1 h[ τ 1,α t p m 1 (α τ 0 1)] {t : t t 0 (mod p m 1)}. Cas : a b ad τ 0 0. Sc a b / GF(p), w hav a b τ 1. Th j+ 1 H X a,x b(τ : j ) h[a b τ 1,0] 0. tj

12 12 Cas 4: a b ad τ 0 0. Clarly, a b τ 1 0. t t 0 b a tgr such that a b τ 1 α t0 p m 1 (α τ 0 1). Th, H X a,xb(τ : j ) j+ 1 tj j+ 1 tj p m 1 h[a b τ 1,α t p m 1 (α τ 0 1)] {t : t t 0 (mod p m 1)}. I summary, th dscusso th four cass abov shows that H(S;) p m 1. Fally, w prov that H(S; ). Not that S p m 1 cotas p m 1 FHSs of lgth p(p m 1) ovr a alphabt of sz p m. Sc I p(pm 1)p m 1 p p m 1, by mma 2.4 m w gt H(S; ) p(p m 1) p(p m 1) p m 1. 2(p m 1)p(p m 1)p m 1 p m (p m 1)p m (p(p m 1)p m 1 1)p m 1 p p(2pm ) (p m 1)p m 1 Thrfor, {X a : a R} s a strctly optmal (p(p m 1),p m 1,p;p m )-FHS st wth rspct to th boud (4). W llustrat th da of Thorm 5.1 wth m 2 adp th followg xampl. Exampl 5.2: Usg th prmtv polyomal f(x) x 2 + x+2 GF()[x], w costruct th GF(9) as GF()[α]/f(α) whr α 2 + α Th 9 lmts of GF(9) ca b rprstd th form a 0 +a 1 α,a 0,a 1 GF(). Th FHS st S {X 0,X α,x 2α } gratd by Costructo B s gv by X 0 (1,α+1,2α,2α+2,0,2α+2,α+2, α+2,0,α,2α+2,2α+1,2,2α+1,α+1, α+1,2,α+2,2α+1,2α,1,2α,α,α) X α (α+1,2α+1,0,2,α,2,2α+2, 2α+2,α,2α,2,1,α+2,1,2α+1, 2α+1,α+2,2α+2,1,0,α+1,0,2α,2α) X 2α (2α+1,1,α,α+2,2α,α+2,2, 2,2α,0,α+2,α+1,2α+2,α+1,1, 1,2α+2,2,α+1,α,2α+1,α,0,0). It s radly chckd that S {X 0,X α,x 2α } s a strctly optmal (24,,;9)-FHS st wth rspct to th boud (4). Such a FHS st s th sam as that Exampl.9. VI. TWO RECURSIVE CONSTRUCTIONS OF STRICTY OPTIMA FHS SETS I ths scto, two rcursv costructos ar usd to costruct strctly optmal dvdual FHSs ad FHS sts. Th frst rcursv costructo s basd o th cyclc dffrc matrx (CDM). A (w,t,1)-cdm s a t w matrxd (d j ) (0 t 1, 0 j w 1) wth trs from Z w such that, for ay two dstct rows R r ad R h, th vctor dffrc R h R r cotas vry rsdu of Z w xactly oc. It s asy to s that th proprty of a dffrc matrx s prsrvd v f w add ay lmt of Z w to all trs ay row or colum of th dffrc matrx. Th, wthout loss of gralty, w ca assum that all trs th frst row ar zro. Such a dffrc matrx s sad to b ormalzd. Th (w,t 1,1)- CDM obtad from a ormalzd (w, t, 1)-CDM by dltg th frst row s sad to b homogous. Th xstc of a homogous (w,t 1,1)-CDM s quvalt to that of a (w, t, 1)-CDM. Obsrv that dffrc matrcs hav b xtsvly studd. A larg umbr of kow (w, t, 1)-CDMs ar wll documtd [12]. I partcular, th multplcato tabl of th prm fld Z p s a (p,p,1)-cdm. By usg th usual product costructo of CDMs, w hav th followg xstc rsult. mma 6.1: ([12]) t w ad t b tgrs wth w t. If w s odd ad th last prm factor of w s ot lss tha t, th thr xsts a (w,t,1)-cdm. Thorm 6.2: Assum that {B 0,...,B M 1 } s a (mg,g,{k 0,K 1,...,K M 1 },1)-BNCRDP of sz u such that all lmts of bas blocks of B j, togthr wth 0,m,...,(s 1)m, form a complt systm of rprstatvs for th costs of smz mg Z mg for 0 j < M, whr s g ad B j {B j 0,Bj 1,...,Bj u 1 }. If thr xsts a homogous (w,t,1)-cdm ovr Z w wth t max { M B j 0 k<u k } ad gcd(w, g s ) 1, th thr also j1 xsts a (mgw,gw,{k 0,K 1,...,K M 1 },1)-BNCRDP of sz uw, B {B 0,...,B M 1 } such that all lmts of bas blocks of B j, togthr wth 0,m,...,(sw 1)m, form a complt systm of rprstatvs for th costs of smwz mgw Z mgw for 0 j < M. Proof: t Γ (γ,j ) b a homogous (w,t,1)-cdm ovr Z w. For ach collcto of th followg M blocks: B 0 {a,0,1,...,a,0,k0 }, B 1 {a,1,k 0+1,...,a,1,k1 },. B M 1 {a,m 1,kM 2+1,...,a,M 1,kM 1 }, whr 0 < u, w costruct th followg uw w blocks: B j (,k) {a,j,k j 1+1 +mgγ kj 1+1,k,...,a,j,kj +mgγ kj,k}, St 0 j < M,0 k < w. B j {Bj (,k) : 0 < u,0 k < w},ad B {B j : 0 j < M}, th th sz of B j s uw for 0 j < M. It s lft to show that B th rqurd (mgw,gw,{k 0,K 1,...,K M 1 },1)- BNCRDP.

13 1 Frstly, w show that all lmts of bas blocks B j, togthr wth 0,m,...,(sw 1)m, form a complt systm of rprstatvs for th costs of smwz mgw Z mgw. Sc gcd(w, g g s ) 1, w hav that {c s : 0 c < w} {0,1,...,w 1} (mod w). It follows that {ms cg s : 0 c < w} {csm : 0 c < w} (mod smw). Clarly, 0 k<w Bj (,k) z B{z j + cmg : 0 c < w}. Sc all lmts of bas blocks of B j, togthr wth 0,m,2m,,(s 1)m, form a complt systm of rprstatvs for th costs of smz mg Z mg, w hav that 0 <u Bj {0,1,2,...,sm 1} \ {0,m,...,sm m} (mod sm) ad B j (,k) 0 <u 0 k<w 0 <uz B j 0 <uz B j z I sm\{0,m,...,sm m} {z +cmg : 0 c < w} {z +csm : 0 c < w} {z +csm : 0 c < w} I sw \{0,m,...,smw m} (mod smw), as dsrd. Scodly, w show that ach B j s a (mgw,gw,k j,1)- CRDP. ScB j s a(mg,g,k j,1)-crdp, w hav (B j ) Z mg \mz mg. Smpl computato shows that (B j ) (B j (,k) ) 0 <u, 0 k<w {a b+cmg : a b B j, 0 c < w} 0 <u (mgz mgw +τ) Z mgw \mz mgw. τ (B j) It follows that B j s a (mgw,gw,k j,1)-crdp. Fally, w show (B j,b j ) Z mgw \ mz mgw for 0 j j < M. Sc (B j,b j ) Z mg \mz mg, w gt (B j,b j ) 0 <u 0 k<w (B j (,k),bj (,k) ) {b a+cmg : (a,b) B j Bj, 0 c < w} 0 <u (mgz mgw +τ) Z mgw \mz mgw. τ (B j,b j ) Thrfor, B s th rqurd BNCRDP. Ths complts th proof. Th sgfcac of Thorm 6.2 s that t gvs us a ffctv way to costruct a BNCRDP such that all lmts of bas blocks of ach CRDP, togthr wth 0, m,...,(sw 1)m, form a complt systm of rprstatvs for th costs of smwz mgw Z mgw, whch s crucal to our vstgato of ths papr. By mployg Thorm 6.2, w obta th followg costructo for rsolvabl CRDFs. Corollary 6.: Assum that thr xsts a rsolvabl (mg, g, k, 1)-CRDF, a rsolvabl (gw, g, k, 1)-CRDF ad a (w,k + 1,1)-CDM. If gcd(w,k 1) 1, th thr xsts a rsolvabl (mgw, g, k, 1)-CRDF. Proof: Sc thr xsts a (w, k + 1, 1)-CDM, thr xsts a homogous (w, k, 1)-CDM. Sc thr xsts a rsolvabl (mg,g,k,1)-crdf ad gcd(w,k 1) 1, applyg Thorm 6.2 wth M 1 ad s g k 1 gvs a rsolvabl (mgw,gw,k,1)-crdf B. t A b a rsolvabl (gw,g,k,1)-crdf. Th, B {ma : A A} s a rsolvabl (mgw,g,k,1)-crdf, whr ma {ma : a A}. Rmark: Wh g k 1, th rcursv costructo for CRDFs from Corollary 6. has b gv [2]. Applyg Corollary 6. wth th kow rsolvabl CRDFs scto IV-B, w gt th followg w rsolvabl CRDFs. Corollary 6.4: (1) Thr xsts a rsolvabl (v, 4,, 1)- CRDF for all v of th form 4p 1 p 2 p u whr ach p j 7 (mod 12) s a prm. (2) Thr xsts a rsolvabl (v,6,,1)-crdf for all v of th form 6p 1 p 2 p u whr ach p j 5 (mod 8) s a prm. Proof: W oly prov th frst cas. Th othr cas ca b hadld smlarly. W prov t by ducto o t. For u 1, by mma 4.5 th assrto holds. Assum that th assrto holds for u r ad cosdr u r + 1. Start wth a rsolvabl (4p 1 p 2 p r,4,,1)-crdf ovr Z 4p1p 2 p r whch xsts by ducto hypothss. By mma 6.1 ad mma 4.5, thr xsts a (p r+1,5,1)-cdm ad a rsolvabl (4p r+1,4,,1)-crdf. Applyg Corollary 6. ylds a rsolvabl (4p 1 p 2 p r+1,4,,1)-crdf. So, th cocluso holds by ducto. Th applcato to th CRDFs Corollary 6.4 gvs th followg strctly optmal FHSs. Thorm 6.5: (1) Thr xsts a strctly optmal(v,2; v+2 )- FHS for all v of form 4p 1 p 2...p u whr ach p j s a prm 7 (mod 12). (2) Thr xst a strctly optmal (v,2; v +1)-FHS for all v of form 6p 1 p 2...p u whr ach p j 5 (mod 8) s a prm. Proof: W oly prov th scod cas. Th frst cas ca b hadld smlarly. By Corollary 6.4, thr xsts a rsolvabl (v,6,,1)-crdf. By Thorm 4.1 ad Thorm.5, thr xsts a (6,2,2)-CDP, A of sz wth d A 6 2 for 1 2. Applyg mma.6 wth g 6 ad s, thr xsts a partto-typ (v,{2, }, 2)-CDP ovr Z v wth d v 2 for 1 2. Applyg Thorm.5 wth l + v 6 v+ v+, w obta a strctly optmal (v,2; )- FHS. By vrtu of mma 4.8, w ca apply Thorm 6.2 to produc th followg srs of strctly optmal FHS sts mtg th lowr boud (4). Corollary 6.6: t v b a odd tgr of th form v p m1 1 pm2 2 p ms s for s postv tgrs m 1,m 2,...,m s ad s prms p 1,p 2,...,p s wth p 1 < p 2 < < p s. t b a commo factor of p 1 1,p 2 1,...,p s 1 such that 2 < 2 < p 1 ad lt f p1 1. t w b a odd tgr of th form w q 1 1 q2 2...qt t for t postv tgrs 1, 2,..., t ad t dstct prms q 1,q 2,...,q t wth q 1 <... < q t such that p 1 q 1 ad gcd(,w) 1. t r b a commo factor of,q 1 1,q 2 1,...,q t 1 wth r > 1. If v > ( 2), th thr xsts a strctly optmal (wv,f,;(v 1)w+ w r )-FHS st wth rspct to th boud (4). Proof: Frstly, w prov that thr xsts a partto-typ (wv,{k 0,...,K f 1 },)-BNCDP of sz (v 1)w+ w r, S

14 14 such that d S wv for 1, whr K 0 K f 1 {,r}. By mma 4.8, thr xsts a (v,,{k 0,...,K f 1 },1)- BNCRDP of sz v 1 such that all lmts of bas blocks of ach CRDP, togthr wth 0, form a complt systm of rprstatvs for th costs of vz v Z v whr K 0 K f 1 {}. Sc p 1 q 1, by mma 6.1 thr xsts a homogous (w,p 1 1,1)-CDM ovr Z w. Sc gcd(,w) 1, applyg Thorm 6.2 wth g,s 1 ylds a(wv,w,{k 0,K 1,...,K f 1 },1)-BNCRDP of sz (v 1)w such that all lmts of bas blocks of ach CRDP, togthr wth 0,v,...,(w 1)v, form a complt systm of rprstatvs for th costs of wvz wv Z wv. By Corollary 4.9, thr xsts a partto-typ (w,{k 0,...,K f 1 },)- BNCDP of sz w r, S wth ds w for 1 whr K 0 K f 1 {r}. By applyg mma.11 wth g w ad s w w obta a partto-typ (vw,{k 0,...,K f 1 },)-BNCDP of sz (v 1)w+ w r, S wth d S wv for 1, whr K 0 K f 1 {,r}. Fally, w show By dfto, w hav I If r, w hav 2IM (I+1)Il (M 1)M 2IM (I+1)Il (M 1)M vw p1 1 (v 1)w+ w r rv(p1 1) (v 1)r+. { p1 1 f r, ad p 1 2 f r <. 2(p1 1)wvf p 1(p 1 1)wv (wvf 1)f (p1 2)wv wv(p 1 1) 1 (wv 1) wv(p 1 1) 1. Othrws, w hav 2IM (I +1)Il (M 1)M 2(p1 2)wv p 1 1 (p 1 1)(p 1 2)(wv w+ w r ) (wv p 1 1 wv+ (p 1 2)w( r) r wv(p 1 1) 1 1) p 1 1. (7) Sc p 1 > 2, r 2 ad v > ( 2), w hav v(p 1 1) > v+ (p1 2)( r) r, whch lads to wv+ (p1 2)w( r) r 0 < < 1. wv(p 1 1) 1 It follows from (7) that 2IM (I+1)Il (M 1)M. By Thorm.10, S s a strctly optmal (wv,f,;(v 1)w+ w r )-FHS st wth rspct to th boud (4). Ths complts th proof. Now, w prst th scod rcursv costructo. Costructo C: t v b a odd tgr of th form v p m1 1 pm2 2 p ms s for s postv tgrs m 1,m 2,...,m s ad s dstct prms p 1,p 2,...,p s. t b a commo factor of p 1 1,p 2 1,...,p s 1 wth > 1, ad lt f m{ p 1 : 1 s}. t {X 0,X 1,...,X M 1 } b a (,M,;l)- FHS st ovr F, whr X {x (t)} t0 1 ad M f. For 0 < M, lt Y {y (t)} t0 v 1 b th FHS ovr Z v F, dfd by y (t) ( a g t t v,x ( t )) whr a ad g ar dfd Scto IV-C, z u dots th last ogatv rsdu of z modulo u for ay postv tgr u ad ay tgr z. mma 6.7: ty ady j b ay two FHSs Costructo C. Th for 0 τ,c < v ad 1 v, t holds that H Y,Y j (τ;c ) H X,X j ( τ ;k v) for som k wth 0 k <. Proof: By dfto, h[y (t),y j (t+τ)] h[( a g t t v,x ( t )),( a j g (t+τ) (t+τ) v,x j ( t+τ ))] h[ a g t t v, a j g (t+τ) (t+τ) v ] h[x ( t ),x j ( t+τ )] h[ (a a j g τ )t v, a j g τ τ v ] h[x ( t ),x j ( t+τ )]. Accordg to th paramtrs,j,τ, w dstgush two cass. Cas 1: j ad τ 0. Sc g τ 1 ad x ( t ) x j ( t+τ ), w gt H Y,Y j (τ;c ) c+ 1 c+ 1 tc tc h[0, a j g τ τ v] { f τ 0, 0 othrws. h[y (t),y j(t+τ)] Th last qualty holds sc gcd(v, ) 1. Thrfor, H Y,Y j (τ;c ) H X,X j ( τ ;k v) for 0 k <. Cas 2: j or τ 0. I ths cas, a a j g τ U(Z v ). St t 0 a j g τ τ (a a j g τ ) 1 (mod v). Th h[ (a a j g τ )t v, a j g τ τ v ] 1 f ad oly t v t 0 v. Sc (p r 1) for 0 < r s, t holds that v 1 (mod ). Th H Y,Y j (τ;c ) c+ 1 c+ 1 tc tc h[y (t),y j (t+τ)] h[ (a a j g τ )t v, a j g τ τ v] h[x ( t ),x j ( t+τ )] 0 a< t 0 +av {c,c+1,...,c+ 1} c+ 1 t 0 v a c t 0 v h[x ( t 0 +av ),x j ( t 0 +av +τ )] h[x ( t 0 +a ),x j ( t 0 +a+τ )] H X,X j ( τ ;t 0 + c t 0 v v ).

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since 56 Chag Ma J Sc 0; () Chag Ma J Sc 0; () : 56-6 http://pgscccmuacth/joural/ Cotrbutd Papr Th Padova Sucs Ft Groups Sat Taș* ad Erdal Karaduma Dpartmt of Mathmatcs, Faculty of Scc, Atatürk Uvrsty, 50 Erzurum,

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data saqartvlos mcrbata rovul akadms moamb, t 9, #2, 2015 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 9, o 2, 2015 Mathmatcs O Estmato of Ukow Paramtrs of Epotal- Logarthmc Dstrbuto by Csord

More information

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4. Coutg th compostos of a postv tgr usg Gratg Fuctos Start wth,... - Whr, for ampl, th co-ff of s, for o summad composto of aml,. To obta umbr of compostos of, w d th co-ff of (...) ( ) ( ) Hr for stac w

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Different types of Domination in Intuitionistic Fuzzy Graph

Different types of Domination in Intuitionistic Fuzzy Graph Aals of Pur ad Appld Mathmatcs Vol, No, 07, 87-0 ISSN: 79-087X P, 79-0888ol Publshd o July 07 wwwrsarchmathscorg DOI: http://dxdoorg/057/apama Aals of Dffrt typs of Domato Itutostc Fuzzy Graph MGaruambga,

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

On Approximation Lower Bounds for TSP with Bounded Metrics

On Approximation Lower Bounds for TSP with Bounded Metrics O Approxmato Lowr Bouds for TSP wth Boudd Mtrcs Mark Karpsk Rchard Schmd Abstract W dvlop a w mthod for provg xplct approxmato lowr bouds for TSP problms wth boudd mtrcs mprovg o th bst up to ow kow bouds.

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

On the Possible Coding Principles of DNA & I Ching

On the Possible Coding Principles of DNA & I Ching Sctfc GOD Joural May 015 Volum 6 Issu 4 pp. 161-166 Hu, H. & Wu, M., O th Possbl Codg Prcpls of DNA & I Chg 161 O th Possbl Codg Prcpls of DNA & I Chg Hupg Hu * & Maox Wu Rvw Artcl ABSTRACT I ths rvw artcl,

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Perfect Constant-Weight Codes

Perfect Constant-Weight Codes 56 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 004 Prfct Costat-Wght Cods Tuv Etzo, Fllo, IEEE, ad Mosh Schartz, Mmbr, IEEE Abstract I hs porg or from 973, Dlsart cocturd that thr

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution Itratoal Joural of Statstcs ad Applcatos, (3): 35-3 DOI:.593/j.statstcs.3. Baysa Shrkag Estmator for th Scal Paramtr of Expotal Dstrbuto udr Impropr Pror Dstrbuto Abbas Najm Salma *, Rada Al Sharf Dpartmt

More information

Chapter 6. pn-junction diode: I-V characteristics

Chapter 6. pn-junction diode: I-V characteristics Chatr 6. -jucto dod: -V charactrstcs Tocs: stady stat rsos of th jucto dod udr ald d.c. voltag. ucto udr bas qualtatv dscusso dal dod quato Dvatos from th dal dod Charg-cotrol aroach Prof. Yo-S M Elctroc

More information

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1 Th robablty of Ra's hyothss bg tru s ual to Yuyag Zhu Abstract Lt P b th st of all r ubrs P b th -th ( ) lt of P ascdg ordr of sz b ostv tgrs ad s a rutato of wth Th followg rsults ar gv ths ar: () Th

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

Estimation of Population Variance Using a Generalized Double Sampling Estimator

Estimation of Population Variance Using a Generalized Double Sampling Estimator r Laka Joural o Appl tatstcs Vol 5-3 stmato o Populato Varac Us a Gralz Doubl ampl stmator Push Msra * a R. Kara h Dpartmt o tatstcs D.A.V.P.G. Coll Dhrau- 8 Uttarakha Ia. Dpartmt o tatstcs Luckow Uvrst

More information

Estimation Theory. Chapter 4

Estimation Theory. Chapter 4 Estmato ory aptr 4 LIEAR MOELS W - I matrx form Estmat slop B ad trcpt A,,.. - WG W B A l fttg Rcall W W W B A W ~ calld vctor I gral, ormal or Gaussa ata obsrvato paramtr Ma, ovarac KOW p matrx to b stmatd,

More information

A Measure of Inaccuracy between Two Fuzzy Sets

A Measure of Inaccuracy between Two Fuzzy Sets LGRN DEMY OF SENES YERNETS ND NFORMTON TEHNOLOGES Volum No 2 Sofa 20 Masur of accuracy btw Two Fuzzy Sts Rajkumar Vrma hu Dv Sharma Dpartmt of Mathmatcs Jayp sttut of formato Tchoy (Dmd vrsty) Noda (.P.)

More information

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES AYMPTOTIC AD TOLERACE D-MODELLIG I ELATODYAMIC OF CERTAI THI-WALLED TRUCTURE B. MICHALAK Cz. WOŹIAK Dpartmt of tructural Mchacs Lodz Uvrsty of Tchology Al. Poltrchk 6 90-94 Łódź Polad Th objct of aalyss

More information

Integral points on hyperbolas over Z: A special case

Integral points on hyperbolas over Z: A special case Itgral pots o hprbolas ovr Z: A spcal cas `Pag of 7 Kostat Zlator Dpartmt of Mathmatcs ad Computr Scc Rhod Islad Collg 600 Mout Plasat Avu Provdc, R.I. 0908-99, U.S.A. -mal addrss: ) Kzlator@rc.du ) Kostat_zlator@ahoo.com

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto   {t-asano, School of Iformato Scc Chal Capacty 009 - Cours - Iformato Thory - Ttsuo Asao ad Tad matsumoto Emal: {t-asao matumoto}@jast.ac.jp Japa Advacd Isttut of Scc ad Tchology Asahda - Nom Ishkawa 93-9 Japa http://www.jast.ac.jp

More information

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 9 4. Matrx tgrals Lt h N b th spac of Hrmta matrcs of sz N. Th r product o h N s gv by (A, B) = Tr(AB). I ths scto w wll cosdr tgrals of th form Z

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Suzan Mahmoud Mohammed Faculty of science, Helwan University Europa Joural of Statstcs ad Probablty Vol.3, No., pp.4-37, Ju 015 Publshd by Europa Ctr for Rsarch Trag ad Dvlopmt UK (www.ajourals.org ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN WEIBULL DISTRIBUTION

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Iranian Journal of Mathematical Chemistry, Vol. 2, No. 2, December 2011, pp (Received September 10, 2011) ABSTRACT

Iranian Journal of Mathematical Chemistry, Vol. 2, No. 2, December 2011, pp (Received September 10, 2011) ABSTRACT Iraa Joral of Mathatcal Chstry Vol No Dcbr 0 09 7 IJMC Two Tys of Gotrc Arthtc dx of V hylc Naotb S MORADI S BABARAHIM AND M GHORBANI Dartt of Mathatcs Faclty of Scc Arak Ursty Arak 856-8-89 I R Ira Dartt

More information

Ordinary Least Squares at advanced level

Ordinary Least Squares at advanced level Ordary Last Squars at advacd lvl. Rvw of th two-varat cas wth algbra OLS s th fudamtal tchqu for lar rgrssos. You should by ow b awar of th two-varat cas ad th usual drvatos. I ths txt w ar gog to rvw

More information

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS Chaptr 4 NUMERICL METHODS FOR SOLVING BOUNDRY-VLUE PROBLEMS 00 4. Varatoal formulato two-msoal magtostatcs Lt th followg magtostatc bouar-valu problm b cosr ( ) J (4..) 0 alog ΓD (4..) 0 alog ΓN (4..)

More information

β-spline Estimation in a Semiparametric Regression Model with Nonlinear Time Series Errors

β-spline Estimation in a Semiparametric Regression Model with Nonlinear Time Series Errors Amrca Joural of Appld Sccs, (9): 343-349, 005 ISSN 546-939 005 Scc Publcatos β-spl Estmato a Smparamtrc Rgrsso Modl wth Nolar Tm Srs Errors Jhog You, ma Ch ad 3 Xa Zhou Dpartmt of ostatstcs, Uvrsty of

More information

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model Th Op Orgac hmstry Joural 0 5 (Suppl -M6) 87-87 Op Accss Advacs of lar's Aromatc Sxtt Thory ad Radc 's ougatd rcut Modl Fu Zhag a Xaofg Guo a ad Hpg Zhag b a School of Mathmatcal Sccs Xam Uvrsty Xam Fua

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Adagba O Henry /International Journal Of Computational Engineering Research / ISSN: OPERATION ON IDEALS

Adagba O Henry /International Journal Of Computational Engineering Research / ISSN: OPERATION ON IDEALS Adagba O Hry /Itratoal Joural Of Computatoal Egrg Rsarh / ISSN 50 3005 OPERATION ON IDEALS Adagba O Hry, Dpt of Idustral Mathmats & Appld Statsts, Eboy Stat Uvrsty, Abakalk Abstrat W provd bas opratos

More information

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY Colloquum Bomtrcum 44 04 09 7 COMPISON OF SEVEL ESS FO EQULIY OF COEFFICIENS IN QUDIC EGESSION MODELS UNDE HEEOSCEDSICIY Małgorzata Szczpa Dorota Domagała Dpartmt of ppld Mathmatcs ad Computr Scc Uvrsty

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Notation for Mixed Models for Finite Populations

Notation for Mixed Models for Finite Populations 30- otato for d odl for Ft Populato Smpl Populato Ut ad Rpo,..., Ut Labl for,..., Epctd Rpo (ovr rplcatd maurmt for,..., Rgro varabl (Luz r for,...,,,..., p Aular varabl for ut (Wu z μ for,...,,,..., p

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

New families of p-ary sequences with low correlation and large linear span

New families of p-ary sequences with low correlation and large linear span THE JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOMMUNICATIONS Volu 4 Issu 4 Dcbr 7 TONG X WEN Qao-ya Nw fals of -ary sucs wth low corrlato ad larg lar sa CLC ubr TN98 Docut A Artcl ID 5-8885 (7 4-53-4

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

International Journal of Mathematical Archive-6(5), 2015, Available online through ISSN

International Journal of Mathematical Archive-6(5), 2015, Available online through  ISSN Itratoal Joural of Mathmatal Arhv-6), 0, 07- Avalabl ol through wwwjmafo ISSN 9 06 ON THE LINE-CUT TRANSFORMATION RAPHS B BASAVANAOUD*, VEENA R DESAI Dartmt of Mathmats, Karatak Uvrsty, Dharwad - 80 003,

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Backlund Transformations for Non-Commutative (NC) Integrable Eqs.

Backlund Transformations for Non-Commutative (NC) Integrable Eqs. Backlud Trasormatos or No-Commutatv NC Itral Es. asas HAANAKA Uvrsty o Naoya vst Glaso utl. 3 ad IHES 3 - ar3 9 Basd o Clar R.Glso Glaso H ad oata.c.nmmo Glaso ``Backlud trs or NC at-sl-dual AS Ya-lls

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS Anuj Bshno and Sudsh K. Khanduja Dpartmnt of Mathmatcs, Panjab Unvrsty, Chandgarh-160014, Inda. E-mal: anuj.bshn@gmal.com, skhand@pu.ac.n ABSTRACT.

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source: Cour 0 Shadg Cour 0 Shadg. Bac Coct: Lght Sourc: adac: th lght rg radatd from a ut ara of lght ourc or urfac a ut old agl. Sold agl: $ # r f lght ourc a ot ourc th ut ara omttd abov dfto. llumato: lght

More information

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations Appld Mathmatcal Sccs ol. 9 5 o. 43 75-73 HKAR Ltd www.m-hkar.com http://dx.do.org/.988/ams.5.567 Thr-Dmsoal Thory of Nolar-Elastc Bods Stablty udr Ft Dformatos Yu.. Dmtrko Computatoal Mathmatcs ad Mathmatcal

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( )

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( ) Sprg Ch 35: Statstcal chacs ad Chcal Ktcs Wghts... 9 Itrprtg W ad lw... 3 What s?... 33 Lt s loo at... 34 So Edots... 35 Chaptr 3: Fudatal Prcpls of Stat ch fro a spl odl (drvato of oltza dstrbuto, also

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek Etatg th Varac a Sulato Study of Balacd Two Stag Prdctor of Ralzd Rado Clutr Ma Ed Stak Itroducto W dcrb a pla to tat th varac copot a ulato tudy N ( µ µ W df th varac of th clutr paratr a ug th N ulatd

More information

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of Do Bgyoko () FOURIER SERIES I. INTRODUCTION Srs psos r ubqutous too o scc d grg. Th kds o pso to utz dpd o () th proprts o th uctos to b studd d (b) th proprts or chrctrstcs o th systm udr vstgto. Powr

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data Itratoal Rfrd Joural of Egrg ad Scc (IRJES) ISSN (Ol) 319-183X, (Prt) 319-181 Volum, Issu 10 (Octobr 013), PP. 6-30 Tolrac Itrval for Expotatd Expotal Dstrbuto Basd o Groupd Data C. S. Kaad 1, D. T. Shr

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall 06 906 3 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu

More information

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays Itratoal Cofrc o Appld Mathmatcs, Smulato ad Modllg (AMSM 6) Group Cossus of Scod-Ordr Mult-agt Ntworks wth Multpl Tm Dlays Laghao J* ad Xyu Zhao Chogqg Ky Laboratory of Computatoal Itllgc, Chogqg Uvrsty

More information

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE 7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE Isttut of Ecoomc Forcastg Roxaa IDU Abstract I ths papr I aalyz th dffuso of a product ovato that was rctly mad avalabl for lcsd purchas wth a

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach ISSN 168-8 Joural of Statstcs Volum 16, 9,. 1-11 Cosstcy of th Mamum Lklhood Estmator Logstc Rgrsso Modl: A Dffrt Aroach Abstract Mamuur Rashd 1 ad Nama Shfa hs artcl vstgats th cosstcy of mamum lklhood

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM OPERTIONS RESERH o.287/opr.8.559c pp. c c8 -copao ONLY VILLE IN ELETRONI FORM fors 28 INFORMS Elctroc opao Optzato Mols of scrt-evt Syst yacs by Wa K (Vctor ha a L Schrub, Opratos Rsarch, o.287/opr.8.559.

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS

FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS FILTER BANK ULTICARRIER WITH LAPPED TRANSFORS aurc Bllagr, CNA Davd attra, aro Tada, Uv.Napol arch 5 Obctvs A multcarrr approach to mprov o OFD for futur wrlss systms - asychroous mult-usr accss - spctral

More information