Solving Singularly Perturbed Differential Difference Equations via Fitted Method

Size: px
Start display at page:

Download "Solving Singularly Perturbed Differential Difference Equations via Fitted Method"

Transcription

1 Avalable at ttp://pvamu.edu/aam Appl. Appl. Mat. ISSN: Vol. 8, Issue 1 (June 013), pp Applcatons and Appled Matematcs: An Internatonal Journal (AAM) Solvng Sngularly Perturbed Dfferental Dfference Equatons va Ftted Metod Awoke Andarge Department of Matematcs Bar Dar Unversty Bar Dar, P.O. Box 53, Etopa awoke48@yaoo.com Y.N. Reddy Department of Matematcs Natonal Insttute of Tecnology Warangal, A.P., Inda ynreddy@ntw.ac.n Receved: July 30, 01; Accepted: June 3, 013 Abstract In ts paper, we presented a ftted approac to solve sngularly perturbed dfferental dfference equatons of second order wt boundary at one end (left or rgt) of te nterval. In ts approac, wt te elp of Taylor seres expanson, we approxmated te terms contanng negatve and postve sfts and modfed te sngularly perturbed dfferental dfference equaton to sngularly perturbed dfferental equaton. A fttng parameter n te coeffcent of te gest order dervatve of te new equaton s ntroduced and determned ts value from te teory of sngular perturbaton. Fnally, we obtaned a tree term recurrence relaton wc s solved usng Tomas Algortm. Te applcablty of te metod s tested wt sx lnear problems. Keywords: Ftted, Dfferental-Dfference, Sngular Perturbaton, Boundary Layer MSC 010 No.: 34K6, 65L10, 65L11 1. Introducton Te problems n wc te gest order dervatve term s multpled by a small parameter are known to be perturbed problems and te parameter s known as te perturbaton parameter. A sngularly perturbed dfferental-dfference equaton s an ordnary dfferental equaton n wc 318

2 AAM: Intern. J., Vol. 8, Issue 1 (June 013) 319 te gest dervatve s multpled by a small parameter and nvolvng at least one delay or advance term. Recently by constructng a specal type of mes, so tat te term contanng delay les on nodal ponts after dscretzaton, Rao and Cakravarty (011) presented a fourt order fnte dfference metod for solvng sngularly perturbed dfferental dfference equatons. Prasad and Reddy (01) consdered dfferental quadrature metod for fndng te numercal soluton of boundary-value problems for a sngularly perturbed dfferental-dfference equaton of mxed type. In te recent studes conducted by Kadalbajoo and Sarma (004, 008), Kadalbajoo and Rames (007) and Kadalbajoo and Kumar (008, 010), te terms negatve or left sft and postve or rgt sft ave been used for delay and advance respectvely. Te dfferental-dfference equaton plays an mportant role n te matematcal modelng of varous practcal penomena n te boscences and control teory. Any system nvolvng a feedback control wll almost always nvolve tme delays. Tese arse because a fnte tme s requred to sense nformaton and ten react to t. For a detaled dscusson on dfferentaldfference equaton, one may refer to Bellen and Zennaro (003), Drver (1977), Bellman and Cooke (1963) books and g level monograps. In El sgolt s (1964), smlar boundary value problems wt solutons tat exbt rapd oscllatons are studed. Kadalbajoo and Sarma (004, 008), Kadalbajoo and Rames (007) and Kadalbajoo and Kumar (008, 010) ntated an extensve numercal work for solvng sngularly perturbed delay dfferental equatons based on fnte dfference sceme, ftted mes and B-splne tecnque, pecewse unform mes. It s well known tat te classcal metods fal to provde relable numercal results for suc problems (n te sense tat te parameter and te mes sze cannot vary ndependently). Lange and Mura (1985, 1994) gave asymptotc approaces n te study of class of boundary value problems for lnear second order dfferental dfference equatons n wc te gest order dervatve s multpled by small parameter. Tey ave also dscussed te effect of small sfts on te oscllatory soluton of te problem. In ts paper, we presented a ftted approac to solve sngularly perturbed dfferental dfference equatons of second order wt boundary at end (left or rgt) of te nterval. In ts approac, te terms contanng negatve and postve sfts are approxmated usng Taylor seres expanson and te sngularly perturbed dfferental dfference equaton s modfed get sngularly perturbed dfferental equaton. A fttng parameter n te coeffcent of te gest order dervatve of te new equaton s ntroduced and determned ts value from te teory of sngular perturbaton. Fnally, we obtaned a tree term recurrence relaton wc s solved usng Tomas Algortm. Te applcablty of te metod s tested by consderng sx lnear problems (tree for left layer and tree for rgt layer).. Descrpton of te Metod To descrbe te metod, we frst consder a lnear sngularly perturbed dfferental dfference two-pont boundary value problem of te form: y( x) pxy ( ) ( x) qxyx ( ) ( ) rxyx ( ) ( ) sxyx ( ) ( ) f( x), 0 x 1. (1)

3 30 Awoke Andarge and Y.N. Reddy Under te nterval and boundary condtons and yx () (), x on x 0, (a) yx ( ) ( x), on 1 x1, (b) were, px (),(),(),(),(), qx rx sx x () x and f() x are suffcently smoot functons, te sngular perturbaton parameter s a small postve parameter (0<<<1), and 0 o( ),0 o( ) are respectvely, te delay (negatve sft) and te advance (postve sft) parameters. Te soluton of (1) and () exbts, layer at te left end of te nterval f px ( ) qx ( ) sx ( ) 0 and layer at te rgt end of te nterval f px ( ) qx ( ) sx ( ) 0. If px ( ) 0, ten one may ave oscllatory soluton or two layers (one at eac end) dependng upon te cases weter qx ( ) rx ( ) sx ( ) s postve or negatve. Approxmatng yx ( ) and yx ( ) by te Taylor seres expanson, we ave yx ( ) yx ( ) y( x), (3a) yx ( ) yx ( ) y( x). (3b) Substtutng equaton (3) n to equaton (1), we get y( x) a( x) y( x) b( x) y( x) f( x), (4) ax ( ) px ( ) qx ( ) sx ( ), (5) bx ( ) qx ( ) rx ( ) sx ( ). (6) From te teory of sngular perturbatons t s known tat te soluton of (4) and () s of te form (O Malley (1974), pp. -6) x a( x) b( x) dx a(0) a( x) 0 ( ) 0( ) ( (0) 0(0)) ( ) yx y x y e O, (7) ax ( ) were y 0 ( x ) s te soluton of a( x) y 0( x) b( x) y0( x) f( x), y 0 (1) (1). By takng te Taylor s seres expanson for ax ( ) and bx ( ) about te pont 0 and restrctng to ter frst terms, (7) becomes, a(0) b(0) x a(0) a(0) yx ( ) y0( x) ( (0) y0(0)) e O( ). (8) ax ( )

4 AAM: Intern. J., Vol. 8, Issue 1 (June 013) 31 Now, we dvde te nterval [0, 1] nto N equal parts wt constant mes lengt. Let x, x,..., x 1be te mes ponts. Ten we ave x ; 0,1,..., N N From (8) we ave and a (0) b(0)) a(0) a(0) y ( ) y0( ) ( (0) y0(0)) e, (9) a ( ) a (0) b(0) a(0) lm y ( ) y(0) ( (0) y(0)) e,.1. Dervaton of te Specal Second Order Sceme for (4) Consder a typcal pvotal pont n te mes, at x x wrtten for y, y and y :. (10) g. Te followng expresson can be y g g y x g) E y( x ), (11a) ( y g Dy g y D g y g, (11b). (11c) Te sft operator D E e (11d) can be related to te central dfference operators, by usng te followng expressons D 5..., 6 30 (11e) D 6..., 1 90 (11f) D..., (11g) D , (11) 6 were, and denote te usual central dfference operators and E and D denote te sft (dsplacement) and te dfferental operators, respectvely. By substtutng (11d)-(11) nto (11a)-(11c), we get

5 3 Awoke Andarge and Y.N. Reddy g 1 3 g ( g 1) 4 yg [1 g g( g 1)...)] y, (1) (3g 1) 3 y g [ g g(g 1)...] y, (13) g 1 4 y g [ g g(g 3)...] y. (14) 1 6 By substtutng equatons (1-14) wt g 1/ nto equaton (4) we get: a 3y 6y - y ( - ) ( - ) ( ), 8 1,,..., N -1 1/ 1-1 y 1 y y-1 y 1 y b 1/ f 1/ (15) For furter dscusson on te specal second order sceme (one can see ()). Now, we ntroduce a fttng factor () n te above sceme (15) ( ) a 1/ 3y 1 6y - y-1 ( y 1- y y-1) ( y 1- y) b 1/( ) f 1/, 8. (16) 1,,..., N -1 Te fttng factor () s to be determned n suc a way tat te soluton of (16) converges unformly to te soluton of (1)-(). Multplyng (16) by and takng te lmt as, 0, we get lm y ( ) y ( ) y ( ) a ( /) y ( ) y ( ) 0 0. (17) By substtutng (10) n (17) and smplfyng, we get te constant fttng factor a (0) b(0) ( ) a(0) a(0) [1 e ] 4 a (0) b(0) [sn(( ) / )] a(0). (18) Te equvalent tree-term recurrence relaton of equaton (16) s gven by: Ey - Fy Gy H, 1,,..., N-1, (19) -1 1 were b 1/ a 1/ 6b 1/ a 1/ 3b 1/ E, F,, G H f 1/

6 AAM: Intern. J., Vol. 8, Issue 1 (June 013) 33 Ts gves us te tr dagonal system wc can be solved easly by Tomas Algortm... Tomas Algortm A bref dscusson on solvng te tree term recurrence relaton usng Tomas Algortm, wc also called Dscrete Invarant Imbeddng (Bellman and Cooke (1963)), s presented as follows: Consder te sceme gven n (19).e., Ey -1 - Fy Gy 1 H, 1,,..., N 1 subject to te boundary condtons We set y 0 y(0), y y(1). (0a) N y Wy 1 T, N1, N,...,,1, (0b) were, W = W(x ) and T = T(x ) wc are to be determned. From (0b), we ave y1. (0c) W 1y T 1 By substtutng (0c) n (19), we get y G ET -1 - H y1. (0d) F -EW -1 F -EW -1 By comparng (0d) and (0b), we get te recurrence relatons G W, (0e) F - EW -1 and ET 1 H T. (0f) F EW 1 To solve tese recurrence relatons for = 0, 1,, N 1, we need te ntal condtons for W 0 and T 0. For ts we take y0 W0 y1 T0. We coose W 0 = 0 so tat te value of T 0. Wt tese ntal values, we compute W and T for = 0, 1,, N 1, from (0e) and (0f) n forward process, and ten obtan y n te backward process from (0b) and (0a). Te condtons for te dscrete nvarant embeddng algortm to be stable are (Andarge and Reddy (007) and Bellman and Cooke (1963)):

7 34 Awoke Andarge and Y.N. Reddy E 0, F 0, F E G and E G. (0g) In ts metod, f te assumptons px ( ) qx ( ) sx ( ) 0, qx ( ) rx ( ) sx ( ) 0 and 0 old, one can easly sow tat te condtons gven n (16g) old and, tus, te nvarant mbeddng algortm are stable. 3. Rgt Layer Problems For problems wt layer at te rgt end of te nterval, from te teory of sngular perturbatons t s known tat te soluton of (4) and () s of te form (O Malley (1974)) x a( x) b( x) dx a(1) a( x) 1 ( ) 0( ) ( (1) 0(1)) ( ) yx y x y e O, (1) ax ( ) were y ( x) s te soluton of a( x) y 0 0( x) b( x) y0( x) f ( x), y 0 (0) (0). By applyng Taylor s seres expanson on a(x) and b (x) about te pont 1 and restrctng to ter frst terms, (1) becomes, 0 0 a(1) b(1) - (1- x) a(1) yx ( ) y( x) ( (1)- y(1)) e O( ). () Now, we dvde te nterval [0, 1] nto N equal parts wt constant mes lengt. Let x, x,..., x 1be te mes ponts. Ten, we ave x ; 0,1,..., N. From () we ave N 0 0 a(1) b(1) - (1- ) a(1) y ( ) y( ) ( (1)- y(1)) e O( ), (3) and a (1) b(1) 1 a(1) lm y ( ) y(0) ( (1) y(1)) e,. (4) By substtutng equatons (1)-(14) wt g = -1/ nto equaton (4) and ntroducng te fttng factor (), we get: a-1/ -y 1 6y 3y-1 ( y 1- y y-1) ( y - y-1) b-1/( ) f-1/, 8. (5) 1,,..., N -1 Multplyng (5) by and takng te lmt as 0, we get

8 AAM: Intern. J., Vol. 8, Issue 1 (June 013) 35 ( ) lm y( )- y( ) y( - ) a( - /) y( )- y(( -1) ) 0 0. (6) Usng (4) n (6) and smplfyng, we get a(0) 4 a (1) b(1) ( ) a(1) [ e 1] a(1) b(1) [sn(( ) )] a(1). (7) An equvalent tree-term recurrence relaton for equaton (5) s: Ey - Fy Gy H, 1,,..., N 1, (8) -1 1 were a 1/ 3b 1/ a 1/ 6b 1/ b 1/ E -, F - -, -, G H f 1/ Numercal Examples To demonstrate te applcablty of te metod, we consdered sx lnear problems (tree wt left layer and tree wt rgt layer). We presented te tables of te numercal results along wt te exact soluton. Now let us consder te sngularly perturbed dfferental dfference equaton y( x) p( x) y( x) q x y( x) r x y x s x y x f( x), x(0,1), subject to te nterval and boundary condtons yx ( ) x, -x0; yx ( ) x,1x1. Te exact soluton of suc boundary value problems avng constant coeffcents s gven by: y f 1 exp 1 exp, c x c m x c m x

9 36 Awoke Andarge and Y.N. Reddy c qrs, pqs pqs 4c m1, pqs pqs 4c m, f c m f c c1, exp exp m1 expmc exp 1 m expm c f c m f c c, y(0), y(1) exp 1 Example 1: Consder te sngularly perturbed dfferental dfference equaton wt layer at te left end y( x) y( x) y( x ) 3 y( x) 0, and yx ( ) 1, x0, yx ( ) 1, 1 x1. Example : Consder te sngularly perturbed dfferental dfference equaton wt layer at te left end y( x) y( x) 3 yx ( ) yx ( ) 0, and yx ( ) 1, x0, yx ( ) 1, 1 x1. Example 3: Consder te sngularly perturbed dfferental dfference equaton wt layer at te left end y( x) y( x) yx ( ) 5 yx ( ) yx ( ) 0, and yx ( ) 1, x0, yx ( ) 1, 1 x1. Example 4: Consder te sngularly perturbed dfferental dfference equaton wt rgt layer y( x) y( x) yx ( ) yx ( ) 0, and yx ( ) 1, x0, yx ( ) 1, 1 x1. Example 5: Consder te sngularly perturbed dfferental dfference equaton wt rgt layer y( x) y( x) yx ( ) yx ( ) 0, and yx ( ) 1, x0, yx ( ) 1, 1 x1.

10 AAM: Intern. J., Vol. 8, Issue 1 (June 013) 37 Example 6: Consder te sngularly perturbed dfferental dfference equaton wt rgt layer y( x) y( x) yx ( ) yx ( ) yx ( ) 0, and yx ( ) 1, x0, yx ( ) 1, 1 x1. 5. Dscusson and Conclusons We presented a ftted approac to solve sngularly perturbed dfferental equatons of second order wt boundary at one (left or rgt) end of te nterval. In ts approac, te sngularly perturbed dfferental dfference equaton s modfed to a sngularly perturbed dfferental equaton by approxmatng te term contanng small sfts (negatve and postve) usng Taylor seres expanson. In te new sngularly perturbed problem, we ntroduced a fttng parameter and determned ts value usng te teory of sngular Perturbaton. Fnally, we get a tree term recurrence relaton wc s solved usng Tomas algortm. Many metods ave been presented producng good approxmaton n te outer regon of te sngularly perturbed problems. Here, to test te applcablty of ts metod, we consdered sx lnear problems (tree for left layer and tree for rgt layer). We presented tables of values and te pont wse error for meses n te nner regon of te problems by takng dfferent values of te perturbaton parameter, te delay parameter and te advance parameter. Te results demonstrate tat te present metod produced good approxmaton to te exact soluton. Table 1. (a) Absolute Maxmum Error for Example 1 wt n=100, =0.01, =0.5* δ =0.00 δ =0.005 δ =0.009 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00

11 38 Awoke Andarge and Y.N. Reddy Table 1. (b) Absolute Maxmum Error for Example 1 wt n=100, =0.005, 0.1* δ =0.000 δ = δ = x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Table. (a) Absolute Maxmum Error for Example wt n=100, =0.01, δ=0.5*ε =0.00 =0.005 =0.009 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Table. (b) Absolute Maxmum Error for Example wt n=100, =0.005, δ=0.1*ε =0.000 = = x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00

12 AAM: Intern. J., Vol. 8, Issue 1 (June 013) 39 Table 3. (a) Absolute Maxmum Error for Example 3 wt n=100, =0.01 δ =0.000, =0.009 δ =0.005, =0.005 δ =0.009, =0.000 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-16 Table 3. (b) Absolute Maxmum Error for Example 3 wt n=100, =0.005 δ =0.000, = δ =0.0005, = δ =0.0009, =0.000 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Table 4. (a) Absolute Maxmum Error for Example 4 wt n=100, =0.01,δ=0.1*ε,=0.5* δ =0.00 δ =0.005 δ =0.009 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00

13 330 Awoke Andarge and Y.N. Reddy Table 4. (b) Absolute Maxmum Error for Example 4 wt n=100, =0.005,δ=0.1*ε,=0.1* δ =0.000 δ = δ = x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-16 Table 5. (a) Absolute Maxmum Error for Example 5 wt n=100, =0.01,δ=0.1*ε,δ=0.5* =0.00 =0.005 =0.009 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Table 5. (b) Absolute Maxmum Error for Example 4 wt n=100, =0.005,δ=0.1*ε, δ =0.1* =0.000 = = x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00

14 AAM: Intern. J., Vol. 8, Issue 1 (June 013) 331 Table 6. (a) Absolute Maxmum Error for Example 5 wt n=100, =0.01 δ =0.000, =0.009 δ =0.005, =0.005 δ =0.009, =0.000 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 Table 6. (b) Absolute Maxmum Error for Example 4 wt n=100, =0.005,δ=0.1*ε,=0.1* δ =0.000, = δ =0.0005, = δ =0.0009, =0.000 x() y() Exact Error y() Exact Error y() Exact Error E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+00 REFERENCES Andarge, A., Reddy, Y. N. (007). An exponentally ftted specal second-order fnte dfference metod for solvng sngular perturbaton problems, Appled Matematcs and Computaton Vol. 190, pp Bellen, A., Zennaro, M. (003). Numercal Metods for Delay Dfferental Equatons, Oxford Unversty Press, Oxford. Bellman, R. E., Cooke, K. L. (1963). Dfferental-Dfference Equatons, Academy Press, New York. Drver, R. D. (1977). Ordnary and Delay Dfferental Equatons, Sprnger-Verlag, New York. El sgol ts, L. E. (1964). Qualtatve Metods n Matematcal Ana-lyses, Translatons of Matematcal Monograps 1, Amercan matematcal socety, Provdence, RI. Kadalbajoo, M. K., Sarma, K. K. (004). Numercal analyss of sngularly perturbed delay dfferental equatons wt layer beavor, Appled Matematcs and Computaton Vol. 157, pp Kadalbajoo, M. K., Rames, V.P. (007). Hybrd metod for numercal soluton of sngularly perturbed delay dfferental equatons, Appled Matematcs and Computaton Vol. 187, pp

15 33 Awoke Andarge and Y.N. Reddy Kadalbajoo, M. K., Sarma, K. K. (008). A numercal metod based on fnte dfference for boundary value problems for sngularly perturbed delay dfferental equatons, Appled Matematcs and Computaton Vol. 197, pp Kadalbajoo, M. K., Kumar, D. (008). Ftted mes B-splne collocaton metod for sngularly perturbed dfferental dfference equatons wt small delay, Appled Matematcs and Computaton, Vol. 04, pp Kadalbajoo, M. K., Kumar, D. (010). A computatonal metod for sngularly perturbed nonlnear dfferental-dfference equatons wt small sft, Appled Matematcal Modelng Vol. 34, pp Lange, C. G., Mura, R. M. (1994). Sngular perturbaton analyss of boundary value problems for dfferental dfference equatons, V. Small sfts wt layer beavor, SIAM J. Appl. Mat., Vol. 54, pp Lange, C.G., Mura, R.M. (1994). Sngular Perturbaton Analyss of Boundary Value Problems for dfferental dfference equatons, (VI), Small sfts wt Rapd Oscllatons, SIAM J. Appl. Mat., Vol. 54, pp Lange, C.G., Mura, R.M. (1985). Sngular perturbaton analyss of boundary value problems for dfferental dfference equatons, SIAM Journal of Appl. Mat., Vol.45, pp O Malley, R. E. (1974). Introducton to Sngular Perturbatons, Academc Press, New York. Prasad, H. S., Reddy, Y. N. (01). Numercal Soluton of Sngularly Perturbed Dfferental- Dfference Equatons wt Small Sfts of Mxed Type by Dfferental Quadrature Metod, Amercan Journal of Computatonal and Appled Matematcs 01, Vol., No.1, pp Rao, R. N., Cakravarty, P. P. (011). A Fourt Order Fnte Dfference Metod for Sngularly Perturbed Dfferental-Dfference Equatons, Amercan Journal of Computatonal and Appled Matematcs, Vol. 1, No. 1, pp

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information

Numerical Solution of Singular Perturbation Problems Via Deviating Argument and Exponential Fitting

Numerical Solution of Singular Perturbation Problems Via Deviating Argument and Exponential Fitting Amercan Journal of Computatonal and Appled Matematcs 0, (): 49-54 DOI: 0.593/j.ajcam.000.09 umercal Soluton of Sngular Perturbaton Problems Va Devatng Argument and Eponental Fttng GBSL. Soujanya, Y.. Reddy,

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

A Spline based computational simulations for solving selfadjoint singularly perturbed two-point boundary value problems

A Spline based computational simulations for solving selfadjoint singularly perturbed two-point boundary value problems ISSN 746-769 England UK Journal of Informaton and Computng Scence Vol. 7 No. 4 pp. 33-34 A Splne based computatonal smulatons for solvng selfadjont sngularly perturbed two-pont boundary value problems

More information

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline IOSR Journal of Matematcs (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 14, Issue 6 Ver. I (Nov - Dec 018), PP 6-30 www.osrournals.org Numercal Smulaton of One-Dmensonal Wave Equaton by Non-Polynomal

More information

Solution of Singularly Perturbed Differential Difference Equations Using Higher Order Finite Differences

Solution of Singularly Perturbed Differential Difference Equations Using Higher Order Finite Differences Amercan Journal of Numercal Analyss, 05, Vol. 3, No., 8-7 Avalable onlne at http://pubs.scepub.com/ajna/3// Scence and Educaton Publshng DOI:0.69/ajna-3-- Soluton of Sngularly Perturbed Dfferental Dfference

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Maejo International Journal of Science and Technology

Maejo International Journal of Science and Technology Maejo Int. J. Sc. Technol. () - Full Paper Maejo Internatonal Journal of Scence and Technology ISSN - Avalable onlne at www.mjst.mju.ac.th Fourth-order method for sngularly perturbed sngular boundary value

More information

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL TR/9 February 980 End Condtons for Interpolatory Quntc Splnes by G. H. BEHFOROOZ* & N. PAPAMICHAEL *Present address: Dept of Matematcs Unversty of Tabrz Tabrz Iran. W9609 A B S T R A C T Accurate end condtons

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Initial-value Technique For Singularly Perturbed Two Point Boundary Value Problems Via Cubic Spline

Initial-value Technique For Singularly Perturbed Two Point Boundary Value Problems Via Cubic Spline Unversty of Central Florda Electronc Teses and Dssertatons Masters Tess (Open Access) Intal-value Tecnque For Sngularly Perturbed Two Pont Boundary Value Problems Va Cubc Splne 010 Lus G. Negron Unversty

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions

1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions Lakshm Sreesha Ch. Non Standard Fnte Dfference Method for Sngularly Perturbed Sngular wo Pont Boundary Value Problem usng Non Polynomal Splne LAKSHMI SIREESHA CH Department of Mathematcs Unversty College

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

A New Recursive Method for Solving State Equations Using Taylor Series

A New Recursive Method for Solving State Equations Using Taylor Series I J E E E C Internatonal Journal of Electrcal, Electroncs ISSN No. (Onlne) : 77-66 and Computer Engneerng 1(): -7(01) Specal Edton for Best Papers of Mcael Faraday IET Inda Summt-01, MFIIS-1 A New Recursve

More information

Lecture 2: Numerical Methods for Differentiations and Integrations

Lecture 2: Numerical Methods for Differentiations and Integrations Numercal Smulaton of Space Plasmas (I [AP-4036] Lecture 2 by Lng-Hsao Lyu March, 2018 Lecture 2: Numercal Methods for Dfferentatons and Integratons As we have dscussed n Lecture 1 that numercal smulaton

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation Nonl. Analyss and Dfferental Equatons, ol., 4, no., 5 - HIKARI Ltd, www.m-har.com http://dx.do.org/.988/nade.4.456 Asymptotcs of the Soluton of a Boundary alue Problem for One-Characterstc Dfferental Equaton

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Pathan Mahabub Basha *, Vembu Shanthi

Pathan Mahabub Basha *, Vembu Shanthi Amercan Journal of umercal Analyss 5 Vol 3 o 39-48 Avalable onlne at ttp://pubsscepubcom/ajna/3// Scence Educaton Publsng DOI:69/ajna-3-- A Unformly Convergent Sceme for A System of wo Coupled Sngularly

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

A Discrete Approach to Continuous Second-Order Boundary Value Problems via Monotone Iterative Techniques

A Discrete Approach to Continuous Second-Order Boundary Value Problems via Monotone Iterative Techniques Internatonal Journal of Dfference Equatons ISSN 0973-6069, Volume 12, Number 1, pp. 145 160 2017) ttp://campus.mst.edu/jde A Dscrete Approac to Contnuous Second-Order Boundary Value Problems va Monotone

More information

TR/28. OCTOBER CUBIC SPLINE INTERPOLATION OF HARMONIC FUNCTIONS BY N. PAPAMICHAEL and J.R. WHITEMAN.

TR/28. OCTOBER CUBIC SPLINE INTERPOLATION OF HARMONIC FUNCTIONS BY N. PAPAMICHAEL and J.R. WHITEMAN. TR/8. OCTOBER 97. CUBIC SPLINE INTERPOLATION OF HARMONIC FUNCTIONS BY N. PAPAMICHAEL and J.R. WHITEMAN. W960748 ABSTRACT It s sown tat for te two dmensonal Laplace equaton a unvarate cubc splne approxmaton

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling Open Journal of Statstcs, 0,, 300-304 ttp://dx.do.org/0.436/ojs.0.3036 Publsed Onlne July 0 (ttp://www.scrp.org/journal/ojs) Multvarate Rato Estmator of te Populaton Total under Stratfed Random Samplng

More information

THE STURM-LIOUVILLE EIGENVALUE PROBLEM - A NUMERICAL SOLUTION USING THE CONTROL VOLUME METHOD

THE STURM-LIOUVILLE EIGENVALUE PROBLEM - A NUMERICAL SOLUTION USING THE CONTROL VOLUME METHOD Journal of Appled Mathematcs and Computatonal Mechancs 06, 5(), 7-36 www.amcm.pcz.pl p-iss 99-9965 DOI: 0.75/jamcm.06..4 e-iss 353-0588 THE STURM-LIOUVILLE EIGEVALUE PROBLEM - A UMERICAL SOLUTIO USIG THE

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

On a nonlinear compactness lemma in L p (0, T ; B).

On a nonlinear compactness lemma in L p (0, T ; B). On a nonlnear compactness lemma n L p (, T ; B). Emmanuel Matre Laboratore de Matématques et Applcatons Unversté de Haute-Alsace 4, rue des Frères Lumère 6893 Mulouse E.Matre@ua.fr 3t February 22 Abstract

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

5 The Laplace Equation in a convex polygon

5 The Laplace Equation in a convex polygon 5 Te Laplace Equaton n a convex polygon Te most mportant ellptc PDEs are te Laplace, te modfed Helmoltz and te Helmoltz equatons. Te Laplace equaton s u xx + u yy =. (5.) Te real and magnary parts of an

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

TR/01/89 February An O(h 6 ) cubic spline interpolating procedure for harmonic functions. N. Papamichael and Maria Joana Soares*

TR/01/89 February An O(h 6 ) cubic spline interpolating procedure for harmonic functions. N. Papamichael and Maria Joana Soares* TR/0/89 February 989 An O( 6 cubc splne nterpolatng procedure for armonc functons N. Papamcael Mara Joana Soares* *Área de Matematca, Unversdade do Mno, 4700 Braga, Portugal. z 6393 ABSTRACT An O( 6 metod

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Multigrid Methods and Applications in CFD

Multigrid Methods and Applications in CFD Multgrd Metods and Applcatons n CFD Mcael Wurst 0 May 009 Contents Introducton Typcal desgn of CFD solvers 3 Basc metods and ter propertes for solvng lnear systems of equatons 4 Geometrc Multgrd 3 5 Algebrac

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. 9 No. 3 4 pp. 69-8 Solvng Fractonal Nonlnear Fredholm Integro-dfferental Equatons va Hybrd of Ratonalzed Haar Functons Yadollah Ordokhan

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LIX, 013, f.1 DOI: 10.478/v10157-01-00-y ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION BY ION

More information

Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two World Academy of Scence Engneerng and echnology Internatonal Journal of Mathematcal and omputatonal Scences Vol: No:0 00 ubc rgonometrc B-Splne Appled to Lnear wo-pont Boundary Value Problems of Order

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function A Local Varatonal Problem of Second Order for a Class of Optmal Control Problems wth Nonsmooth Objectve Functon Alexander P. Afanasev Insttute for Informaton Transmsson Problems, Russan Academy of Scences,

More information

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method Appled Mathematcs, 6, 7, 5-4 Publshed Onlne Jul 6 n ScRes. http://www.scrp.org/journal/am http://.do.org/.436/am.6.77 umercal Solutons of a Generalzed th Order Boundar Value Problems Usng Power Seres Approxmaton

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Group Analysis of Ordinary Differential Equations of the Order n>2

Group Analysis of Ordinary Differential Equations of the Order n>2 Symmetry n Nonlnear Mathematcal Physcs 997, V., 64 7. Group Analyss of Ordnary Dfferental Equatons of the Order n> L.M. BERKOVICH and S.Y. POPOV Samara State Unversty, 4430, Samara, Russa E-mal: berk@nfo.ssu.samara.ru

More information

The finite element method explicit scheme for a solution of one problem of surface and ground water combined movement

The finite element method explicit scheme for a solution of one problem of surface and ground water combined movement IOP Conference Seres: Materals Scence and Engneerng PAPER OPEN ACCESS e fnte element metod explct sceme for a soluton of one problem of surface and ground water combned movement o cte ts artcle: L L Glazyrna

More information

Consistency & Convergence

Consistency & Convergence /9/007 CHE 374 Computatonal Methods n Engneerng Ordnary Dfferental Equatons Consstency, Convergence, Stablty, Stffness and Adaptve and Implct Methods ODE s n MATLAB, etc Consstency & Convergence Consstency

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

A Computational Method for Solving Two Point Boundary Value Problems of Order Four

A Computational Method for Solving Two Point Boundary Value Problems of Order Four Yoge Gupta et al, Int. J. Comp. Tec. Appl., Vol (5), - ISSN:9-09 A Computatonal Metod for Solvng Two Pont Boundary Value Problem of Order Four Yoge Gupta Department of Matematc Unted College of Engg and

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Numerical Solution of One-Dimensional Heat and Wave Equation by Non-Polynomial Quintic Spline

Numerical Solution of One-Dimensional Heat and Wave Equation by Non-Polynomial Quintic Spline Internatonal Journal of Mathematcal Modellng & Computatons Vol. 05, No. 04, Fall 2015, 291-305 Numercal Soluton of One-Dmensonal Heat and Wave Equaton by Non-Polynomal Quntc Splne J. Rashdna a, and M.

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Haar wavelet collocation method to solve problems arising in induction motor

Haar wavelet collocation method to solve problems arising in induction motor ISSN 746-7659, England, UK Journal of Informaton and Computng Scence Vol., No., 07, pp.096-06 Haar wavelet collocaton method to solve problems arsng n nducton motor A. Padmanabha Reddy *, C. Sateesha,

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

A Functionally Fitted 3-stage ESDIRK Method Kazufumi Ozawa Akita Prefectural University Honjo Akita , Japan

A Functionally Fitted 3-stage ESDIRK Method Kazufumi Ozawa Akita Prefectural University Honjo Akita , Japan A Functonally Ftted 3-stage ESDIRK Method Kazufum Ozawa Akta Prefectural Unversty Hono Akta 05-0055, Japan ozawa@akta-pu.ac.p Abstract A specal class of Runge-Kutta (-Nyström) methods called functonally

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Research Article Numerov s Method for a Class of Nonlinear Multipoint Boundary Value Problems

Research Article Numerov s Method for a Class of Nonlinear Multipoint Boundary Value Problems Hndaw Publsng Corporaton Matematcal Problems n Engneerng Volume 2012, Artcle ID 316852, 29 pages do:10.1155/2012/316852 Researc Artcle Numerov s Metod for a Class of Nonlnear Multpont Boundary Value Problems

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

Adaptive Kernel Estimation of the Conditional Quantiles

Adaptive Kernel Estimation of the Conditional Quantiles Internatonal Journal of Statstcs and Probablty; Vol. 5, No. ; 206 ISSN 927-7032 E-ISSN 927-7040 Publsed by Canadan Center of Scence and Educaton Adaptve Kernel Estmaton of te Condtonal Quantles Rad B.

More information

NON STANDARD FITTED FINITE DIFFERENCE METHOD FOR SINGULAR PERTURBATION PROBLEMS USING CUBIC SPLINE

NON STANDARD FITTED FINITE DIFFERENCE METHOD FOR SINGULAR PERTURBATION PROBLEMS USING CUBIC SPLINE Global and Stocastic Analysis Vol. 4 No. 1, January 2017, 1-10 NON STANDARD FITTED FINITE DIFFERENCE METHOD FOR SINGULAR PERTURBATION PROBLEMS USING CUBIC SPLINE K. PHANEENDRA AND E. SIVA PRASAD Abstract.

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Another converse of Jensen s inequality

Another converse of Jensen s inequality Another converse of Jensen s nequalty Slavko Smc Abstract. We gve the best possble global bounds for a form of dscrete Jensen s nequalty. By some examples ts frutfulness s shown. 1. Introducton Throughout

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematcs wth Applcatons 56 (2008 3204 3220 Contents lsts avalable at ScenceDrect Computers and Mathematcs wth Applcatons journal homepage: www.elsever.com/locate/camwa An nnovatve egenvalue

More information

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013) equation. E. M. E. Zayed and S. A.

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013) equation. E. M. E. Zayed and S. A. Internatonal Conference on Advanced Computer Scence and Electroncs Informaton (ICACSEI ) The two varable (G'/G/G) -expanson method for fndng exact travelng wave solutons of the (+) dmensonal nonlnear potental

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

The Analytical Solution of a System of Nonlinear Differential Equations

The Analytical Solution of a System of Nonlinear Differential Equations Int. Journal of Math. Analyss, Vol. 1, 007, no. 10, 451-46 The Analytcal Soluton of a System of Nonlnear Dfferental Equatons Yunhu L a, Fazhan Geng b and Mnggen Cu b1 a Dept. of Math., Harbn Unversty Harbn,

More information

Problem Set 4: Sketch of Solutions

Problem Set 4: Sketch of Solutions Problem Set 4: Sketc of Solutons Informaton Economcs (Ec 55) George Georgads Due n class or by e-mal to quel@bu.edu at :30, Monday, December 8 Problem. Screenng A monopolst can produce a good n dfferent

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Solving a Class of Nonlinear Delay Integro differential Equations by Using Differential Transformation Method

Solving a Class of Nonlinear Delay Integro differential Equations by Using Differential Transformation Method Appled and Computatonal Matematcs 2016; 5(3): 142149 ttp://www.scencepublsnggroup.com/j/acm do: 10.11648/j.acm.20160503.18 ISSN: 23285605 (Prnt); ISSN: 23285613 (Onlne) Case Report Solvng a Class of Nonlnear

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information