Functions Modeling Change A Preparation for Calculus Third Edition

Size: px
Start display at page:

Download "Functions Modeling Change A Preparation for Calculus Third Edition"

Transcription

1 Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1

2 CHAPTER 6 TRIGONOMETRIC FUNCTIONS SECTION 6.7 INVERSE TRIGONOMETRIC FUNCTIONS

3 Suppose we want to find the solution to: cos t.4 Page 285 Example #1 3

4 Let's graph the following on our calculator: y1 = cos(x) and y2 =.4 Page 285 Example #1 Window Value Xmin -3π/2 Xmax 5π/2 Xscl π/2 Ymin -1 Ymax 1 Yscl.1 4

5 Let's graph the following on our calculator: y1 = cos(x) and y2 = Page 285 Example # x

6 2nd Trace 5 (intersect) Procedure: x = , , , Page 285 Example # x

7 2nd Trace 5 (intersect) Procedure: x = , , , Page 285 Example #1 7

8 cos t.4 Means: "Find an angle whose cosine =.4" Page 285 Example #1 8

9 Alternate Procedure: cos t.4 We will use: "Inverse cosine" cos 1 t Page 285 Example #1 9

10 cos t.4 Output Input t Output cos 1 (.4) Input Page 285 Example #1 10

11 t cos 1 (.4) In radian mode: TI: 2nd cos.4) ENTER gives: 1 cos (.4) Page 286 Example #1 11

12 In other words: 1 cos (.4) Means: cos( ).4 Page 286 Example #1 12

13 In other words: 1 cos (.4) Means: cos( ).4 Page 286 Example #1 BUT... 13

14 This is only 1 solution: 1 cos (.4) Page 286 Example #1 14

15 This is only 1 solution: 1 cos (.4) What about the other solutions? Page 286 Example #1 15

16 This is only 1 solution: 1 cos (.4) Page 286 Example #1 16

17 What about: Page 286 Example #1 17

18 There are other solutions, which we can find using the symmetry of the cosine graph. Since t 1 = 1.159, we see that t 0 = because the cosine function is symmetric about the y-axis. Page 286 Example #1 18

19 In addition, the arch of the cosine graph from π/2 to π/2 is exactly the same shape as the arch from 3π/2 to 5π/2, so Page 286 Example #1 19

20 t2 = 2π = t3 = 2π = Page 286 Example #1 20

21 Use the inverse cosine to estimate when the rabbit population, R, reaches 12,000. R 5000cos t What do we do? Page 286 Example #2 21

22 Use the inverse cosine to estimate when the rabbit population, R, reaches 12, cos t cos t cos t Page 286 Example #2 cos t

23 We want the angle whose cosine is cos t t 6 1 cos (.4) 1 cos (.4) t Page 286 Example #2 23

24 We now finish our calculations: 6 t t t t 6 ( ) Page 286 Example #2 Are we done? 24

25 Summary of Transformations For the sinusoidal functions y acos( B( t h)) k a is the amplitude 2π/ B is the period h is the horizontal shift y = k is the midline B /2π is the frequency; that is, the number of cycles completed in unit time. Page 272 Blue Box 25

26 y acos( B( t h)) k y 5000cos t Page 286 Example #2 a is the amplitude B is the # of cycles in 2π 2π/ B is the period h is the horizontal shift y = k is the midline B /2π is the frequency = the number of cycles completed in unit time 26

27 y acos( B( t h)) k y 5000cos t Page 286 Example #2 a is the amplitude = 5000 B is the # of cycles in 2π π/6 2π/ B is the period = (2π)/(π/6) = 12 h is the horizontal shift = 0 y = k is the midline = B /2π is the frequency = the number of cycles completed in unit time = 1/12 27

28 y 5000cos t = vertical stretch (y=kf(x): k>1) - = reflection across the x axis π/6 = horizontal stretch (y=f(kx): k<1) = vertical shift (k>0: up) Page 286 Example #2 28

29 Let's use our calculator and graph: y1 5000cos t Page 286 Example #2 Window Value Xmin 0 Xmax 24 Xscl 12 Ymin 0 Ymax Yscl

30 Now add: y Page 286 Example #2 Window Value Xmin 0 Xmax 24 Xscl 12 Ymin 0 Ymax Yscl

31 Page 286 Example #2 31

32 Recall: a function can only have 1 output for each input. Page

33 Recall: a function can only have 1 output for each input. Example: sin(0 O ) = 0 sin(180 O ) = 0 This is okay... Page

34 Recall: a function can only have 1 output for each input. Example: sin(0 O ) = 0 sin(0 O ) = 0.5 This is NOT okay... Page

35 This equation: cos t.4 Page 285 Example #1 35

36 yielded many solutions: x = , , , , Page 285 Example # x

37 However, the inverse cosine key on a calculator gives only one of them, namely: 1 cos (.4) Why does the calculator select this particular solution? Page

38 From the graph below, we see that the angles in the interval 0 t π produce all values in the range of cos t once and once only. Page

39 The inverse cosine function inputs values of y between 1 and 1 (all possible values of cos t) and outputs angles between 0 and π. Page

40 We interpret the value of cos 1 (y) as the angle between 0 and π whose cosine is y. Page

41 Because an angle in radians determines an arc of the same measure on a unit circle, the inverse cosine of y is sometimes called the arccosine of y. Page

42 An angle of 1 radian is defined to be the angle, in the counterclockwise direction, at the center of a unit circle which spans an arc of length 1. Page 257 Blue Box 42

43 We summarize: The inverse cosine function, also called the arccosine function, is denoted by cos 1 y or arccos y. t = cos 1 y provided that y = cos t and 0 t π Page 287 Blue Box 43

44 We summarize: The inverse cosine function, also called the arccosine function, is denoted by cos 1 y or arccos y. t = cos 1 y provided that y = cos t and 0 t π In other words, if t = arccos y, then t is the angle between 0 and π whose cosine is y. Page 287 Blue Box 44

45 We summarize: The inverse cosine function, also called the arccosine function, is denoted by cos 1 y or arccos y. t = cos 1 y provided that y = cos t and 0 t π In other words, if t = arccos y, then t is the angle between 0 and π whose cosine is y. The domain of the inverse cosine is 1 y 1 and its range is 0 t π. Page 287 Blue Box 45

46 Evaluate (a) cos 1 (0) (b) arccos(1) (c) cos 1 ( 1) Page 288 Example #3 46

47 (a) cos 1 (0) means the angle between 0 and π whose cosine is 0. Since cos(π/2) = 0, we have cos 1 (0) = π/2. (b) means the angle between 0 and π whose cosine is 1. Since cos(0) = 1, we have arccos(1)=0. (c) cos 1 ( 1) means the angle between 0 and π whose cosine is 1. Since cos(π) = 1, we have cos 1 ( 1) = π. Page 288 Example #3 47

48 Warning! It is important to realize that the notation cos 1 y does not indicate the reciprocal of cos y. In other words, cos 1 y is not the same as (cos y) 1. For example, But 1 cos (0), since cos cos0 1 cos0 1 Page

49 The Inverse Sine and Inverse Tangent Functions The inverse sine function, also called the arcsine function, is denoted by sin 1 y or arcsin y. We define t = sin 1 y provided y = sin t and π/2 t π/2. The domain of the inverse sine is 1 y 1 and the range is π/2 t π/2. Page 289 Blue Box 49

50 The Inverse Sine and Inverse Tangent Functions The inverse tangent function, also called the arctangent function, is denoted by tan 1 y or arctan y. We define t = tan 1 y provided y = tan t and π/2 t π/2. The domain of the inverse tangent is < y < and the range is π/2 < t < π/2. Page 289 Blue Box 50

51 Solving Equations Using Reference Angles Because of the symmetry of the unit circle, the values of sine, cosine, and tangent of angles in the first quadrant can be used to find values of these functions for angles in the other three quadrants. Page

52 Use the values of the sine and cosine of 65 to find the sine and cosine of 65, 245, and 785. Page 290 Example #7 52

53 Use the values of the sine and cosine of 65 to find the sine and cosine of 65. Remember: cos θ = x and sin θ=y Let P = (cos 65, sin 65 ) = (0.422, 0.906) be the point on the unit circle given by the angle 65. Page 290 Example #7 53

54 we see that 65 gives a point labeled Q that is the reflection of P across the x-axis. Page 290 Ex #7 54

55 Thus, the y-coordinate of Q is the negative of the y-coordinate of P, so Q = (0.422, 0.906). Page 290 Ex #7 55

56 O O sin( 65 ) and cos( 65 )=0.422 Page 290 Ex #7 56

57 Use the values of the sine and cosine of 65 to find the sine and cosine of 245. Remember: cos θ = x and sin θ=y We see that 245 = gives point R that is diametrically opposite the point P. Page 290 Example #7 57

58 The coordinates of R are the negatives of the coordinates of P, so R = ( 0.422, 0.906). Page 290 Ex #7 58

59 O O sin(245 ) and cos(245 )= Page 290 Ex #7 59

60 Use the values of the sine and cosine of 65 to find the sine and cosine of 785. Remember: cos θ = x and sin θ=y Since 785 = P = (cos 785, sin 785 ) = (0.422, 0.906) be the point on the unit circle given by the angle 785, which is the same point (P) as 65. Page 290 Example #7 60

61 O O sin(785 ) and cos(785 )=0.422 Page 290 Ex #7 61

62 In this example, we call 65 the reference angle. For an angle θ corresponding to the point P on the unit circle, the reference angle of θ is the angle between the line joining P to the origin and the nearest part of the x- axis. A reference angle is always between 0 and 90 ; that is, between 0 and π/2. Page

63 Page

64 Page

65 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. (b) tan θ = for 0 θ 720. Page 291 Example #8 65

66 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. Step 1: cos 1 (0.422) =? (Use degree mode on your calculator.) Page 291 Example #8 66

67 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. Step 1: cos 1 (0.422) = 65 Page 291 Example #8 67

68 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. Step 1: cos 1 (0.422) = 65 Step 2: in which quadrants is cos +? Page 291 Example #8 68

69 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. Step 1: cos 1 (0.422) = 65 Step 2: in which quadrants is cos +? I, IV Page 291 Example #8 69

70 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. Step 1: cos 1 (0.422) = 65 Step 2: in which quadrants is cos +? I, IV Step 3: what angle in quadrant IV has 65 as a reference angle? Page 291 Example #8 70

71 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. Step 1: cos 1 (0.422) = 65 Step 2: in which quadrants is cos +? I, IV Step 3: what angle in quadrant IV has 65 as a reference angle? IV: = 295 Page 291 Example #8 71

72 Use reference angles to solve the equations: (a) cos θ = for 0 θ 360. Step 1: cos 1 (0.422) = 65 Step 2: in which quadrants is cos +? I, IV Step 3: what angle in quadrant IV has 65 as a reference angle? IV: = 295 Therefore: 65, 295. Page 291 Example #8 72

73 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Page 291 Example #8 73

74 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) =? (Use degree mode on your calculator.) Page 291 Example #8 74

75 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) = 65 Page 291 Example #8 75

76 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) = 65 Step 2: in which quadrants is tan +? Page 291 Example #8 76

77 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) = 65 Step 2: in which quadrants is tan +? I, III Page 291 Example #8 77

78 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) = 65 Step 2: in which quadrants is tan +? I, III Step 3: what angle in quadrant III has 65 as a reference angle? Page 291 Example #8 78

79 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) = 65 Step 2: in which quadrants is tan +? I, III Step 3: what angle in quadrant III has 65 as a reference angle? IV: = 245 Page 291 Example #8 79

80 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) = 65 Step 2: in which quadrants is tan +? I, III Step 3: what angle in quadrant III has 65 as a reference angle? IV: = 245 Therefore: 65,245. Page 291 Example #8 80

81 Use reference angles to solve the equations: (b) tan θ = for 0 θ 720. Step 1: tan 1 (2.145) = 65 Step 2: in which quadrants is tan +? I, III Step 3: what angle in quadrant III has 65 as a reference angle? IV: Therefore: 65, 245, 425, 605. Page 291 Example #8 81

82 End of Section

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 Chapter

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

Chapter 8: Trig Equations and Inverse Trig Functions

Chapter 8: Trig Equations and Inverse Trig Functions Haberman MTH Section I: The Trigonometric Functions Chapter 8: Trig Equations and Inverse Trig Functions EXAMPLE : Solve the equations below: a sin( t) b sin( t) 0 sin a Based on our experience with the

More information

Chapter 7, Continued

Chapter 7, Continued Math 150, Fall 008, c Benjamin Aurispa Chapter 7, Continued 7.3 Double-Angle, Half-Angle, and Product-Sum Formulas Double-Angle Formulas Formula for Sine: Formulas for Cosine: Formula for Tangent: sin

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

Week #6 - Taylor Series, Derivatives and Graphs Section 10.1

Week #6 - Taylor Series, Derivatives and Graphs Section 10.1 Week #6 - Taylor Series, Derivatives and Graphs Section 10.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 005 by John Wiley & Sons, Inc. This material is used by

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

June 9 Math 1113 sec 002 Summer 2014

June 9 Math 1113 sec 002 Summer 2014 June 9 Math 1113 sec 002 Summer 2014 Section 6.5: Inverse Trigonometric Functions Definition: (Inverse Sine) For x in the interval [ 1, 1] the inverse sine of x is denoted by either and is defined by the

More information

Notes on Radian Measure

Notes on Radian Measure MAT 170 Pre-Calculus Notes on Radian Measure Radian Angles Terri L. Miller Spring 009 revised April 17, 009 1. Radian Measure Recall that a unit circle is the circle centered at the origin with a radius

More information

Trigonometric Functions. Section 1.6

Trigonometric Functions. Section 1.6 Trigonometric Functions Section 1.6 Quick Review Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc that ACB cuts from the unit circle. Radian

More information

MATH 150 TOPIC 16 TRIGONOMETRIC EQUATIONS

MATH 150 TOPIC 16 TRIGONOMETRIC EQUATIONS Math 150 T16-Trigonometric Equations Page 1 MATH 150 TOPIC 16 TRIGONOMETRIC EQUATIONS In calculus, you will often have to find the zeros or x-intercepts of a function. That is, you will have to determine

More information

MIDTERM 3 SOLUTIONS (CHAPTER 4) INTRODUCTION TO TRIGONOMETRY; MATH 141 SPRING 2018 KUNIYUKI 150 POINTS TOTAL: 30 FOR PART 1, AND 120 FOR PART 2

MIDTERM 3 SOLUTIONS (CHAPTER 4) INTRODUCTION TO TRIGONOMETRY; MATH 141 SPRING 2018 KUNIYUKI 150 POINTS TOTAL: 30 FOR PART 1, AND 120 FOR PART 2 MIDTERM SOLUTIONS (CHAPTER 4) INTRODUCTION TO TRIGONOMETRY; MATH 4 SPRING 08 KUNIYUKI 50 POINTS TOTAL: 0 FOR PART, AND 0 FOR PART PART : USING SCIENTIFIC CALCULATORS (0 PTS.) ( ) = 0., where 0 θ < 0. Give

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Chapter 5: Double-Angle and Half-Angle Identities

Chapter 5: Double-Angle and Half-Angle Identities Haberman MTH Section II: Trigonometric Identities Chapter 5: Double-Angle and Half-Angle Identities In this chapter we will find identities that will allow us to calculate sin( ) and cos( ) if we know

More information

Section 6.1 Sinusoidal Graphs

Section 6.1 Sinusoidal Graphs Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle We noticed how the x and y values

More information

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/19 MTH 11: Elementary Functions Section 6.6 6.6:Inverse Trigonometric functions /19 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line crosses the graph of a 1

More information

Hello Future Calculus Level One Student,

Hello Future Calculus Level One Student, Hello Future Calculus Level One Student, This assignment must be completed and handed in on the first day of class. This assignment will serve as the main review for a test on this material. The test will

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

Solving Quadratic Trigonometric Equations

Solving Quadratic Trigonometric Equations Solving Quadratic Trigonometric Equations 6.6 SKILL BUILDER Often in mathematics, it is necessar to combine skills and strategies ou have used before to deal with more complicated problems. A quadratic

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Unit 3 Trigonometry Note Package. Name:

Unit 3 Trigonometry Note Package. Name: MAT40S Unit 3 Trigonometry Mr. Morris Lesson Unit 3 Trigonometry Note Package Homework 1: Converting and Arc Extra Practice Sheet 1 Length 2: Unit Circle and Angles Extra Practice Sheet 2 3: Determining

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

Chapter 6: Inverse Trig Functions

Chapter 6: Inverse Trig Functions Haberman MTH Section I: The Trigonometric Functions Chapter 6: Inverse Trig Functions As we studied in MTH, the inverse of a function reverses the roles of the inputs and the outputs (For more information

More information

Chapter 1. Functions 1.3. Trigonometric Functions

Chapter 1. Functions 1.3. Trigonometric Functions 1.3 Trigonometric Functions 1 Chapter 1. Functions 1.3. Trigonometric Functions Definition. The number of radians in the central angle A CB within a circle of radius r is defined as the number of radius

More information

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

( ) ( ) SECTION 1.1, Page ( x 3) 5 = 4( x 5) = 7. x = = = x x+ 0.12(4000 x) = 432

( ) ( ) SECTION 1.1, Page ( x 3) 5 = 4( x 5) = 7. x = = = x x+ 0.12(4000 x) = 432 CHAPTER Functions and Graphs SECTION., Page. x + x + x x x. x + x x x x x. ( x ) ( x ) x 6 x x x x x + x x 7. x + x + x + 6 8 x 8 6 x x. x x 6 x 6 x x x 8 x x 8 + x..x +..6.x. x 6 ( n + ) ( n ) n + n.

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Ch 5 and 6 Exam Review

Ch 5 and 6 Exam Review Ch 5 and 6 Exam Review Note: These are only a sample of the type of exerices that may appear on the exam. Anything covered in class or in homework may appear on the exam. Use the fundamental identities

More information

TRIGONOMETRY OUTCOMES

TRIGONOMETRY OUTCOMES TRIGONOMETRY OUTCOMES C10. Solve problems involving limits of trigonometric functions. C11. Apply derivatives of trigonometric functions. C12. Solve problems involving inverse trigonometric functions.

More information

Unit 7 Trigonometry Project Name Key Project Information

Unit 7 Trigonometry Project Name Key Project Information Unit 7 Trigonometry Project Name Key Project Information What is it? This project will be a series of tasks that you must complete on your own. Specific instructions are given for each task, but all must

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions MTH 11: Elementary Functions F. Patricia Medina Department of Mathematics. Oregon State University Section 6.6 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line

More information

Summer 2017 Review For Students Entering AP Calculus AB/BC

Summer 2017 Review For Students Entering AP Calculus AB/BC Summer 2017 Review For Students Entering AP Calculus AB/BC Holy Name High School AP Calculus Summer Homework 1 A.M.D.G. AP Calculus AB Summer Review Packet Holy Name High School Welcome to AP Calculus

More information

FLEX Mathematics Introduction to Trigonometry. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FLEX Mathematics Introduction to Trigonometry. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FLEX Mathematics Introduction to Trigonometry Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Evaluate the expression. 1) 8 tan 0 + 3 csc 20

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2015 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

AP Calculus AB Summer Assignment. Due Date: First day of school.

AP Calculus AB Summer Assignment. Due Date: First day of school. AP Calculus AB Summer Assignment Name: Due Date: First day of school. The purpose of this assignment is to have you practice the mathematical skills necessary to be successful in Calculus AB. All of the

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

5.1: Graphing Sine and Cosine Functions

5.1: Graphing Sine and Cosine Functions 5.1: Graphing Sine and Cosine Functions Complete the table below ( we used increments of for the values of ) 4 0 sin 4 2 3 4 5 4 3 7 2 4 2 cos 1. Using the table, sketch the graph of y sin for 0 2 2. What

More information

Pre Calc. Trigonometry.

Pre Calc. Trigonometry. 1 Pre Calc Trigonometry 2015 03 24 www.njctl.org 2 Table of Contents Unit Circle Graphing Law of Sines Law of Cosines Pythagorean Identities Angle Sum/Difference Double Angle Half Angle Power Reducing

More information

The function is a periodic function. That means that the functions repeats its values in regular intervals, which we call the period.

The function is a periodic function. That means that the functions repeats its values in regular intervals, which we call the period. Section 5.4 - Inverse Trigonometric Functions The Inverse Sine Function Consider the graph of the sine function f ( x) sin( x). The function is a periodic function. That means that the functions repeats

More information

The choice of origin, axes, and length is completely arbitrary.

The choice of origin, axes, and length is completely arbitrary. Polar Coordinates There are many ways to mark points in the plane or in 3-dim space for purposes of navigation. In the familiar rectangular coordinate system, a point is chosen as the origin and a perpendicular

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f Warm-Up: Solve sinx = 2 for x 0,2π 5 (a) graphically (approximate to three decimal places) y (b) algebraically BY HAND EXACTLY (do NOT approximate except to verify your solutions) x x 0,2π, xscl = π 6,y,,

More information

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities.

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities. Section 7. Addition and Subtraction Identities 47 Section 7. Addition and Subtraction Identities In this section, we begin expanding our repertoire of trigonometric identities. Identities The sum and difference

More information

UNIT 2 ALGEBRA II TEMPLATE CREATED BY REGION 1 ESA UNIT 2

UNIT 2 ALGEBRA II TEMPLATE CREATED BY REGION 1 ESA UNIT 2 UNIT 2 ALGEBRA II TEMPLATE CREATED BY REGION 1 ESA UNIT 2 Algebra II Unit 2 Overview: Trigonometric Functions Building on their previous work with functions, and on their work with trigonometric ratios

More information

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives Pre-Calculus MATH 119 Fall 2013 Learning Objectives Section 1.1 1. Use the Distance Formula 2. Use the Midpoint Formula 4. Graph Equations Using a Graphing Utility 5. Use a Graphing Utility to Create Tables

More information

x 2 x 2 4 x 2 x + 4 4x + 8 3x (4 x) x 2

x 2 x 2 4 x 2 x + 4 4x + 8 3x (4 x) x 2 MTH 111 - Spring 015 Exam Review (Solutions) Exam (Chafee Hall 71): April rd, 6:00-7:0 Name: 1. Solve the rational inequality x +. State your solution in interval notation. x DO NOT simply multiply both

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3 Warm Up Simplify. 1) 99 = 3 11 2) 125 + 2 20 = 5 5 + 4 5 = 9 5 3) 2 + 7 2 + 3 7 = 4 + 6 7 + 2 7 + 21 4) 4 42 3 28 = 4 3 3 2 = 4 6 6 = 25 + 8 7 = 2 6 3 Test Results Average Median 5 th : 76.5 78 7 th :

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

AP Calculus AB Summer Math Packet

AP Calculus AB Summer Math Packet Name Date Section AP Calculus AB Summer Math Packet This assignment is to be done at you leisure during the summer. It is meant to help you practice mathematical skills necessary to be successful in Calculus

More information

A repeated root is a root that occurs more than once in a polynomial function.

A repeated root is a root that occurs more than once in a polynomial function. Unit 2A, Lesson 3.3 Finding Zeros Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial function. This information allows

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400 2 6A: Special Trig Limits Math 400 This section focuses entirely on the its of 2 specific trigonometric functions. The use of Theorem and the indeterminate cases of Theorem are all considered. a The it

More information

Math 107 Study Guide for Chapters 5 and Sections 6.1, 6.2 & 6.5

Math 107 Study Guide for Chapters 5 and Sections 6.1, 6.2 & 6.5 Math 07 Study Guide for Chapters 5 and Sections.,. &.5 PRACTICE EXERCISES. Answer the following. 5 Sketch and label the angle θ = in the coordinate plane. Determine the quadrant and reference angle for

More information

Point Transformation. a ) + k. *see t-chart set-up* Given: + 1. T(x,y) = (x, -1y 4) T(x,y) = (3x + π, -2y + 1) Given: a = 1 h = 0 b = -1 k = -4 Thus,

Point Transformation. a ) + k. *see t-chart set-up* Given: + 1. T(x,y) = (x, -1y 4) T(x,y) = (3x + π, -2y + 1) Given: a = 1 h = 0 b = -1 k = -4 Thus, Point Transformation T(x,y) = (ax + h, by + k) Given: y = cos x 4 y = bcos( x h a ) + k a = 1 h = 0 b = -1 k = -4 Thus, T(x,y) = (ax + h, by + k) T(x,y) = (1x + 0, -1y 4) T(x,y) = (x, -1y 4) Given: y =

More information

CHAPTER 5: Analytic Trigonometry

CHAPTER 5: Analytic Trigonometry ) (Answers for Chapter 5: Analytic Trigonometry) A.5. CHAPTER 5: Analytic Trigonometry SECTION 5.: FUNDAMENTAL TRIGONOMETRIC IDENTITIES Left Side Right Side Type of Identity (ID) csc( x) sin x Reciprocal

More information

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 Section

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

Exam 3: December 3 rd 7:00-8:30

Exam 3: December 3 rd 7:00-8:30 MTH 111 - Fall 01 Exam Review (Solutions) Exam : December rd 7:00-8:0 Name: This exam review contains questions similar to those you should expect to see on Exam. The questions included in this review,

More information

Unit #3 - Differentiability, Computing Derivatives, Trig Review

Unit #3 - Differentiability, Computing Derivatives, Trig Review Unit #3 - Differentiability, Computing Derivatives, Trig Review Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Derivative Interpretation and Existence 1. The cost, C (in

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts Introduction Math 11: Calculus 1 - Fall 01/01 Review of Precalculus Concepts Welcome to Math 11 - Calculus 1, Fall 01/01! This problems in this packet are designed to help you review the topics from Algebra

More information

At right: Closeups of the graphs of. with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1

At right: Closeups of the graphs of. with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1 Know the graphs of f(x) = x n for n = odd, positive: 1, 3, 5, The Domain is All Real Numbers, (, ), or R. The Range is All Real Numbers, (, ), or R. It is an Odd function because f( x) = f(x). It is symmetric

More information

Week #16 - Differential Equations (Euler s Method) Section 11.3

Week #16 - Differential Equations (Euler s Method) Section 11.3 Week #16 - Differential Equations (Euler s Method) Section 11.3 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. 1. An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite.

More information

Chapter 7. 1 a The length is a function of time, so we are looking for the value of the function when t = 2:

Chapter 7. 1 a The length is a function of time, so we are looking for the value of the function when t = 2: Practice questions Solution Paper type a The length is a function of time, so we are looking for the value of the function when t = : L( ) = 0 + cos ( ) = 0 + cos ( ) = 0 + = cm We are looking for the

More information

Chapter 4: Graphing Sinusoidal Functions

Chapter 4: Graphing Sinusoidal Functions Haberman MTH 2 Section I: The Trigonometric Functions Chapter : Graphing Sinusoidal Functions DEFINITION: A sinusoidal function is function of the form sinw or y A t h k where A, w, h, k. y Acosw t h k,

More information

From now on angles will be drawn with their vertex at the. The angle s initial ray will be along the positive. Think of the angle s

From now on angles will be drawn with their vertex at the. The angle s initial ray will be along the positive. Think of the angle s Fry Texas A&M University!! Math 150!! Chapter 8!! Fall 2014! 1 Chapter 8A Angles and Circles From now on angles will be drawn with their vertex at the The angle s initial ray will be along the positive.

More information

MATH 255 Applied Honors Calculus III Winter Midterm 1 Review Solutions

MATH 255 Applied Honors Calculus III Winter Midterm 1 Review Solutions MATH 55 Applied Honors Calculus III Winter 11 Midterm 1 Review Solutions 11.1: #19 Particle starts at point ( 1,, traces out a semicircle in the counterclockwise direction, ending at the point (1,. 11.1:

More information

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER Work the following on notebook paper ecept for the graphs. Do not use our calculator unless the problem tells ou to use it. Give three decimal places

More information

A Hitchhiker s Guide to Precalculus

A Hitchhiker s Guide to Precalculus A Hitchhiker s Guide to Precalculus Trent Dean Glen Allen HS, Virginia Contents Trigonometry Unit Circle... Inverse Trig... 4 Trig Identities... 5 Trig Equations... 6 Graphs of Trigonometric Functions...

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019 A-Level Mathematics TRIGONOMETRY G. David Boswell - R2S Explore 2019 1. Graphs the functions sin kx, cos kx, tan kx, where k R; In these forms, the value of k determines the periodicity of the trig functions.

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

A List of Definitions and Theorems

A List of Definitions and Theorems Metropolitan Community College Definition 1. Two angles are called complements if the sum of their measures is 90. Two angles are called supplements if the sum of their measures is 180. Definition 2. One

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

a) Draw the angle in standard position. b) determine an angle that is co-terminal to c) Determine the reference angle of

a) Draw the angle in standard position. b) determine an angle that is co-terminal to c) Determine the reference angle of 1. a) Draw the angle in standard position. b) determine an angle that is co-terminal to c) Determine the reference angle of 2. Which pair of angles are co-terminal with? a., b., c., d., 3. During a routine,

More information

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.1 TRIGONOMETRY 1 (Angles & trigonometric functions) by A.J.Hobson 3.1.1 Introduction 3.1.2 Angular measure 3.1.3 Trigonometric functions UNIT 3.1 - TRIGONOMETRY 1 - ANGLES

More information

Lawrence High School s AP Calculus AB 2018 Summer Assignment

Lawrence High School s AP Calculus AB 2018 Summer Assignment s AP Calculus AB 2018 Summer Assignment To incoming AP Calculus AB students, To be best prepared for your AP Calculus AB course, you will complete this summer review assignment, which you will submit on

More information

16 Inverse Trigonometric Functions

16 Inverse Trigonometric Functions 6 Inverse Trigonometric Functions Concepts: Restricting the Domain of the Trigonometric Functions The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function Using the Inverse Trigonometric

More information

Secondary Math GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY

Secondary Math GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY Secondary Math 3 7-5 GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY Warm Up Factor completely, include the imaginary numbers if any. (Go to your notes for Unit 2) 1. 16 +120 +225

More information

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives Objectives 1. Find the Exact Value of an Inverse Sine, Cosine, or Tangent Function. 2. Find an Approximate Value of an Inverse Sine Function. 3. Use Properties of Inverse Functions to Find Exact Values

More information

Calculus Summer Math Practice. 1. Find inverse functions Describe in words how you use algebra to determine the inverse function.

Calculus Summer Math Practice. 1. Find inverse functions Describe in words how you use algebra to determine the inverse function. 1 Calculus 2017-2018: Summer Study Guide Mr. Kevin Braun (kbraun@bdcs.org) Bishop Dunne Catholic School Calculus Summer Math Practice Please see the math department document for instructions on setting

More information