Physics 231 Ch 10 Day

Size: px
Start display at page:

Download "Physics 231 Ch 10 Day"

Transcription

1 Physcs 3 Ch Day 3 r., / Scaerng R.b Mn., /8 Tues. /9 Wed.,/ Lab r., /.9-. Cllsn Clcans: Inelasc, Relasc, & Quanzed.5,. Deren Reerence raes L Cllsns (ballsc endulu?). Translanal Angular Menu Quz R.c P9 (Re Washnn s 3/ ss Thurs ngh 7) R.a; HW: Ch Pr s 3*,, 3, 39, quen Lab cars and rack (n ar rack) & car weghs (black bars) Her ucks (aybe) Cllsn 8_Ruherrd_ds.y, and Scaerng.exe r Las Te S, bere he es, we d sared hnkng abu cllsns Cllsn shr, srng neracns; can neglec all her neracns durng cllsn. We d sared by lkng a jus -D cllsns. Reew wh s quesns Ch. 9 Cllsns: xlrng he Nucleus Cllsn: A relaely bre and srng neracn. Syse = cars. Le s ake ur syse be he w cars n he ar rack, and ur e neral be jus bere jus aer hey cllde. Syse = cars. Le s ake ur syse be he w cars n he ar rack, and ur e neral be jus bere jus aer hey cllde. Then.b.b a.a syse syse ne. ex ( ar able. rcn s s sall enugh. able. nral arh. gral ar...) De: Maxally (Perecly) Inelasc. bg bg. sallsall. bg bg bg. sallsall. bg sall bg. sall. sall.

2 Physcs 3 Ch Day 3 De: Perecly lasc. (cllde cars and bunce agnecally). Nw, n hs case,, we sll need a secnd equan we wan bg. sall. sle r w unknwns. Wha her relan hlds hrugh hs cllsn? Cnseran nergy.. a. b. a. b. b b. a. a Pung hese geher when bg was nally a res, we g. b. a. a Prjecle & Targe Scaerng Las e, we lked a head-n cllsns. We elyed cnseran energy and cnseran enu redc he aer-ah he cllsns, and we g alar wh he range ssble u ces (deendng un he relae asses he cllders and her relae elces.) Nw we re gng cnsder he re general case an -axs cllsn. O curse he resul s he cllders bunce a deren angles requrng -D descrn. Such cllsns lay a ajr rle n arcle hyscs where he behars arcles when hey cllde ges us ran nran abu her reres such as charge, ass, and een nernal srucure. Tday, we re gng walk he lne beween really geng n he ah and sayng qualae. De: her ucks cllde -axs. De: Alha_n_alha.y P.. cs,... Inal,, nal cs sn. Ne: easures dwn r he hrznal, and s s negae, sn,,

3 Physcs 3 Ch Day 3 3 Cnseran Menu:.. xˆ : cs yˆ : sn sn cs Cnseran nergy: nergy s a ecr quany, s we ge he exac sae, sngle, equan we dd r a -D cllsn. r dr syse. c. c r ne. ex.n.n. c. c.n.n Le s say we chse ur bere and aer a ns he sae enal; s lkely enal, r he bjecs are n lnger neracng. lasc Cllsn. I he cllsn s elasc, we can say ha he nernal energes he w bjecs are he sae bere and aer he cllsn (hey ghn be durng he cllsn, bu we re n cncerned wh hen.) Three quans / ur Unknwns. Three quans. Wren hs way, we hae hree equans (enu x, enu y, and energy) ur unknwns. ur unknwns (agnude nal enu, agnude nal enu, drecn nal enu, and drecn nal enu ). urh ece n. We re gng cus a b day n ha 4 h ece nran. Cllsn geery. I yu re gng redc all he nal araeers, yu re gng need ne re ece nran, seccally, he drecn he rce cllsn ha ges he drecn he change n enu r each bjec. Generally, yu need knw sehng abu he cllsn sel. r ur w ucks, ha s a aer geery: wha are he rad he w ucks and hw d hey care wh he nal uck s ah hs deernes exacly where he w ucks cllde. r a cllsn w charged arcles, yu need cnsder he rce law he neracn. U, sn sn

4 Physcs 3 Ch Day 3 4 Only 3 unknwns (knw / easure ne nal) Then agan, n any suans, yu are able easure he nal and nal enu ecrs (agnude and drecn) ne he arcles, and hus yu can deduce he recl he her. r exale: yu re alha arcles a gld nucle, yu can see he gld nucle, bu yu can dcae he alha arcle s nal enu and easure s nal enu, and s deduce he gld nucleus recl. qual Masses. Our w ucks are rey uch equal asses. We ge an neresng resul n hs secal case = =. r cnseran energy: r cnseran enu: Then, squarng ges r Carng hs wh he equan r he cnseran energy, clearly he las er us be. The d rduc s cs. Q: There are hree acrs here, s here are hree ways her rduc can be zer. Wha s ne? rjecle neer h arge, s = rjecle h arge head n, s rjecle sed and arge carred, s = he angel beween he w nal ena s 9 De: Try cllde ucks n he hree ways (ay need sene hel cach ucks) Nce ha I was able redc he angle beween he w arcles ha cllded, bu I culdn redc he drecn hey d g relae he nal drecn. Wha was abu he cllsn ha deerned ha? 8.3. Iac Paraeer Whch case we hae (and exacly hw he 9 s rened) deends n he cllsn sel. r ur ucks, s sle geery: he ra he rjeced cener--cener dsance wh he ucks rad. Ths dsance s reerred as he ac araeer, b. he ac araeer s larger han he su he w ucks rad, hen here s a ss: Mss Bg b b

5 Physcs 3 Ch Day 3 5 asyerc large b I he ac araeer s jus saller han he cbned rad, hen he arge uck barely es and he rjecle uck s barely deleced. I he ac araeer near ½ he cbned rad, bh ucks dear arly syercally. syerc edu b As he ac araeer araches, he arge recees re he enu, unl b = and he rjecle ss un cllsn. Head-n b Generally. Say ur cllders aren equal ass; he cure s qualaely ery slar: he angle beween he w u cng ena deends un he ac araeer. 8.4 Dscerng he nucleus nsde as Turnng hs reasnng arund, say yu dn knw hw bg yur arge bjec s, say an ac nucleus, hen bserng hw rjecle bjecs, say alha arcles, scaer ells yu abu he ac araeer and he sze he arge. I was acually hrugh scaerng exerens, and ac araeer cnsderans, ha he nucleus was dscered and s srucure s rbed The Ruherrd exeren Alha arcles (He nucle) ake cnenen, arly asse, and + charged rjecles. Ruherrd s asssans acceleraed hese a a arge hn gld l and hen bsered where hey h a hshrescen screen n eher sde he l. The neracn an alha arcle wh he nucleus s gerned by q q nuc 4. In lab yu ll hae he runy del hs exeren. r nuc

6 Physcs 3 Ch Day 3 6 De: 8_Ruherrd_ds.y r a aeral unr ass and + charge dsrbun, ne wuld exec lle sgncan scaerng. Ne he lack sall-angle scaers and he ccasnal backscaer Cuer delng he Ruherrd xeren Dsrbun scaerng angles Lkng a he sulan, yu can see ha, gen he range ssble ac araeers, here s a crresndng range scaerng angles. r hard bjecs, lke l balls, here s a rey sle geerc relan beween arge & rjecle sze, ac araeer, and resulng scaerng angle. In Ruherrd s exeren, and hers lke, he arge can acually be seen, ndeed, he scaerng s used deduce he arge s sze. In hs cnex, ne res a barrage rjecles n he general drecn he arge & he racn ha scaer a deren angles ells yu wha racn yur bea s aken u by he arge Crss secn In a hard cllsn, lke ha l balls, he rjecle us be aed whn he geerc radus he arge n rder r here be any neracn / any scaerng. Thus, by lkng a he dsrbun scaered rjecles, s que easy gure u he sze, r re seccally, he crss-secnal area he arge. Crss-secn, Dars, and Prbably. Le s say I gd enugh a dars be guaranee ha I ll h he bard sewhere bu s cleely rand as where. Take he bull s-eye be he arge. Then he rbably ha I ge a bulls-eye s sly he ra he bull s-eye crsssecnal area ha he whle bard: bull P bull. Abard Slarly: P s s Abard Crss-secns, alha-arcles, and scaerng angles. Hweer, when we e g re lng-range neracns, such as ha an alha-arcle wh a gld nucleus, he alha-arcle needn acually h whn he geerc radus he nucleus ge deleced. We sll use he language crss-secn. I we say he bull s-eye s lke acually hng he arcle head-n, akng he alha-arcle bunce back, hen he nex rng u s lke cng que clse he nucleus and delecng sharly; he nex rng u s cng n s clse, and delecng a lle less sharly Agan, he rbably each ye delecn s rrnal he crresndng rng s crss-secn. De: 8_Ruherrd_ds.y rae lk head n and see bulls eye Cnseran Laws Vs. Deals he neracn

7 # scaers # scaers Physcs 3 Ch Day 3 7 Crss-secn / Scaerng Angle & rce law. Nw agne we had w arges, ne s a gld nucleus, wh s 79 rns, and ne s a nucleus wh wce as any rns. Yu sh randly a bh wh alha-arcles he sae energes. Le s say ha yu h whn hese ranges he cener a gld nucleus, yu wll be deleced by hese angles: De: 8_Ruherrd_gld.y rae lk head n and see bulls eye, see l Prbably scaer s. angle angle Iac araeer Snce each rng u has a bgger area, he nuber alha-arcles scaered a hese deren angles s greaer r he bgger rng / saller scaerng angle. The dsrbun scaers lks sehng lke he l besde. Nw agne he nucleus wh wce as any rns, a any gen dsance r hs nucleus, he rce s wce as srng as r he gld nucleus. Qualaley, hw shuld ur rng arges lk? angle xerence he sae delecn a a greaer dsance / ac araeer De: 8_Ruherrd_zercnu.y rae lk head n and see bulls eye, see l Prbably scaer s. angle. Deren rce law r ha aer, say we e g a deren rce law, say he rce des exnenally nsead lke /r. Hw wuld he arge lk derenly? Rngs wuld be narrw near he cener and que brad usde. Hw wuld he cun scaers s. angle lk? The sall angle scaers wuld be uch re ular. Mral: Scaerng exerens can be used dscer he naure he arge and he rce law by whch neracs wh he rjecle.

2015 Sectional Physics Exam Solution Set

2015 Sectional Physics Exam Solution Set . Crrec answer: D Ne: [quan] denes: uns quan WYSE cadec Challenge 05 Secnal Phscs Ea SOLUTION SET / / / / rce lengh lengh rce enu ass lengh e a) / ass ass b) energ c) wrk lengh e pwer energ e d) (crrec

More information

Chapter 2 Linear Mo on

Chapter 2 Linear Mo on Chper Lner M n .1 Aerge Velcy The erge elcy prcle s dened s The erge elcy depends nly n he nl nd he nl psns he prcle. Ths mens h prcle srs rm pn nd reurn bck he sme pn, s dsplcemen, nd s s erge elcy s

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

Physics 20 Lesson 9H Rotational Kinematics

Physics 20 Lesson 9H Rotational Kinematics Phyc 0 Len 9H Ranal Knemac In Len 1 9 we learned abu lnear mn knemac and he relanhp beween dplacemen, velcy, acceleran and me. In h len we wll learn abu ranal knemac. The man derence beween he w ype mn

More information

Use 10 m/s 2 for the acceleration due to gravity.

Use 10 m/s 2 for the acceleration due to gravity. ANSWERS Prjecle mn s he ecrl sum w ndependen elces, hrznl cmpnen nd ercl cmpnen. The hrznl cmpnen elcy s cnsn hrughu he mn whle he ercl cmpnen elcy s dencl ree ll. The cul r nsnneus elcy ny pn lng he prblc

More information

Lecture 4 ( ) Some points of vertical motion: Here we assumed t 0 =0 and the y axis to be vertical.

Lecture 4 ( ) Some points of vertical motion: Here we assumed t 0 =0 and the y axis to be vertical. Sme pins f erical min: Here we assumed and he y axis be erical. ( ) y g g y y y y g dwnwards 9.8 m/s g Lecure 4 Accelerain The aerage accelerain is defined by he change f elciy wih ime: a ; In analgy,

More information

R th is the Thevenin equivalent at the capacitor terminals.

R th is the Thevenin equivalent at the capacitor terminals. Chaper 7, Slun. Applyng KV Fg. 7.. d 0 C - Takng he derae f each erm, d 0 C d d d r C Inegrang, () ln I 0 - () I 0 e - C C () () r - I 0 e - () V 0 e C C Chaper 7, Slun. h C where h s he Theenn equalen

More information

AP Physics 1 MC Practice Kinematics 1D

AP Physics 1 MC Practice Kinematics 1D AP Physics 1 MC Pracice Kinemaics 1D Quesins 1 3 relae w bjecs ha sar a x = 0 a = 0 and mve in ne dimensin independenly f ne anher. Graphs, f he velciy f each bjec versus ime are shwn belw Objec A Objec

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

PHY2053 Summer 2012 Exam 2 Solutions N F o f k HY0 Suer 0 Ea Slutns. he ree-bdy dagra r the blck s N F 7 k F g Usng Newtn s secnd law r the -cnents F a F F cs7 k 0 k F F cs7 (0 N ( Ncs7 N he wrk dne by knetc rctn k r csθ ( N(6 cs80 0 N. Mechancal energy

More information

Water Hammer in Pipes

Water Hammer in Pipes Waer Haer Hydraulcs and Hydraulc Machnes Waer Haer n Pes H Pressure wave A B If waer s flowng along a long e and s suddenly brough o res by he closng of a valve, or by any slar cause, here wll be a sudden

More information

i-clicker Question lim Physics 123 Lecture 2 1 Dimensional Motion x 1 x 2 v is not constant in time v = v(t) acceleration lim Review:

i-clicker Question lim Physics 123 Lecture 2 1 Dimensional Motion x 1 x 2 v is not constant in time v = v(t) acceleration lim Review: Reiew: Physics 13 Lecure 1 Dimensinal Min Displacemen: Dx = x - x 1 (If Dx < 0, he displacemen ecr pins he lef.) Aerage elciy: (N he same as aerage speed) a slpe = a x x 1 1 Dx D x 1 x Crrecin: Calculus

More information

Lecture 3: Resistive forces, and Energy

Lecture 3: Resistive forces, and Energy Lecure 3: Resisive frces, and Energy Las ie we fund he velciy f a prjecile ving wih air resisance: g g vx ( ) = vx, e vy ( ) = + v + e One re inegrain gives us he psiin as a funcin f ie: dx dy g g = vx,

More information

2010 Sectional Physics Solution Set

2010 Sectional Physics Solution Set . Crrec nwer: D WYSE CDEMIC CHLLENGE Secnl hyc E 00 Slun Se y 0 y 4.0 / 9.8 /.45 y. Crrec nwer: y 8 0 / 8 /. Crrec nwer: E y y 0 ( 4 / ) ( 4.9 / ) 5.6 y y 4. Crrec nwer: E 5. Crrec nwer: The e rce c n

More information

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components Upcming eens in PY05 Due ASAP: PY05 prees n WebCT. Submiing i ges yu pin ward yur 5-pin Lecure grade. Please ake i seriusly, bu wha cuns is wheher r n yu submi i, n wheher yu ge hings righ r wrng. Due

More information

Physics Courseware Physics I Constant Acceleration

Physics Courseware Physics I Constant Acceleration Physics Curseware Physics I Cnsan Accelerain Equains fr cnsan accelerain in dimensin x + a + a + ax + x Prblem.- In he 00-m race an ahlee acceleraes unifrmly frm res his p speed f 0m/s in he firs x5m as

More information

Dishonest casino as an HMM

Dishonest casino as an HMM Dshnes casn as an HMM N = 2, ={F,L} M=2, O = {h,} A = F B= [. F L F L 0.95 0.0 0] h 0.5 0. L 0.05 0.90 0.5 0.9 c Deva ubramanan, 2009 63 A generave mdel fr CpG slands There are w hdden saes: CpG and nn-cpg.

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Energy Storage Devices

Energy Storage Devices Energy Srage Deces Objece f ecure Descrbe The cnsrucn f an nducr Hw energy s sred n an nducr The elecrcal prperes f an nducr Relanshp beween lage, curren, and nducance; pwer; and energy Equalen nducance

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

5.1 Angles and Their Measure

5.1 Angles and Their Measure 5. Angles and Their Measure Secin 5. Nes Page This secin will cver hw angles are drawn and als arc lengh and rains. We will use (hea) represen an angle s measuremen. In he figure belw i describes hw yu

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

Today s topic: IMPULSE AND MOMENTUM CONSERVATION

Today s topic: IMPULSE AND MOMENTUM CONSERVATION Today s opc: MPULSE ND MOMENTUM CONSERVTON Reew of Las Week s Lecure Elasc Poenal Energy: x: dsplaceen fro equlbru x = : equlbru poson Work-Energy Theore: W o W W W g noncons W non el W noncons K K K (

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant Nes n Inducance and cu Tansens Je Wlfe, Physcs UNSW cus wh and - Wha happens when yu clse he swch? (clse swch a 0) - uen flws ff capac, s d Acss capac: Acss ess: c d s d d ln + cns. 0, ln cns. ln ln ln

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions.

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions. Conseraion of Moenu Purose The urose of his exerien is o erify he conseraion of oenu in wo diensions. Inroducion and Theory The oenu of a body ( ) is defined as he roduc of is ass () and elociy ( ): When

More information

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING Objeces To learn abou hree ways ha a physcs can descrbe moon along a sragh lne words, graphs, and mahemacal modelng. To acqure an nue undersandng

More information

Who is the Holy Spirit?

Who is the Holy Spirit? ill at w w this h t h in SS est abut erence u O q L G ka iff hink : As m t t es a d K S k A the n ma. wn help rmati ur Jesus. y f t u inf e life ab h iple in t alk a disc f T : RE ce as ece t i A p SH

More information

Collisions! Short, Sharp Shocks

Collisions! Short, Sharp Shocks d b n, b d,, -4 Introducng Collsons Quz 9 L9 Mult-artcle Systes 6-8 Scatterng 9- Collson Colcatons L Collsons 5, Derent Reerence Fraes ranslatonal ngular Moentu Quz RE a RE b RE c EP9 RE a; HW: Pr s 3*,,

More information

Physics 3 (PHYF144) Chap 3: The Kinetic Theory of Gases - 1

Physics 3 (PHYF144) Chap 3: The Kinetic Theory of Gases - 1 Physcs (PYF44) ha : he nec heory of Gases -. Molecular Moel of an Ieal Gas he goal of he olecular oel of an eal gas s o unersan he acroscoc roeres (such as ressure an eeraure ) of gas n e of s croscoc

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssign HW Due 11:59PM Tuesday Clicker Information WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

Square law expression is non linear between I D and V GS. Need to operate in appropriate region for linear behaviour. W L

Square law expression is non linear between I D and V GS. Need to operate in appropriate region for linear behaviour. W L MOS Feld-Effec Trassrs (MOSFETs ecure # 4 MOSFET as a Amplfer k ( S Square law express s lear bewee ad. Need perae apprprae reg fr lear behaur. Cpyrgh 004 by Oxfrd Uersy Press, c. MOSFET as a Amplfer S

More information

β A Constant-G m Biasing

β A Constant-G m Biasing p 2002 EE 532 Anal IC Des II Pae 73 Cnsan-G Bas ecall ha us a PTAT cuen efeence (see p f p. 66 he nes) bas a bpla anss pes cnsan anscnucance e epeaue (an als epenen f supply lae an pcess). Hw h we achee

More information

Collisions Short, Sharp Shocks

Collisions Short, Sharp Shocks 16-8 Satterng R 1b n, b 19-1 Collson Colatons L1 Collsons 1 R 1 9 d, 15, 11 Derent Reerene Fraes, 111 ranslatonal ngular Moentu Quz 1 R 11a; HW1: r s 13*, 1, 3, 39 Collsons Short, Shar Shoks Sak! F Whh

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Saring Wed Sep 15, W-F oice hours will be in 3 Loomis. Exam I M oice hours will coninue in 36 Loomis Physics 11: Lecure 6,

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Faculty of Engineering

Faculty of Engineering Faculty f Engneerng DEPARTMENT f ELECTRICAL AND ELECTRONIC ENGINEERING EEE 223 Crcut Thery I Instructrs: M. K. Uygurğlu E. Erdl Fnal EXAMINATION June 20, 2003 Duratn : 120 mnutes Number f Prblems: 6 Gd

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current : . A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today

More information

Announcements. Formulas Review. Exam format

Announcements. Formulas Review. Exam format Annuncemens 1. N hmewrk due mrrw! a. Wuld be an ecellen eening sud fr and/r ake he eam. Eam 1 sars da! a. Aailable in Tesing Cener frm Tues, Sep. 16 10:15 am, up Mnda, Sep, clsing ime i. If u pick up ur

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Opening Shock and Shape of the Drag-vs-Time Curve

Opening Shock and Shape of the Drag-vs-Time Curve Openng Shock and Shape o he Drag-vs-Te Curve Jean Povn Physcs Deparen, San Lous Unversy, S. Lous MO Conac: povnj@slu.edu 314-977-8424 Talk presened a he 19 h AIAA Aerodynac Deceleraor Syses Conerence Wllasburg,

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

CHAPTER II AC POWER CALCULATIONS

CHAPTER II AC POWER CALCULATIONS CHAE AC OWE CACUAON Conens nroducon nsananeous and Aerage ower Effece or M alue Apparen ower Coplex ower Conseraon of AC ower ower Facor and ower Facor Correcon Maxu Aerage ower ransfer Applcaons 3 nroducon

More information

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH 24 ANALOG LTRONIS TUTORIAL DR NORLAILI MOHD NOH . 0 8kΩ Gen, Y β β 00 T F 26, 00 0.7 (a)deterne the dc ltages at the 3 X ternals f the JT (,, ). 0kΩ Z (b) Deterne g,r π and r? (c) Deterne the ltage gan

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial ECE 538/635 Antenna Engineering Spring 006 Dr. Stuart Lng Chapter 6 Part 7 Schelkunff s Plynmial 7 Schelkunff s Plynmial Representatin (fr discrete arrays) AF( ψ ) N n 0 A n e jnψ N number f elements in

More information

Revised 2/07. Projectile Motion

Revised 2/07. Projectile Motion LPC Phsics Reised /07 Prjectile Mtin Prjectile Mtin Purpse: T measure the dependence f the range f a prjectile n initial elcit height and firing angle. Als, t erif predictins made the b equatins gerning

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

Nelson Primary School Written Calculation Policy

Nelson Primary School Written Calculation Policy Addiin Fundain Y1 Y2 Children will engage in a wide variey f sngs, rhymes, games and aciviies. They will begin relae addiin cmbining w grups f bjecs. They will find ne mre han a given number. Cninue develp

More information

Transcription: Messenger RNA, mrna, is produced and transported to Ribosomes

Transcription: Messenger RNA, mrna, is produced and transported to Ribosomes Quanave Cenral Dogma I Reference hp//book.bonumbers.org Inaon ranscrpon RNA polymerase and ranscrpon Facor (F) s bnds o promoer regon of DNA ranscrpon Meenger RNA, mrna, s produced and ranspored o Rbosomes

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

M x t = K x F t x t = A x M 1 F t. M x t = K x cos t G 0. x t = A x cos t F 0

M x t = K x F t x t = A x M 1 F t. M x t = K x cos t G 0. x t = A x cos t F 0 Forced oscillaions (sill undaped): If he forcing is sinusoidal, M = K F = A M F M = K cos G wih F = M G = A cos F Fro he fundaenal heore for linear ransforaions we now ha he general soluion o his inhoogeneous

More information

A. Inventory model. Why are we interested in it? What do we really study in such cases.

A. Inventory model. Why are we interested in it? What do we really study in such cases. Some general yem model.. Inenory model. Why are we nereed n? Wha do we really udy n uch cae. General raegy of machng wo dmlar procee, ay, machng a fa proce wh a low one. We need an nenory or a buffer or

More information

Kinematics Review Outline

Kinematics Review Outline Kinemaics Review Ouline 1.1.0 Vecrs and Scalars 1.1 One Dimensinal Kinemaics Vecrs have magniude and direcin lacemen; velciy; accelerain sign indicaes direcin + is nrh; eas; up; he righ - is suh; wes;

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Lecture 12: HEMT AC Properties

Lecture 12: HEMT AC Properties Lecure : HEMT A Proeres Quas-sac oeraon Transcaacances -araeers Non-quas ac effecs Parasc ressances / caacancs f f ax ean ue for aer 6: 7-86 95-407 {407-46 sk MEFET ars} 47-44. (.e. sk an MEFET ars brefl

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015 /4/ Learnng Objecves Self Organzaon Map Learnng whou Exaples. Inroducon. MAXNET 3. Cluserng 4. Feaure Map. Self-organzng Feaure Map 6. Concluson 38 Inroducon. Learnng whou exaples. Daa are npu o he syse

More information

Physics 201 Lecture 15

Physics 201 Lecture 15 Phscs 0 Lecue 5 l Goals Lecue 5 v Elo consevaon of oenu n D & D v Inouce oenu an Iulse Coens on oenu Consevaon l oe geneal han consevaon of echancal eneg l oenu Consevaon occus n sses wh no ne eenal foces

More information

Vibrations and Waves

Vibrations and Waves Chaper 3 3 Vbraons and Waes PROBEM SOUIONS 3. (a) ang o he rgh as pose, he sprng orce acng on he bloc a he nsan o release s F s 30 N 0.3 7 N or 7 N o he le A hs nsan, he acceleraon s a F s 7 N 0.60 g 8

More information

Physic 231 Lecture 14

Physic 231 Lecture 14 Physc 3 Lecture 4 Man ponts o last lecture: Ipulses: orces that last only a short te Moentu p Ipulse-Moentu theore F t p ( ) Ipulse-Moentu theore ptot, p, p, p, p, ptot, Moentu and external orces F p ext

More information

21.9 Magnetic Materials

21.9 Magnetic Materials 21.9 Magneic Maerials The inrinsic spin and rbial min f elecrns gives rise he magneic prperies f maerials è elecrn spin and rbis ac as iny curren lps. In ferrmagneic maerials grups f 10 16-10 19 neighbring

More information

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer. R A T T L E R S S L U G S NAME: ANSWER KEY DATE: PERIOD PREAP PHYSICS REIEW TWO KINEMATICS / GRAPHING FORM A DIRECTIONS: MULTIPLE CHOICE. Chs h r f h rr answr. Us h fgur bw answr qusns 1 and 2. 0 10 20

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

s in boxe wers ans Put

s in boxe wers ans Put Pu answers in boxes Main Ideas in Class Toda Inroducion o Falling Appl Old Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs

More information

Physic 231 Lecture 12

Physic 231 Lecture 12 Physic 3 Lecture Main pints last lecture: Cnservative rces and the Cnservatin energy: + P + P Varying rces ptential energy a spring P x Main pints tday s lecture: Wr, energy and nncnservative rces: W Pwer

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Physics 140. Assignment 4 (Mechanics & Heat)

Physics 140. Assignment 4 (Mechanics & Heat) Physis 14 Assignen 4 (Mehanis & Hea) This assignen us be handed in by 1 nn n Thursday 11h May. Yu an hand i in a he beginning f he leure n ha day r yu ay hand i yur labrary densrar befrehand if yu ish.

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

1 Widrow-Hoff Algorithm

1 Widrow-Hoff Algorithm COS 511: heoreical Machine Learning Lecurer: Rob Schapire Lecure # 18 Scribe: Shaoqing Yang April 10, 014 1 Widrow-Hoff Algorih Firs le s review he Widrow-Hoff algorih ha was covered fro las lecure: Algorih

More information

Bag for Sophia by Leonie Bateman and Deirdre Bond-Abel

Bag for Sophia by Leonie Bateman and Deirdre Bond-Abel Bag for Sopha 2012 by Leone Baeman and Derdre Bond-Abel Ths bag was desgned o go wh he beauful feled wool scarf of our book Elegan Quls, Counry Charm. Make boh and you ll have he perfec ensemble o wear

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields Lecure 16 (Momenum and Impulse, Collisions and Conservaion o Momenum) Physics 160-02 Spring 2017 Douglas Fields Newon s Laws & Energy The work-energy heorem is relaed o Newon s 2 nd Law W KE 1 2 1 2 F

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

Thus the force is proportional but opposite to the displacement away from equilibrium.

Thus the force is proportional but opposite to the displacement away from equilibrium. Chaper 3 : Siple Haronic Moion Hooe s law saes ha he force (F) eered by an ideal spring is proporional o is elongaion l F= l where is he spring consan. Consider a ass hanging on a he spring. In equilibriu

More information