TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March

Size: px
Start display at page:

Download "TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March"

Transcription

1 TURBULENT FLOW A BEGINNER S APPROACH Tony Saad March tsaad@uts.edu

2 CONTENTS Introducton Random processes The energy cascade mechansm The Kolmogorov hypotheses The closure problem Some Turbulence Models Concluson

3 INTRODUCTION Most flows encountered n engneerng practce are Turbulent Turbulent Flows are characterzed by a fluctuatng velocty feld (n both poston and tme). We say that the velocty feld s Random. Turbulence hghly enhances the rates of mng of momentum, heat etc

4 INTRODUCTION The motvatons to study turbulent flows are summarzed as follows: The vast maorty of flows s turbulent The transport and mng of matter, momentum, and heat n turbulent flows s of great practcal mportance Turbulence enhances the rates of the above processes The basc approaches to nvestgatng turbulent flows are shown n the followng chart

5 INTRODUCTION Eperment Numercal Methods Tme Consumng Resource Consumng Emprcal Correlatons Hgh Cost $$$$ Averagng of Equatons. Turbulence Modelng Flterng of Equatons. Large Eddy Smulaton Full Resoluton of the Flow Drect Numercal Smulaton M O D E L I N G A P P R O A C H E S

6 RANDOM PROCESSES Consder a typcal ppe flow where the nstantaneous velocty s to be measured as a functon of tme. (see dye move see velocty profle move)

7 RANDOM PROCESSES It s clear that the velocty s fluctuatng wth tme We say that the velocty feld s RANDOM What does that mean? Why s t so?

8 RANDOM PROCESSES Consder the ppe flow eperment that s to be repeated several tmes (say tmes) under the same set of condtons: On the same planet In the same country In the same lab Usng the same apparatus Supervsed by the same person

9 RANDOM PROCESSES We are nterested n measurng the streamwse velocty component at a gven pont A( 1,y 1,z 1 ) & at a gven tme durng the eperment: U(A,t 1 ) Velocty Measurment

10 RANDOM PROCESSES Consder the event denoted by E such that: { U ( A t < m } 1 E =, ) 10 Three cases tae place: If E nevtably occurs, then E s certan If E cannot occur, then E s mpossble Another possblty s that E may but need not occur, then E s Random s

11 RANDOM PROCESSES The word Random does not hold any sophstcated sgnfcance as t s usually assgned The event E s random means only that t may or may not occur And ths answers our frst queston;.e. the meanng of a random varable

12 RANDOM PROCESSES We can now chec the results of our eperment. After 40 repettons of the eperment the measured velocty was recorded as shown below: 20 Magntude of U 15 U (m/s) Fgure 1.1: Magntude of U as a functon of Eperment Number

13 RANDOM PROCESSES Oay. Why s the velocty feld random n a turbulent flow?

14 RANDOM PROCESSES Obvously, f there were no determnsm (at least n the underlyng structure of the unverse), why would we do scence n the frst place? As scence predctng the behavor of physcal phenomena To answer the queston, we have to resort to the theory of dynamcal systems. After all, the governng equatons of flud mechancs represent a set of dynamcal equatons. Dynamcal systems are systems that are etremely senstve to mnute changes n the surroundng envronment,.e. ntal & boundary condtons

15 RANDOM PROCESSES An llustratve eample s the Lorenz dynamc system. Consder the followng set of ODEs = σ ( y ) y = ρ y z z = β z y Assume we f σ =10 and β =8/3 and vary ρ

16 RANDOM PROCESSES We are nterested n solvng ths system for two dfferent acute ntal condtons. [ ( [ ( ),y( ),y( 0 0 ),z( 0 )] = ),z( 0 )] = [010101].,.,. and [ ,., 01]. Obvously, the two solutons for the dfferent ntal condtons should be very close snce the ntal condtons are appromately the same Ths s what we epect. Let us see the results

17 RANDOM PROCESSES The soluton s easy to get numercally and s as follows for varous values of ρ 60 ( t) ( t) ρ = t t ρ = 5 Frst set of ntal condtons Second set of ntal condtons T 60 ( t) 1( t) 30 ρ = ρ = t t Dfference between the two solutons T t T Dfference between the two solutons

18 RANDOM PROCESSES Nothng much happens for some values of ρ 60 ( t) ( t) ρ = ( t) 1( t) 0 t t ρ = 20 Frst set of ntal condtons Second set of ntal condtons T ρ = 20 ρ = t t Dfference between the two solutons T t T

19 RANDOM PROCESSES What s so specal about ρ = ( t) ( t) ρ = t ( t) 1( t) T ρ = 24.2 Frst set of ntal condtons t Second set of ntal condtons ρ= 24.2 ρ = t t Dfference between the two solutons T t T

20 RANDOM PROCESSES ρ = 24.2 denotes the onset of senstvty!!! 60 ( t) ( t) ρ = ( t) 1( t) 0 t t ρ = t Frst set of ntal condtons Second set of ntal condtons T T ρ = 24.3 ρ = t See anmaton t Dfference between the two solutons T

21 RANDOM PROCESSES As we can see, the fgures show the senstvty of the system. In fact, for a crtcal value of the coeffcents (f σ, β) ρ =24.3, the system becomes hghly senstve to small perturbatons. Ths coeffcent corresponds to the Reynolds number n flud flow. Beyond a crtcal value, the flow becomes etremely senstve to any mnute dsturbance whether from the boundary or from the nternal structure of the flow (an eddy)

22 RANDOM PROCESSES Concluson: A theory that predcts eact values of the velocty feld s defntely prone to be wrong. Such a theory should am at predctng the probablty of occurrence of certan events

23 THE ENERGY CASCADE One of the frst attacs to theoretcally tacle the problem of turbulence was done by Rchardson n 1922 Hs hypothess s called the Energy Cascade Mechansm & s now one of the fundamental physcal models underlyng any approach to solvng turbulent flow problems Turbulence can be consdered to be composed of eddes of dfferent szes

24 THE ENERGY CASCADE An eddy s consdered to be a turbulent moton localzed wthn a regon of sze l These szes range from the Flow length scale L to the smallest eddes. Each eddy of length sze l has a characterstc velocty u(l) and tmescale τ(l) = l/u(l) The largest eddes have length scales comparable to L

25 THE ENERGY CASCADE Move

26 THE ENERGY CASCADE Each eddy has a Reynolds number For large eddes, Re s large,.e. vscous effects are neglgble. The dea s that the large eddes are unstable and brea up transferrng energy to the smaller eddes. The smaller eddes undergo the same process and so on

27 THE ENERGY CASCADE

28 THE ENERGY CASCADE Ths energy cascade contnues untl the Reynolds number s suffcently small that energy s dsspated by vscous effects: the eddy moton s stable, and molecular vscosty s responsble for dsspaton. Bg whorls have lttle whorls, whch feed on ther velocty; and lttle whorls have lesser whorls, and so on to vscosty

29 THE KOLMOGOROV HYPOTHESES What s the sze of the smallest eddes??? The KOLMOGOROV Hypotheses address ths fundamental queston along wth many others There are three propostons that Kolmogorov made: The hypothess of local sotropy Frst smlarty Second smlarty

30 THE KOLMOGOROV HYPOTHESES We frst ntroduce some useful scales Denote by L 0 the length scale of an eddy comparable n sze to the flow geometry L EI 1 L Denote by 6 0 the demarcaton scale between the largest (L > L EI ) eddes and the smallest eddes (L < L EI )

31 THE KOLMOGOROV HYPOTHESES Kolmogorov s hypothess of local sotropy: At suffcently hgh Reynolds number, the smallscale motons (L < L 0 ) are statstcally sotropc. As the energy passes down the cascade, all nformaton about the drectonal propertes of the large eddes (determned by the flow geometry) s also lost. As a consequence, the small enough eddes have a somehow unversal character, ndependent of the flow geometry

32 THE KOLMOGOROV HYPOTHESES Kolmogorov s frst smlarty hypothess: In every turbulent flow at suffcently hgh Reynolds number, the statstcs of the smallscale motons (L < L EI ) have a unversal form that s unquely determned by ν and ε. Just as the drectonal propertes are lost n the energy cascade, all nformaton about the boundares of the flow s also lost, therefore, the mportant processes responsble for dsspaton are determned unquely by ν and ε

33 THE KOLMOGOROV HYPOTHESES Kolmogorov s second smlarty hypothess: In every turbulent flow at suffcently hgh Reynolds number, there ests a range of scales whose propertes are unquely determned by ε The three hypothess are shown n the setch to follow

34 THE KOLMOGOROV HYPOTHESES Unversal Equlbrum Range Energy Contanng Range Dsspaton Range Governed by ν & ε Inertal Subrange Governed by ε η DI EI L 0 The smallest scales

35 THE CLOSURE PROBLEM Mass Conservaton: ρ τ ρu = 0 Momentum Conservaton: ρu τ Accum. ρu u Convecton = u µ Dffuson p ρg su Source

36 THE CLOSURE PROBLEM The nfntude of scales n a turbulent flow renders the flow equatons mpossble to tacle mathematcally n that the velocty feld represents a random varable A clever proposton, addressed by Reynolds reduces the numbers of scales from nfnty to 1 or 2 After all, for all practcal purposes, we are only nterested n the mean flow and n the mean flud propertes

37 THE CLOSURE PROBLEM Problems: Ellptc & Non-Lnear Equatons; Pressure-Velocty Couplng & Temperature-Velocty Couplng; Turbulence: Unsteady, 3-D, Chaotc, Dffusve, Dsspatve, Intermttent,...; Infnte Number of Scales (Grd Re 9/4 ), Etc. Soluton: Reduce the number of scales Reynolds Decomposton. ϕ = Φ ϕ'

38 Turbulence: RANS Result: Reynolds Averaged Naver-Stoes (RANS) Equatons. Closure Problem: Turbulent Stresses ( ) are unnowns Turbulence Models. 0 U = ρ τ ρ u S P u u U U U U = ' ' ρ µ ρ τ ρ u u ' ' ρ

39 THE CLOSURE PROBLEM One can suggest to wrte transport equatons for the reynolds stresses, however, one would end up wth trple correlatons and so forth The dea s that we have to stop somewhere and model the correlaton usng physcal arguments

40 THE CLOSURE PROBLEM ( ) ( ) ( ) ( ) ( ) ( ) ( ) ε u' u' u' u' μ u' u' μ Φ u' p u' p D u' μu u' μu u' u' μ u p δ u p δ u u ρu G t u ρβg t u ρβg P U u ρu U u ρu u' u' ρu τ u' ρu' = 2 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Eample Of transport Equaton For the Turbulent Stress

41 THE CLOSURE PROBLEM Physcal mechansms governng the change of turbulent stresses & flues. Convecton Vscous Generaton Net Balance Dffuson Turbulent Pressure Dstrbuton Dsspaton

42 THE CLOSURE PROBLEM Unnown Correlatons: -) Turbulent & Pressure Dffuson (D, D t ) -) Pressure-Stran Correlatons (Φ, Φ t ) -) Dsspaton Rates (ε, ε t ) -) Possble Sources (S t ) Modelng s requred n order to close the governng equatons. Turbulence Models: -) Algebrac (zero-equaton) models: Mng length, etc. -) One-equaton models: -model, µ t -model, etc. -) Two-equaton models: -ε, -l, -ω 2, low-reynolds -ε, etc. -) Algebrac stress models: ASM, etc. -) Reynolds stress models: RSM, etc.

43 THE CLOSURE PROBLEM Frst Order Models Second Order Models Reynolds Stress Models Algebrac Stress Models Two-Equaton Models One-Equaton Models Zero-Equaton Models u' u' / = Constant ε P = ε = 3/ 2 / L = ( L du dy) 2

44 Frst-Order Models Governng equatons of turbulent stresses and flues are very comple Analogy between lamnar and turbulent flows. Lamnar Flow: Turbulent Flow: Generalzed Boussnesq Hypothess u 3 2 u u µδ = µ τ 3 2 U U u u t t ρ δ = µ = ρ τ

45 Frst-Order Models Zero Equaton Models As the name mples, these models do not mae use of any addtonal equaton. In such models we contend wth a smple algebrac relaton for the turbulent vscosty Zero equaton models are based on the mng length theory whch s the length over whch there s hgh nteracton between vortces Note that the turbulent vscosty s not a property of the flud! It s a flow property

46 Zero-Equaton Models Mng Length Theory: Dmensonal analyss ν t = µ t ρ lu = l m l m s determned epermentally. For boundary layers : l m du dy l m = κy for y<δ l m = δ for y δ δ y l m δ

47 Frst-Order Models One Equaton Models As the name mples, we develop one equaton for a gven varable. The varable of choce s the turbulent netc energy We wrte a transport equaton for turbulent netc energy and use algebrac modelng for the new varables ntroduced

48 One-Equaton Models Turbulent Knetc Energy: Dmensonal analyss 1 ( = u v w 2 ) µ t ul u : velocty scale - proportonal to 1/2 l : length scale mng length l m µ t = C µ l m 1 2 Other choces: (Bradshaw et al.), etc. u uv Drect calculaton of µ t usng a transport equaton for the eddy vscosty (Nee & Kovasznay).

49 One-Equaton Models Turbulent Knetc Energy: Unnown Correlatons that requre modelng: -) Turbulent & Pressure Dffuson; -) Dsspaton Rates. ( ) ( ) ( ) 2 u u D pu u u 2 1 G P t u g U u u U ε µ µ ρ ρ β ρ = ρ τ ρ

50 One-Equaton Models Turbulent Knetc Energy Equaton: Dmensonal analyss (Harlow & Naayama) ρε σ µ µ = ρ τ ρ t G P U p t t T c g G ; U U U P = β = µ m 2 3 d 2 3 C l l = ε

51 Concluson Turbulence s a very mportant phenomenon Turbulence modelng s a hghly actve area of research The future of CFD has a hgh dependence on turbulence models LES seems to be the prevalng method for the net two decades DNS, wth the ever ncreasng computatonal power and parallel computng technologes, remans a dream for all researchers. Wll t ever be feasble on a personal computer?

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introducton to Turbulence Modelng Professor Ismal B. Celk West Vrgna nversty Ismal.Celk@mal.wvu.edu CFD Lab. - West Vrgna nversty I-1 Introducton to Turbulence CFD Lab. - West Vrgna nversty I-2 Introducton

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models Handout: Large Eddy mulaton I 058:68 Turbulent flows G. Constantnescu Introducton to ubgrd-cale (G) Models G tresses should depend on: Local large-scale feld or Past hstory of local flud (va PDE) Not all

More information

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson Publcaton 2006/01 Transport Equatons n Incompressble URANS and LES Lars Davdson Dvson of Flud Dynamcs Department of Appled Mechancs Chalmers Unversty of Technology Göteborg, Sweden, May 2006 Transport

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Lecture 12. Modeling of Turbulent Combustion

Lecture 12. Modeling of Turbulent Combustion Lecture 12. Modelng of Turbulent Combuston X.S. Ba Modelng of TC Content drect numercal smulaton (DNS) Statstcal approach (RANS) Modelng of turbulent non-premxed flames Modelng of turbulent premxed flames

More information

Turbulent Transport in Single-Phase Flow. Peter Bernard, University of Maryland

Turbulent Transport in Single-Phase Flow. Peter Bernard, University of Maryland Turbulent Transport n Sngle-Phase Flow Peter Bernard, Unversty of Maryland Assume that our goal s to compute mean flow statstcs such as U and One can ether: 1 u where U Pursue DNS (.e. the "honest" approach)

More information

Turbulence and its Modelling

Turbulence and its Modelling School of Mechancal Aerospace and Cvl Engneerng 3rd Year Flud Mechancs Introducton In earler lectures we have consdered how flow nstabltes develop, and noted that above some crtcal Reynolds number flows

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

FEATURES OF TURBULENT TRANSPORT OF MOMENTUM AND HEAT IN STABLY STRATIFIED BOUNDARY LAYERS AND THEIR REPRODUCTION IN ATMOSPHERIC MESOSCALE MODELS

FEATURES OF TURBULENT TRANSPORT OF MOMENTUM AND HEAT IN STABLY STRATIFIED BOUNDARY LAYERS AND THEIR REPRODUCTION IN ATMOSPHERIC MESOSCALE MODELS C I T E S 009_ Krasnoyarsk 009 FEATURES OF TURBULENT TRANSPORT OF MOMENTUM AND HEAT IN STABLY STRATIFIED BOUNDARY LAYERS AND THEIR REPRODUCTION IN ATMOSPHERIC MESOSCALE MODELS A. F. Kurbatsky Insttute

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov.

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov. Turbulence Lecture 1 Non-lnear Dynamcs Strong non-lnearty s a key feature of turbulence. 1. Unstable, chaotc behavor.. Strongly vortcal (vortex stretchng) 3 s & 4 s Taylor s work on homogeneous turbulence

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Simulation of Turbulent Flow Using FEM

Simulation of Turbulent Flow Using FEM Internatonal Journal of Engneerng and Technology Volume 2 No. 8, August, 2012 Smulaton of Turbulent Flow Usng FEM Sabah Tamm College of Computng, AlGhurar Unversty, Duba, Unted Arab Emrates. ABSTRACT An

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

Research & Reviews: Journal of Engineering and Technology

Research & Reviews: Journal of Engineering and Technology Research & Revews: Journal of Engneerng and Technology Case Study to Smulate Convectve Flows and Heat Transfer n Arcondtoned Spaces Hussen JA 1 *, Mazlan AW 1 and Hasanen MH 2 1 Department of Mechancal

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG Applcaton of the Adjont Method for Vehcle Aerodynamc Optmzaton Dr. Thomas Blacha, Aud AG GoFun, Braunschweg 22.3.2017 2 AUDI AG, Dr. Thomas Blacha, Applcaton of the Adjont Method for Vehcle Aerodynamc

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write 058:68 Turbulent Flows 004 G. Constantnescu HOMEWORKS: Assgnment I - 01/6/04, Due 0/04/04 1) A cubcal box of volume L 3 s flled wth flud n turbulent moton. No source of energy s present, so that the turbulence

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Introduction to Turbulence Modelling

Introduction to Turbulence Modelling Introdcton to Trblence Modellng 1 Nmercal methods 0 1 t Mathematcal descrpton p F Reslts For eample speed, pressre, temperatre Geometry Models for trblence, combston etc. Mathematcal descrpton of physcal

More information

Tools for large-eddy simulation

Tools for large-eddy simulation Center for Turbulence Research Proceedngs of the Summer Program 00 117 Tools for large-eddy smulaton By Davd A. Caughey AND Grdhar Jothprasad A computer code has been developed for solvng the ncompressble

More information

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00 ONE IMENSIONAL TRIANGULAR FIN EXPERIMENT Techncal Advsor: r..c. Look, Jr. Verson: /3/ 7. GENERAL OJECTIVES a) To understand a one-dmensonal epermental appromaton. b) To understand the art of epermental

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model Study of transonc separated flows wth zonal-des based on weakly non-lnear turbulence model Xao Z.X, Fu S., Chen H.X, Zhang Y.F and Huang J.B. Department of Engneerng Mechancs, Tsnghua Unversty, Bejng,

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Measurement Uncertainties Reference

Measurement Uncertainties Reference Measurement Uncertantes Reference Introducton We all ntutvely now that no epermental measurement can be perfect. It s possble to mae ths dea quanttatve. It can be stated ths way: the result of an ndvdual

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Lecture 16 Statistical Analysis in Biomaterials Research (Part II) 3.051J/0.340J 1 Lecture 16 Statstcal Analyss n Bomaterals Research (Part II) C. F Dstrbuton Allows comparson of varablty of behavor between populatons usng test of hypothess: σ x = σ x amed for Brtsh statstcan

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

Nomenclature. I. Introduction

Nomenclature. I. Introduction Effect of Intal Condton and Influence of Aspect Rato Change on Raylegh-Benard Convecton Samk Bhattacharya 1 Aerospace Engneerng Department, Auburn Unversty, Auburn, AL, 36849 Raylegh Benard convecton s

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Turbulence Modeling in Computational Fluid Dynamics (CFD) Jun Shao, Shanti Bhushan, Tao Xing and Fred Stern

Turbulence Modeling in Computational Fluid Dynamics (CFD) Jun Shao, Shanti Bhushan, Tao Xing and Fred Stern Turbulence Modelng n Computatonal Flud Dynamcs (CFD) Jun Shao, Shant Bhushan, Tao Xng and Fred Stern Outlne 1. Characterstcs of turbulence. Approaches to predctng turbulent flows 3. Reynolds averagng 4.

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability:

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability: . Why turbulence occur? Hydrodynamc Instablty Hydrodynamc Instablty T Centrfugal Instablty: Ω Raylegh-Benard Instablty: Drvng force: centrfugal force Drvng force: buoyancy flud Dampng force: vscous dsspaton

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved Smulaton of nose generaton and propagaton caused by the turbulent flow around bluff bodes Zamotn Krll e-mal: krart@gmal.com, cq: 958886 Summary Accurate predctons of nose generaton and spread n turbulent

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer Convecton Heat Transfer Tetbook: Convecton Heat Transfer Adran Bean, John Wley & Sons Reference: Convectve Heat and Mass Transfer Kays, Crawford, and Wegand, McGraw-Hll Convecton Heat Transfer Vedat S.

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process Equaton of State Modelng of Phase Equlbrum n the Low-Densty Polyethylene Process H. Orbey, C. P. Boks, and C. C. Chen Ind. Eng. Chem. Res. 1998, 37, 4481-4491 Yong Soo Km Thermodynamcs & Propertes Lab.

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH Computatonal Flud Dynamcs If you want to learn a bt more of the math behnd flud dynamcs, read my prevous post about the Naver- Stokes equatons and Newtonan fluds. The equatons derved n the post are the

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME PACS REFERENCE: 43.20.Mv Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Zeunerstr.

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

IC Engine Flow Simulation using KIVA code and A Modified Reynolds Stress Turbulence Model

IC Engine Flow Simulation using KIVA code and A Modified Reynolds Stress Turbulence Model IC Engne Flow Smulaton usng KIVA code and A Modfed Reynolds Stress Turbulence Model Satpreet Nanda and S.L. Yang Mechancal Engneerng-Engneerng Mechancs Department Mchgan Technologcal Unversty Houghton,

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites

An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites IOP Conference Seres: Materals Scence and Engneerng PAPER OPE ACCESS An dentfcaton algorthm of model knetc parameters of the nterfacal layer growth n fber compostes o cte ths artcle: V Zubov et al 216

More information

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves A. Ozdomar, K. Turgut Gursel, Y. Pekbey, B. Celkag / Internatonal Energy Journal 8 (2007) An Expermental and Numercal Study on Pressure Drop Coeffcent of Ball Valves www.serd.at.ac.th/rerc A. Ozdamar*

More information

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001 Homogeneous model of producton of heavy ol through horzontal ppelnes and wells based on the Naver-Stokes equatons n the ppelne or the well and Darcy's law n the reservor Homogeneous model: Danel D. Joseph

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products modelng of equlbrum and dynamc mult-component adsorpton n a two-layered fxed bed for purfcaton of hydrogen from methane reformng products Mohammad A. Ebrahm, Mahmood R. G. Arsalan, Shohreh Fatem * Laboratory

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Buckingham s pi-theorem

Buckingham s pi-theorem TMA495 Mathematcal modellng 2004 Buckngham s p-theorem Harald Hanche-Olsen hanche@math.ntnu.no Theory Ths note s about physcal quanttes R,...,R n. We lke to measure them n a consstent system of unts, such

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

Turbulent Flows and their Numerical Modeling

Turbulent Flows and their Numerical Modeling REVIEW Lecture 4: Numercal Flud Mechancs Sprng 015 Lecture 5 Fnte Volume on Complex geometres Computaton of convectve fluxes: x y For md-pont rule: Fe ( vn. ) ds fs e e ( ( vn. ) e Se e m e e e ( Se ue

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

NUMERICAL SIMULATION OF FLOW AROUND A NACA 0012 AIRFOIL IN TRANSIENT PITCHING MOTION USING IMMERSED BOUNDARY METHOD WITH VIRTUAL PHYSICAL MODEL

NUMERICAL SIMULATION OF FLOW AROUND A NACA 0012 AIRFOIL IN TRANSIENT PITCHING MOTION USING IMMERSED BOUNDARY METHOD WITH VIRTUAL PHYSICAL MODEL NUMERICAL SIMULATION OF FLOW AROUND A NACA 0012 AIRFOIL IN TRANSIENT PITCHING MOTION USING IMMERSED BOUNDARY METHOD WITH VIRTUAL PHYSICAL MODEL José Eduardo Santos Olvera Laboratory of Heat and Mass Transfer

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information