TWO-STAGE ISOLATION FOR HARMONIC BASE EXCITATION Revision A. By Tom Irvine February 25, 2008

Size: px
Start display at page:

Download "TWO-STAGE ISOLATION FOR HARMONIC BASE EXCITATION Revision A. By Tom Irvine February 25, 2008"

Transcription

1 TWO-STAGE ISOLATION FOR HARMONIC BASE EXCITATION Revision A By Tom Irvine tomirvine@aol.com February 5, 008 Introduction Consider a base plate mass m and an avionics mass m modeled as two-degree-of-freedom. Evaluate the benefits and drawbacks of this two-stage isolation scheme. m x k m x k & y& Figure. The system also has damping, but it is modeled as modal damping. A free-body diagram of mass is given in Figure. A free-body diagram of mass is given in Figure 3.

2 k ( x - x ) m x k ( x - y ) Figure. Determine the equation of motion for mass. Σ F = m & x () ( ) ( y) m & x = k x x k x () ( ) y m & x k x k x x = k (3) ( ) y m & x k x k x x = k (4) ( ) y m & x k k x k x = k (5) m x k (x -x ) Figure 3.

3 Derive the equation of motion for mass. Σ F = m & x (6) m ( ) & x = k x x (7) ( ) 0 m & x k x x = (8) m & x k x k x = 0 (9) Assemble the equations in matrix form. m 0 0 && x k k m && x k k x k = y k x 0 (0) Define a relative displacement z such that x = z y () x = z y () Substitute equations () and () into (0). m 0 0 && z && y k k m && z && y k k z y k = y k z y 0 (3) m 0 0 && z m && y k k m && z m && y k k z k k k z k k y k = y k y 0 (4) m 0 0 && z m && y k k m && z my && k k z ky = k y k z 0 0 (5) 3

4 m 0 0 && z k k m && z k k z m = && y k z my && (6) Decoupling Equation (6) is coupled via the stiffness matrix. An intermediate goal is to decouple the equation. Simplify, where M & z K z = F (7) m 0 M = (8) 0 m k k k K = (9) k k z z = (0) z m = && y F m && y () Consider the homogeneous form of equation (7). M & z K z = 0 () Seek a solution of the form ( jt) z = q exp (3) The q vector is the generalized coordinate vector. 4

5 Note that ( jt) z& = j q exp (4) & z = q exp (5) ( jt) Substitute equations (3) through (5) into equation (). ( jt) K q exp( jt) = 0 M q exp (6) { M q K q} exp( jt) = 0 (7) n M q K q = 0 (8) { M K} q = 0 { K M } q = 0 (9) (30) Equation (30) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero. det { K M } = 0 (3) k k k m 0 det = 0 k k 0 m (3) ( ) k k m det k = 0 k k m (33) k m k m k (34) ( k ) = 0 4 m [ m ( k k )] k m m k = 0 (35) 5

6 The eigenvalues are the roots of the polynomial. b b 4ac = (36) a where b b 4ac = (37) a a = m m (38) [ ( )] b = mk3 m k k (39) c = k (40) The eigenvectors are found via the following equations. { M } q = 0 K (4) { M } q = 0 K (4) where q q = (34) q q q = (44) q An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format. [ q ] Q = q (45) 6

7 q q Q = (46) q q The eigenvectors represent orthogonal mode shapes. Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized eigenvector matrix Qˆ can be obtained such that the following orthogonality relations are obtained. Qˆ T M Qˆ = I (47) and Qˆ T K Qˆ = Ω (48) where superscript T represents transpose I is the identity matrix Ω is a diagonal matrix of eigenvalues Note that qˆ qˆ Qˆ = qˆ qˆ (49a) T qˆ qˆ Qˆ = qˆ qˆ (49b) Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. Further discussion is given in References 5 and 6. Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. Now define a modal coordinate η (t) such that z = Qˆ η (50a) z = qˆ η qˆ η (50b) 7

8 z = qˆ η qˆ η (50c) Recall x = z y (5a) x = z y (5b) The displacement terms are x = y qˆ η qˆ η (5a) x = y qˆ η qˆ η (5b) The velocity terms are x& = y& qˆ η& qˆ η& (53a) x& = y& qˆ η& qˆ η& (53b) The acceleration terms are & x = && y qˆ η&& qˆ η& (54a) & x = && y qˆ η&& qˆ η& (54b) Substitute equation (50a) into the equation of motion, equation (7). M Qˆ η& & K Qˆ η = F (55) Premultiply by the transpose of the normalized eigenvector matrix. Qˆ T M Qˆ T T η& & Qˆ K Qˆ η = Qˆ F (56) The orthogonality relationships yield I η& & Ω η = Qˆ T F (57) For the sample problem, equation (57) becomes 8

9 0 0 η&& η&& 0 0 η = qˆ η qˆ qˆ m && y qˆ m && y (58) Note that the two equations are decoupled in terms of the modal coordinate. Now assume modal damping by adding an uncoupled damping matrix. 0 0 η&& η&& ξ 0 0 ξ η& η& 0 0 η = qˆ η qˆ qˆ m && y qˆ m && y (59) Equation (59) yields two equations η & ξ η = [ qˆm qˆ m ]y & (60) η & ξ η = [ qˆm qˆ m ]y & (6) Now assume a harmonic base input. ( jt) & y = A exp (6) Assume a harmonic modal displacement. ( jt) η i= ψ i exp (63) ( jt) η& i = j i ψ i exp (64) η& & i = i ψ i exp( jt) (65) By substitution, { } j ξ ψ exp ( jt) = [ qˆ m qˆ m ] A exp( jt) { } j ξ ψ exp ( jt) = [ qˆ m qˆ m ] A exp( jt) (66) (67) 9

10 j ξ ψ exp ( jt) = [ qˆ m qˆ m ] A exp( jt) (68) j ξ ψ exp( jt) = [ qˆm qˆ m ] A exp( jt) (69) [ ] qˆ η ( ) qˆm m = ψ exp jt = A exp( jt) (70) j ξ [ ] qˆ η ( ) qˆm m = ψ exp jt = A exp( jt) (7) j ξ The modal velocity is [ ] j qˆ η& qˆm m = A exp( jt) (7) j ξ [ ] j qˆ η& qˆm m = A exp( jt) (73) j ξ The modal acceleration is [ qˆ m qˆ ] η& & m = A exp( jt) (74) j ξ 0

11 [ qˆ m qˆ ] η& & m = A exp( jt) (75) j ξ Recall & x = && y qˆ η&& qˆ η& (76) & x = && y qˆ η&& qˆ η& (77) && x(t) = qˆ qˆ [ qˆ ] [ qˆ ] qˆm j m ξ qˆm j m ξ A exp ( jt) (78) && x(t) = qˆ qˆ [ qˆ ] [ qˆ ] qˆm j m ξ qˆm j m ξ A exp ( jt) (79) The Fourier transform equation is Xˆ i (f) [ jt ] = & x (t) exp - dt - i (80)

12 Take the Fourier transform of each side of equations (78) and (79). Xˆ (f) / A = qˆ qˆ [ qˆ ] [ qˆ ] qˆm j m ξ qˆm j m ξ (8) Xˆ (f) / A = qˆ qˆ [ qˆ ] [ qˆ ] qˆm j m ξ qˆm j m ξ (8) References. T. Irvine, An Introduction to the Shock Response Spectrum Revision P, Vibrationdata, 00.. T. Irvine, Response of a Single-degree-of-freedom System Subjected to a Classical Pulse Base Excitation, Revision A, Vibrationdata, R. Cook, Finite Element Modeling for Stress Analysis, Wiley, New York, NE/Nastran User s Manual, Version 8, Noran Engineering, Los Alamitos, CA, Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, Weaver and Johnston, Structural Dynamics by Finite Elements, Prentice-Hall, New Jersey, L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New York, 967.

13 APPENDIX A EXAMPLE Normal Modes Analysis x m k m x k & y& Figure A-. A 5-lbm avionics component (m ) is mounted on a -lbm base plate (m ). Each spring stiffness is 4.6e04 lbf/in. Analyze the energy transmitted to the avionics mass with and without the base plate stage. Table A-. Parameters Variable m m k k Value lbm 5 lbm 4.6e04 lbf/in 4.6e04 lbf/in 3

14 Furthermore, assume that each mode has a damping value of 5%. m 0 0 && z k k m && z k k z my && = k z my && (A-) Solve for the acceleration response time histories. The homogeneous, undamped problem is / && z 9.e 04 5/386 && z 4.6e e 04 z 0 = 4.6e 04 z 0 (A-) The natural frequencies are f = 0.3 Hz (A-3) f = Hz (A-4) 4

15 FRF Analysis TRANSFER MAGNITUDE EXAMPLE 00 Base Plate Avionics Mass 0 TRANS (G/G) Figure A FREQUENCY (Hz) 5

16 TRANSFER MAGNITUDE AVIONICS MASS EXAMPLE 00 Single-Stage Two-Stage 0 TRANS (G/G) FREQUENCY (Hz) Figure A-3. The Single-Stage curve represents the avionics mass and its spring by themselves. The results are mixed. The optimum design depends on the base excitation frequency. 6

17 APPENDIX B EXAMPLE Repeat the example from Appendix A but with the base plate and avionics mass both at 5 lbm. Table B-. Parameters Variable m m k k Value 5 lbm 5 lbm 4.6e04 lbf/in 4.6e04 lbf/in The natural frequencies are f = 85.4 Hz (B-) f = Hz (B-) 7

18 TRANSFER MAGNITUDE EXAMPLE 00 Base Plate Avionics Mass 0 TRANS (G/G) Figure B-. FREQUENCY (Hz) 8

19 TRANSFER MAGNITUDE AVIONICS MASS EXAMPLE 00 Single-Stage Two-Stage 0 TRANS (G/G) Figure B-3. FREQUENCY (Hz) The Single-Stage curve represents the avionics mass and its spring by themselves. Again, the results are mixed. The optimum design depends on the base excitation frequency. 9

20 APPENDIX C EXAMPLE 3 Repeat the example from Appendix A but with the base plate at 5 lbm. Table C-. Parameters Variable m m k k Value 5 lbm 5 lbm 4.6e04 lbf/in 4.6e04 lbf/in The natural frequencies are f = 44.6 Hz (C-) f = 359. Hz (C-) 0

21 TRANSFER MAGNITUDE EXAMPLE 3 00 Avionics Mass Base Plate 0 TRANS (G/G) FREQUENCY (Hz) Figure C-.

22 TRANSFER MAGNITUDE AVIONICS MASS EXAMPLE 3 00 Single-Stage Two-Stage 0 TRANS (G/G) FREQUENCY (Hz) Figure C-. The Single-Stage curve represents the avionics mass and its spring by themselves. The Two-Stage design provides greater attenuation above an excitation frequency of 00 Hz.

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine May 24, 2010

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine   May 24, 2010 SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine Email: tomirvine@aol.com May 4, 010 Introduction The primary purpose of this tutorial is to present the Modal Transient method

More information

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision F

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision F EFFECTIVE MODA MASS & MODA PARTICIPATION FACTORS Revision F By Tom Irvine Email: tomirvine@aol.com March 9, 1 Introduction The effective modal mass provides a method for judging the significance of a vibration

More information

SHOCK RESPONSE SPECTRUM ANALYSIS VIA THE FINITE ELEMENT METHOD Revision C

SHOCK RESPONSE SPECTRUM ANALYSIS VIA THE FINITE ELEMENT METHOD Revision C SHOCK RESPONSE SPECTRUM ANALYSIS VIA THE FINITE ELEMENT METHOD Revision C By Tom Irvine Email: tomirvine@aol.com November 19, 2010 Introduction This report gives a method for determining the response of

More information

EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision B

EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision B EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision B By Tom Irvine February 20, 2001 Email: tomirvine@aol.com Introduction A particular engineering design problem is to determine the equivalent static

More information

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F By Tom Irvine Email: tomirvine@aol.com May 19, 2011 Introduction Consider a launch vehicle with a payload. Intuitively, a realistic payload

More information

3. Mathematical Properties of MDOF Systems

3. Mathematical Properties of MDOF Systems 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping By Tom Irvine Introduction Recall the homework assignment from Unit 1A. The data.txt time history represented a rocket vehicle dropped from

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A.

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A. VIBRATION RESPONSE OF A CYLINDRICAL SKIN TO ACOUSTIC PRESSURE VIA THE FRANKEN METHOD Revision H By Tom Irvine Email: tomirvine@aol.com September 16, 2008 Introduction The front end of a typical rocket

More information

Vibrationdata FEA Matlab GUI Package User Guide Revision A

Vibrationdata FEA Matlab GUI Package User Guide Revision A Vibrationdata FEA Matlab GUI Package User Guide Revision A By Tom Irvine Email: tom@vibrationdata.com March 25, 2014 Introduction Matlab Script: vibrationdata_fea_preprocessor.zip vibrationdata_fea_preprocessor.m

More information

Optimized PSD Envelope for Nonstationary Vibration Revision A

Optimized PSD Envelope for Nonstationary Vibration Revision A ACCEL (G) Optimized PSD Envelope for Nonstationary Vibration Revision A By Tom Irvine Email: tom@vibrationdata.com July, 014 10 FLIGHT ACCELEROMETER DATA - SUBORBITAL LAUNCH VEHICLE 5 0-5 -10-5 0 5 10

More information

Direct Fatigue Damage Spectrum Calculation for a Shock Response Spectrum

Direct Fatigue Damage Spectrum Calculation for a Shock Response Spectrum Direct Fatigue Damage Spectrum Calculation for a Shock Response Spectrum By Tom Irvine Email: tom@vibrationdata.com June 25, 2014 Introduction A fatigue damage spectrum (FDS) was calculated for a number

More information

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

ME scope Application Note 28

ME scope Application Note 28 App Note 8 www.vibetech.com 3/7/17 ME scope Application Note 8 Mathematics of a Mass-Spring-Damper System INTRODUCTION In this note, the capabilities of ME scope will be used to build a model of the mass-spring-damper

More information

1792. On the conditions for synchronous harmonic free vibrations

1792. On the conditions for synchronous harmonic free vibrations 1792. On the conditions for synchronous harmonic free vibrations César A. Morales Departamento de Mecánica, Universidad Simón Bolívar, Apdo. 89000, Caracas 1080A, Venezuela E-mail: cmorales@usb.ve (Received

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F. A diagram of a honeycomb plate cross-section is shown in Figure 1.

NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F. A diagram of a honeycomb plate cross-section is shown in Figure 1. NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F By Tom Irvine Email: tomirvine@aol.com August 5, 008 Bending Stiffness of a Honeycomb Sandwich Plate A diagram of a honeycomb plate cross-section

More information

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

CRAIG-BAMPTON METHOD FOR A TWO COMPONENT SYSTEM Revision C

CRAIG-BAMPTON METHOD FOR A TWO COMPONENT SYSTEM Revision C CRAIG-BAMPON MEHOD FOR A WO COMPONEN SYSEM Revision C By om Irvine Email: tom@vibrationdata.com May, 03 Introduction he Craig-Bampton method is method for reducing the size of a finite element model, particularly

More information

A NEW METHOD FOR VIBRATION MODE ANALYSIS

A NEW METHOD FOR VIBRATION MODE ANALYSIS Proceedings of IDETC/CIE 25 25 ASME 25 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference Long Beach, California, USA, September 24-28, 25 DETC25-85138

More information

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem Appendix C Modal Analysis of a Uniform Cantilever with a Tip Mass C.1 Transverse Vibrations The following analytical modal analysis is given for the linear transverse vibrations of an undamped Euler Bernoulli

More information

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016) AA 242B / ME 242B: Mechanical Vibrations (Spring 206) Solution of Homework #3 Control Tab Figure : Schematic for the control tab. Inadequacy of a static-test A static-test for measuring θ would ideally

More information

Theoretical Basis of Modal Analysis

Theoretical Basis of Modal Analysis American Journal of Mechanical Engineering, 03, Vol., No. 7, 73-79 Available online at http://pubs.sciepub.com/ajme//7/4 Science and Education Publishing DOI:0.69/ajme--7-4 heoretical Basis of Modal Analysis

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision M

EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision M EQUIVALENT STATIC LOADS FOR RANDOM VIBRATION Revision M By Tom Irvine Email: tomirvine@aol.com October 8, 010 The following approach in the main text is intended primarily for single-degree-of-freedom

More information

2C9 Design for seismic and climate changes. Jiří Máca

2C9 Design for seismic and climate changes. Jiří Máca 2C9 Design for seismic and climate changes Jiří Máca List of lectures 1. Elements of seismology and seismicity I 2. Elements of seismology and seismicity II 3. Dynamic analysis of single-degree-of-freedom

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Structural System, Machines and Load Cases

Structural System, Machines and Load Cases Machine-Induced Vibrations Machine-Induced Vibrations In the following example the dynamic excitation of two rotating machines is analyzed. A time history analysis in the add-on module RF-DYNAM Pro - Forced

More information

FREE VIBRATION WITH COULOMB DAMPING Revision A

FREE VIBRATION WITH COULOMB DAMPING Revision A By Tom Irvine Email: tomirvine@aol.com June 5, 010 FREE VIBRATION WITH COULOMB DAMPING Revision A g m F sgn () & Figure 1. Coulomb damping is dry friction damping. Consider the free vibration response

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Each of these functions represents a signal in terms of its spectral components in the frequency domain.

Each of these functions represents a signal in terms of its spectral components in the frequency domain. N INTRODUCTION TO SPECTRL FUNCTIONS Revision B By Tom Irvine Email: tomirvine@aol.com March 3, 000 INTRODUCTION This tutorial presents the Fourier transform. It also discusses the power spectral density

More information

EXPERIMENTAL DETERMINATION OF DYNAMIC CHARACTERISTICS OF STRUCTURES

EXPERIMENTAL DETERMINATION OF DYNAMIC CHARACTERISTICS OF STRUCTURES EXPERIMENTAL DETERMINATION OF DYNAMIC CHARACTERISTICS OF STRUCTURES RADU CRUCIAT, Assistant Professor, Technical University of Civil Engineering, Faculty of Railways, Roads and Bridges, e-mail: rcruciat@utcb.ro

More information

Structural Health Monitoring using Shaped Sensors

Structural Health Monitoring using Shaped Sensors Structural Health Monitoring using Shaped Sensors Michael I. Friswell and Sondipon Adhikari Swansea University, UK This paper is concerned with distributed sensors to measure the response of beam and plate

More information

MECHANICS LAB AM 317 EXP 8 FREE VIBRATION OF COUPLED PENDULUMS

MECHANICS LAB AM 317 EXP 8 FREE VIBRATION OF COUPLED PENDULUMS MECHANICS LAB AM 37 EXP 8 FREE VIBRATIN F CUPLED PENDULUMS I. BJECTIVES I. To observe the normal modes of oscillation of a two degree-of-freedom system. I. To determine the natural frequencies and mode

More information

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision I

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision I EFFECTIVE MODA MASS & MODA PARTICIPATION FACTORS Revision I B To Irvine Eail: to@vibrationdata.co Deceber, 5 Introduction The effective odal ass provides a ethod for judging the significance of a vibration

More information

VIBRATION PROBLEMS IN ENGINEERING

VIBRATION PROBLEMS IN ENGINEERING VIBRATION PROBLEMS IN ENGINEERING FIFTH EDITION W. WEAVER, JR. Professor Emeritus of Structural Engineering The Late S. P. TIMOSHENKO Professor Emeritus of Engineering Mechanics The Late D. H. YOUNG Professor

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

Lab #2 - Two Degrees-of-Freedom Oscillator

Lab #2 - Two Degrees-of-Freedom Oscillator Lab #2 - Two Degrees-of-Freedom Oscillator Last Updated: March 0, 2007 INTRODUCTION The system illustrated in Figure has two degrees-of-freedom. This means that two is the minimum number of coordinates

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

Chapter 3 Mathematical Methods

Chapter 3 Mathematical Methods Chapter 3 Mathematical Methods Slides to accompany lectures in Vibro-Acoustic Design in Mechanical Systems 0 by D. W. Herrin Department of Mechanical Engineering Lexington, KY 40506-0503 Tel: 859-8-0609

More information

On the comparison of symmetric and unsymmetric formulations for experimental vibro-acoustic modal analysis

On the comparison of symmetric and unsymmetric formulations for experimental vibro-acoustic modal analysis Acoustics 8 Paris On the comparison of symmetric and unsymmetric formulations for experimental vibro-acoustic modal analysis M. Ouisse a and E. Foltete b a FEMO-S UMR CNRS 24 chemin de l Epitaphe 25 Besançon

More information

Lecture 27: Structural Dynamics - Beams.

Lecture 27: Structural Dynamics - Beams. Chapter #16: Structural Dynamics and Time Dependent Heat Transfer. Lectures #1-6 have discussed only steady systems. There has been no time dependence in any problems. We will investigate beam dynamics

More information

Design of Structures for Earthquake Resistance

Design of Structures for Earthquake Resistance NATIONAL TECHNICAL UNIVERSITY OF ATHENS Design of Structures for Earthquake Resistance Basic principles Ioannis N. Psycharis Lecture 3 MDOF systems Equation of motion M u + C u + K u = M r x g(t) where:

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

APPROXIMATE DYNAMIC MODEL SENSITIVITY ANALYSIS FOR LARGE, COMPLEX SPACE STRUCTURES. Timothy S. West, Senior Engineer

APPROXIMATE DYNAMIC MODEL SENSITIVITY ANALYSIS FOR LARGE, COMPLEX SPACE STRUCTURES. Timothy S. West, Senior Engineer APPROXIMATE DYNAMIC MODEL SENSITIVITY ANALYSIS FOR LARGE, COMPLEX SPACE STRUCTURES Timothy S. West, Senior Engineer McDonnell Douglas Aerospace Space Station Division, Houston, Texas ABSTRACT During the

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009 NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION Professor G.G.Ross Oxford University Hilary Term 009 This course of twelve lectures covers material for the paper CP4: Differential Equations, Waves and

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Dynamic effects for structures caused by moving vehicles J. Gyorgyi Department of Structural Mechanics, Technical University of Budapest, H-1521 Budapest, Hungary Email: gyorgy@botond.me.bme.hu Abstract

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 7A. Power Spectral Density Function

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 7A. Power Spectral Density Function SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 7A. Power Spectral Density Function By Tom Irvine Introduction A Fourier transform by itself is a poor format for representing random vibration because

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Chapter 4 Analysis of a cantilever

Chapter 4 Analysis of a cantilever Chapter 4 Analysis of a cantilever Before a complex structure is studied performing a seismic analysis, the behaviour of simpler ones should be fully understood. To achieve this knowledge we will start

More information

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Sudeep Bosu Tata Consultancy Services GEDC, 185 LR,

More information

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS ANALYSIS OF HIGHRISE BUILDING SRUCURE WIH SEBACK SUBJEC O EARHQUAKE GROUND MOIONS 157 Xiaojun ZHANG 1 And John L MEEK SUMMARY he earthquake response behaviour of unframed highrise buildings with setbacks

More information

Software Verification

Software Verification SAP000 EXAMPLE 6-00 LINK LINEAR LINK WITH RAMP LOADING PROBLEM DESCRIPTION In this example a ramp load is applied to an undamped single degree of freedom structure. The ramp loading has a finite rise time

More information

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis INTRODUCTION Structural vibrations caused by human activities are not known to be particularly damaging or catastrophic.

More information

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran Response Spectrum Analysis Shock and Seismic FEMAP & NX Nastran Table of Contents 1. INTRODUCTION... 3 2. THE ACCELEROGRAM... 4 3. CREATING A RESPONSE SPECTRUM... 5 4. NX NASTRAN METHOD... 8 5. RESPONSE

More information

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 Honor Pledge: On my honor, I pledge that this exam represents my own work, and that I have neither given nor received inappropriate aid in the preparation

More information

Appendix A Equations of Motion in the Configuration and State Spaces

Appendix A Equations of Motion in the Configuration and State Spaces Appendix A Equations of Motion in the Configuration and State Spaces A.1 Discrete Linear Systems A.1.1 Configuration Space Consider a system with a single degree of freedom and assume that the equation

More information

LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES

LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES Figure 3.47 a. Two-mass, linear vibration system with spring connections. b. Free-body diagrams. c. Alternative free-body

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017 Program System for Machine Dynamics Abstract Version 5.0 November 2017 Ingenieur-Büro Klement Lerchenweg 2 D 65428 Rüsselsheim Phone +49/6142/55951 hd.klement@t-online.de What is MADYN? The program system

More information

Seminar 6: COUPLED HARMONIC OSCILLATORS

Seminar 6: COUPLED HARMONIC OSCILLATORS Seminar 6: COUPLED HARMONIC OSCILLATORS 1. Lagrangian Equations of Motion Let consider a system consisting of two harmonic oscillators that are coupled together. As a model, we will use two particles attached

More information

Using SDM to Train Neural Networks for Solving Modal Sensitivity Problems

Using SDM to Train Neural Networks for Solving Modal Sensitivity Problems Using SDM to Train Neural Networks for Solving Modal Sensitivity Problems Brian J. Schwarz, Patrick L. McHargue, & Mark H. Richardson Vibrant Technology, Inc. 18141 Main Street Jamestown, California 95327

More information

EXPERIMENTAL MODAL ANALYSIS (EMA) OF A SPINDLE BRACKET OF A MINIATURIZED MACHINE TOOL (MMT)

EXPERIMENTAL MODAL ANALYSIS (EMA) OF A SPINDLE BRACKET OF A MINIATURIZED MACHINE TOOL (MMT) 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India EXPERIMENTAL MODAL ANALYSIS (EMA) OF A

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

Order Reduction of Parametrically Excited Linear and Nonlinear Structural Systems

Order Reduction of Parametrically Excited Linear and Nonlinear Structural Systems Venkatesh Deshmukh 1 Eric A. Butcher e-mail: ffeab@uaf.ediu Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 S. C. Sinha Nonlinear Systems Research Laboratory,

More information

Dynamics of Structures: Theory and Analysis

Dynamics of Structures: Theory and Analysis 1. Free vibrations 2. Forced vibrations 3. Transient response 4. Damping mechanisms Dynamics of Structures: Theory and Analysis Steen Krenk Technical University of Denmark 5. Modal analysis I: Basic idea

More information

Experiments in active control of panel vibrations with spatially weighted objectives using multiple accelerometers

Experiments in active control of panel vibrations with spatially weighted objectives using multiple accelerometers Experiments in active control of panel vibrations with spatially weighted objectives using multiple accelerometers D. Halim a School of Mechanical Engineering, University of Adelaide SA, Australia 55 G.

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

Secondary Response Spectra

Secondary Response Spectra Task NA 3.6 Preparatory Course on Seismic Qualification Bristol, 11-12 January 2011 Secondary Response Spectra Prof. Colin Taylor, University of Bristol Paul Johnston, Atkins Scope Response spectra Modelling

More information

Dynamic Analysis of Coupling Vehicle-Bridge System Using Finite Prism Method

Dynamic Analysis of Coupling Vehicle-Bridge System Using Finite Prism Method Dynamic Analysis of Coupling Vehicle-Bridge System Using Finite Prism Method A. T. Saeed and Zhongfu Xiang Abstract To investigate the transient responses of bridges under moving vehicles, Finite Prism

More information

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE Figure 3.18 (a) Imbalanced motor with mass supported by a housing mass m, (b) Freebody diagram for, The product is called the imbalance vector.

More information

Part 6: Dynamic design analysis

Part 6: Dynamic design analysis Part 6: Dynamic design analysis BuildSoft nv All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or manual, for any purpose, without written

More information

Laboratory handout 5 Mode shapes and resonance

Laboratory handout 5 Mode shapes and resonance laboratory handouts, me 34 82 Laboratory handout 5 Mode shapes and resonance In this handout, material and assignments marked as optional can be skipped when preparing for the lab, but may provide a useful

More information

Periodic Assembly of Multi-Coupled Beams: Wave Propagation and Natural Modes

Periodic Assembly of Multi-Coupled Beams: Wave Propagation and Natural Modes Acoustics 8 Paris Periodic Assembly of Multi-Coupled Beams: Wave Propagation and Natural Modes G. Gosse a, C. Pezerat a and F. Bessac b a Laboratoire Vibrations Acoustique - INSA Lyon, 5 bis avenue Jean

More information

Advanced Control Theory

Advanced Control Theory State Space Solution and Realization chibum@seoultech.ac.kr Outline State space solution 2 Solution of state-space equations x t = Ax t + Bu t First, recall results for scalar equation: x t = a x t + b

More information

APVC2009. Forced Vibration Analysis of the Flexible Spinning Disk-spindle System Represented by Asymmetric Finite Element Equations

APVC2009. Forced Vibration Analysis of the Flexible Spinning Disk-spindle System Represented by Asymmetric Finite Element Equations Forced Vibration Analysis of the Flexible Spinning Disk-spindle System Represented by Asymmetric Finite Element Equations Kiyong Park, Gunhee Jang* and Chanhee Seo Department of Mechanical Engineering,

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Matrix Iteration. Giacomo Boffi.

Matrix Iteration. Giacomo Boffi. http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 12, 2016 Outline Second -Ritz Method Dynamic analysis of MDOF

More information

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas) Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3 in Boas) As suggested in Lecture 8 the formalism of eigenvalues/eigenvectors has many applications in physics, especially in

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

Session 2: MDOF systems

Session 2: MDOF systems BRUFACE Vibrations and Acoustics MA Academic year 7-8 Cédric Dumoulin (cedumoul@ulb.ac.be) Arnaud Deraemaeker (aderaema@ulb.ac.be) Session : MDOF systems Exercise : Multiple DOFs System Consider the following

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

New implicit method for analysis of problems in nonlinear structural dynamics

New implicit method for analysis of problems in nonlinear structural dynamics Applied and Computational Mechanics 5 (2011) 15 20 New implicit method for analysis of problems in nonlinear structural dynamics A. A. Gholampour a,, M. Ghassemieh a a School of Civil Engineering, University

More information

Curve Fitting Analytical Mode Shapes to Experimental Data

Curve Fitting Analytical Mode Shapes to Experimental Data Curve Fitting Analytical Mode Shapes to Experimental Data Brian Schwarz, Shawn Richardson, Mar Richardson Vibrant Technology, Inc. Scotts Valley, CA ABSTRACT In is paper, we employ e fact at all experimental

More information

Analysis of the Temperature Influence on a Shift of Natural Frequencies of Washing Machine Pulley

Analysis of the Temperature Influence on a Shift of Natural Frequencies of Washing Machine Pulley American Journal of Mechanical Engineering, 2015, Vol. 3, No. 6, 215-219 Available online at http://pubs.sciepub.com/ajme/3/6/12 Science and Education Publishing DOI:10.12691/ajme-3-6-12 Analysis of the

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information