Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Size: px
Start display at page:

Download "Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau"

Transcription

1 Final Exam Solution Dynamics :45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat is modeled as a rigid uniform bar with mass and length. The boat is connected to the ceiling of the theater by means of two suspension bars with length that are considered massless. The gravitational constant is. The act consists of two phases: A and B, shown in the figure below. Phase A: The artists with combined mass are on top of the boat, which is in its equilibrium position. They exert a force on the boat to start up its motion. The generalized coordinate describing the motion of the boat is the angle between the suspension bars and the vertical. Phase B: The artists are suspended underneath the boat. This is modelled as if the artists form a pendulum of length. The generalized coordinate describing the motion of the artists is the angle between the artists and the vertical. Bateau Phase A Phase B a) Consider phase A. Derive the equation of motion of the system for arbitrary large angles using the force and moment balances method. In order to do so, make an accurate free-body diagram of the boat. Show that the linearized equation of motion is equal to (i). (i) First, the constraint equations are derived that are used to express the position, velocity and acceleration of the center of mass of the boat in terms of (t). Position: Velocity:

2 Acceleration: The free-body diagram of the boat in a positive deflected state must contain the gravity, the forces in the suspension bars and along the direction of the suspension bars and the external force. The force balances are: Substitution of the constraint equations: [ ] [ ] Multiply the first equation by and the second by : [ ] [ ] Adding yields the equation of motion for arbitrary large angles: Linearizing the equation of motion using and, yields (i): (i) Constraint equations: Free-body diagram: Force balances: Correct non-linear equation: Correct linearization: 2p ( for the velocities, for the accelerations) 2p (-1 for every missing or incorrect force) 2p ( for each correct balance) 3p 10p b) Assume that all artists are distributed evenly over the boat. Derive the expressions for the forces and in the suspension bars for arbitrary large motions of the boat. Prove that both forces are equal. Comment on the physical meaning of all terms in your result. 2

3 Moment balance about the center of gravity of the boat: From this it follows that both forces are equal: Now multiply the first equation of a) by and the second by : [ ] [ ] Subtract the first from the second: So: [ ] It can be seen that both suspension bars carry half of the total weight, the fictitious centripetal force and the component of the excitation force in the direction of the suspension bars. Forces equal by using : Solving from and : 2p Interpretation: 4p c) Calculate the steady state amplitude of the boat when the force applied by the artists is harmonic:. Sketch the magnitude plot of the frequency response function in which you indicate important characteristics. Write the equation of motion in standard form: Trial function and its second time derivative can be cosines because there is no damping: 3

4 Substitution and rewriting: Solving for : The magnitude plot of is equal to at and tends to zero for. The magnitude is equal to infinity for. EoM in standard form: Trial function equal to RHS: Solving amplitude : Correct plot: 2p (-1 for every incorrect plot characteristic) 5p d) What is the expression of the frequency, with which the artists should apply the force, such that the amplitude of the boat increases the fastest? Derive the response of the boat for this specific case, using initial conditions. Prove that the response can be written as (ii). Sketch the response and indicate its important characteristics. (ii) The amplitude of the motion increases the fastest when the system is excited in its natural frequency, because in that case resonance will occur. The homogenous solution of the differential equation is simply: In resonance, the trial solution for the particular part must be multiplied by : Substitution in the equation of motion make that all terms multiplied by cancel: 4

5 From this it can easily be seen that and that for holds: So the total solution becomes: Apply the initial conditions: Response thus becomes equal to (ii): The plot of this response must clearly contain the linear increase in time. Fastest increase in resonance: Homogenous solution: Trial function with : Solving: 2p Initial conditions: Plot linear amplitude increase: 7p e) The system may be subjected to two types of damping: viscous damping or Coulomb damping (dry friction). Sketch the free vibration response of the system in both cases. Indicate and explain three important differences. In case of viscous damping, the decay of the amplitude in time is exponential. The frequency of the oscillation is in the case of underdamping and has no oscillation for critical of overdamping. The system will reach its equilibrium position for. In the case of Coulomb damping the decay of the amplitude in time is linear. The frequency of the oscillation is for all cases. The system will never reach its equilibrium position, but will come to rest as soon as the static friction force is larger than the restoring force due to gravity. Moreover, the response is only piecewise harmonic and not continuously harmonic due to the non-linear nature of the EoM. Three correct differences: 3p ( for every difference that is also sketched) 3p 5

6 f) Consider case B. Derive the equations of motion of the system for arbitrary large angles and, using Lagrange s equation (iii). You may need the goniometric formula (iv). ( ) (iii) (iv) First, the constraint equations are derived that are used to express the position and velocity of the center of mass of the artists in terms of and (t). Position: Velocity: Kinetic energy: ( ) ( ) Substitution of the constraint equations: ( [ ]) Rewrite: Potential energy: No damping and no external forces so. 6

7 Lagrange s terms for : ( ) ( ) First equation of motion: Lagrange s terms for : ( ) ( ) Second equation of motion: Constraint equations: 2p ( for the position, for the velocity) Kinetic energy is : Rewrite kinetic energy: Potential energy: No damping and virtual work: Correct EoMs: 4p (2p for each correct EoM) 10p g) Show that the linearized equations of motion are equal to (v). Assume that and. Derive the expressions for the natural frequencies of the system. Prove that the corresponding natural mode shapes are (vi). [ ] { } [ ] { } { } (v) 7

8 { } { } { } { } (vi) Linearizing means, and neglecting higher order terms. By doing so, (v) is obtained. With the simplifications given, the system reduces to: [ ] { Rewrite: [ ] { Trial function: } [ ] { } { } } [ ] { } { } { } { } Eigenvalue problem: [ ] { } { } Characteristic equation is obtained by equating the determinant to zero: Roots are obtained using the quadratic formula: ( ) Since both roots are negative. This means that the natural frequencies are: First natural mode is obtained by back substitution of ( ) : [ ] { } { } 8

9 Using the first equation it follows that: ( ) ( ) So the first natural mode is: { } { } Second natural mode is obtained by back substitution of ( ) : [ ] { } { } Using the first equation it follows that: ( ) ( ) So the second natural mode is: { } { } Linearizing: Correct eigenvalue problem: Characteristic equation: Natural frequencies: Natural modes: 2p ( for each correct natural frequency) 2p ( for each correct natural mode) 7p h) Apply a coordinate transformation towards the natural coordinates and. Normalize the natural modes with respect to the mass matrix and derive the uncoupled equations of motion. Explain the benefit of the uncoupled equations of motion over the coupled equations of motion. Modal matrix: [ ] [ ] Coordinate transformation: [ ] [ ][ ]{ } [ ] [ ][ ]{ } { } 9

10 For the mass matrix: [ ] [ ][ ] [ [ ] [ ] [ ] ] [( ) ( ) ( ) ( ) ] [ ( ) ( ) ] Normalized if: For the stiffness matrix: [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ] Substitution of the values of and : [ ] [ ][ ] [ ] [ ] The uncoupled equations of motion become: [ ]{ } [ ]{ } { } The advantage of uncoupling the equations of motion is that the response of the system to either initial conditions or harmonic excitations can be solved for each natural mode independently. This means that the response of the 2DOF system can be written as a combination of the solutions of two 1DOF problems for which the solution is obtained with relative ease. Modal matrix: Mass matrix: 2p Normalizing, and : Stiffness matrix: 2p Benefit of uncoupling: 7p 10

11 i) In the case that the artists make continuous loops at constant angular velocity, their motion can be seen as prescribed in time:. Apply this on the non-linear equation of motion of the boat as derived in f). Prove that when and, the linearized equation of motion is equal to (vii). (vii) Recall the non-linear equation of motion as determined in f). Apply : Rewrite : [ ] Simplified case: Rewrite: Linearizing for small angles this can be rewritten to (vii): (vii) Prescribing : Rewriting : Simplifying: Linearzing: 4p 11

12 j) Because of gravity, it is very hard to make loops at a constant angular velocity. This means that in practice the boat is not excited harmonically in this way, but periodic instead. Explain extensively how this influences the procedure required to obtain the solution as a result of this periodic excitation. Transform the excitation to a series of harmonic functions using a Fourier series. Then solve for all individual components. The response is the superposition of all individual responses. Fourier series: Procedure: 2p 3p Overview of points problem 1: a b c d e f g h i j tot

13 Problem 2 Railway track Some structures consisting of beams are supported by an elastic foundation. A good example is the railway track, which consists of steel rails that are connected to the fixed world by means of wooden or concrete crossbars (also known as ties or sleepers) approximately every meters. The crossbars and rails are supported by their foundation which is typically made up from crushed stone. The figure below shows a schematic side view of the railway track in between two crossbars. The rail is modeled as an uniform beam of length, linear density and bending stiffness which is simply supported (hinged) at the locations of both crossbars. The supporting effect of the foundation is modeled as a distributed series of translational springs, which have stiffness per unit beam length. The transverse deformation of the beam is denoted by. As a result of passing trains, the beam may be subjected to an external loading. The effect of gravity is neglected. a) Derive the partial differential equation of motion for transverse vibrations in beams on an elastic foundation (i) using Hooke s law for bending (ii). In order to do so, make an accurate free-body diagram of an internal element of the beam. (i) (ii) The free-body diagram must contain an internal element in positive deflected state, moment and, shear forces and, foundation force and external loading. Force balance in transverse direction and moment balance about the left end of the internal element: [ ] [ ] [ ] 13

14 Neglecting higher order terms in the moment balance yields: Substitution in the force balance and rewriting yields: Apply Hooke s law and rearrange the terms yields the equation of motion (i): Free-body diagram: Balances: Solving: Total 2p (- for every incorrect force or moment) 2p ( for each balance) 5p b) Derive the general solution of the equation of motion (i) for free standing vibrations in the beam. Use the technique of separation of variables. Introduce the wave number as (iii). What is the benefit of using separation of variables to solve the equation of motion? (iii) Free vibrations: Standing waves gives us the opportunity to separate variables: Substitution in the equation of motion: Divide by and, rearrange and introduce the separation constant : 14

15 For the time part: Solution: For the spatial part: Introduce the wave number as given: Solution: The benefit of separating the variables is that the temporal behavior and spatial behavior can be studied separately. Hence, in this we it is known exactly what the shape of the beam is and how this shape is behaving in time. Separation of variables: Correct time part: Correct spatial part: 2p Benefit separation of variables: Total 6p c) Determine the boundary conditions at and. Use them to determine the expressions for the natural frequencies and the corresponding natural mode shapes. How many natural frequencies does the system have? Hint: Look carefully at your boundary conditions. You can reduce the matrix problem easily to a matrix problem. At both ends, the displacement and bending moment are zero. For the following equations: this yields 15

16 At this yields the following equations: In matrix vector form: [ ] { } { } Note that in order to satisfy both the first and the second equation reduces the system to:, which [ ] { } { } Characteristic equation is obtained by equating the determinant zero: For non-zero values of, this is case for: So: Using the definition of the wave number (iii): Solving for the natural frequencies: Back substitution of in the matrix vector equation yields: [ ] { } { } 16

17 From this it follows that, which leaves for the natural mode shapes: Boundary conditions: 2p Eliminate time part: Creating matrix: reducing matrix: Characteristic determinant: Natural frequencies: Natural modes: 8p d) With the natural frequencies and natural mode shapes known, explain extensively the procedure with which you would determine the response of the system to an initial excitation. In this procedure, what determines the expression of the mode shape coefficients? The response of the system can be written as a linear combination of the motion of all natural modes over time: The initial excitation of all modes is determined by multiplying the above expression by and integrating over the length of the beam. This integral can be simplified using the orthogonality conditions. Such that equations in terms of natural coordinates are obtained: The solution of this is simply: The total solution is obtained by back substitution. The coefficients are determined such that the orthogonality conditions hold and that the integral encountered in the above derivation is equal to 1. is combination of modes: Initial excitation of all modes: Natural coordinates: Orthogonality conditions: Determination of : 5p 17

18 e) In the case that the system would have been so complicated that its natural frequencies cannot be obtained analytically, an estimation of the lowest natural frequency can be obtained using Rayleigh s quotient. Proof that in this case the expression for Rayleigh s quotient is equal to (iv). ( ) (iv) Look at the spatial part of the equation of motion and separate the parts with and without : Multiply by and integrate over the length of the beam: The first integral must be integrated by parts twice: [ ] [ ] [ ] ( ) In view of the boundary conditions, the terms between square brackets are zero and the equation reduces to: ( ) Solving for yields Rayleigh s quotient (iv): ( ) ( ) Multiply by, integrate: 2p Integration by parts: 3p BCs for [ ] terms Final expression: 7p 18

19 f) Two possible trial functions that can be used in Rayleigh s quotient are (v). Determine for both trial functions whether it is a comparison function or an admissible function. Based on this, explain which trial function you think will result in the best approximation of the lowest natural frequency. Suppose that you would calculate Rayleigh s quotient using both trial functions. How would you know which of the two estimation is best, without knowing the exact solution? (v) For the first trial function, consider the geometric boundary conditions: The first and second derivatives are: Because the second derivative is not zero at and, the trial function does not fulfil the natural boundary conditions. Hence, the first trial function is an admissible function. For the second trial function, consider the geometric boundary conditions: The first and second derivatives are: Because the second derivative is zero at and, the trial function does fulfil the natural boundary conditions. Hence, the second trial function is a comparison function. Since a comparison function is a better approximation of the real behavior of the beam than an admissible function, using this trial function results in a better approximation of the lowest natural frequency. After solving Rayleigh s quotient of both trial function, the lowest value is the best approximation. 19

20 Check geometric BCs: Check natural BCs: Conclusion comp. / admis.: Comparisson is better: Lowest value is best: 2p ( for each trial function) 6p g) Suppose the beam is given an initial deflection according to the first trial function of (v). Using the procedure referred to in d), it is possible to calculate the response of the system on this initial excitation (you do not need to do this!). Which of all natural mode shapes will be in visible in this response? Why? Since the trial function is a polynomial and the natural modes are sines, an infinite number of modes are excited. Because the function is symmetric, only the oddnumbered modes are excited. Hence, only the odd-numbered natural modes will be visible in the response. Polynomial vs sines: Infinte modes: Symmetry / Odd-numbered: 3p Overview of points problem 2: a b c d e f g tot

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

Final Exam December 11, 2017

Final Exam December 11, 2017 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are NOT allowed to use a calculator with communication capabilities during the exam. Usage

More information

Contents. Contents. Contents

Contents. Contents. Contents Physics 121 for Majors Class 18 Linear Harmonic Last Class We saw how motion in a circle is mathematically similar to motion in a straight line. We learned that there is a centripetal acceleration (and

More information

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions .003 Engineering Dynamics Problem Set 10 with answer to the concept questions Problem 1 Figure 1. Cart with a slender rod A slender rod of length l (m) and mass m (0.5kg)is attached by a frictionless pivot

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics C 17 * Sections C11-C18, C20 2016-2017 1 Required Background 1. INTRODUCTION CLASS 1 The definition of the derivative, Derivative

More information

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES Hilary Term 008. Prof. G.G.Ross Question Sheet : Normal Modes [Questions marked with an asterisk (*) cover topics also covered by the unstarred

More information

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 11.11 LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS A Spring with Friction: Damped Oscillations The differential equation, which we used to describe the motion of a spring, disregards friction. But there

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

Some Aspects of Structural Dynamics

Some Aspects of Structural Dynamics Appendix B Some Aspects of Structural Dynamics This Appendix deals with some aspects of the dynamic behavior of SDOF and MDOF. It starts with the formulation of the equation of motion of SDOF systems.

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics D 19 * 2018-2019 Sections D07 D11 & D14 1 1. INTRODUCTION CLASS 1 ODE: Course s Overarching Functions An introduction to the

More information

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Simple Harmonic Motion Test Tuesday 11/7

Simple Harmonic Motion Test Tuesday 11/7 Simple Harmonic Motion Test Tuesday 11/7 Chapter 11 Vibrations and Waves 1 If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is

More information

Name: Fall 2014 CLOSED BOOK

Name: Fall 2014 CLOSED BOOK Name: Fall 2014 1. Rod AB with weight W = 40 lb is pinned at A to a vertical axle which rotates with constant angular velocity ω =15 rad/s. The rod position is maintained by a horizontal wire BC. Determine

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 7 Fall 2017 Free Undamped Vibration Follow Palm, Sect. 3.2, 3.3 (pp 120-138), 3.5 (pp 144-151), 3.8 (pp. 167-169) The equation

More information

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis Chapter 1 Harmonic Oscillator Figure 1.1 illustrates the prototypical harmonic oscillator, the mass-spring system. A mass is attached to one end of a spring. The other end of the spring is attached to

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part-1 Today,

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2 1) A two-story building frame is shown below. The mass of the frame is assumed to be lumped at the floor levels and the floor slabs are considered rigid. The floor masses and the story stiffnesses are

More information

for non-homogeneous linear differential equations L y = f y H

for non-homogeneous linear differential equations L y = f y H Tues March 13: 5.4-5.5 Finish Monday's notes on 5.4, Then begin 5.5: Finding y P for non-homogeneous linear differential equations (so that you can use the general solution y = y P y = y x in this section...

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Calculating Mechanical Transfer Functions with COMSOL Multiphysics. Yoichi Aso Department of Physics, University of Tokyo

Calculating Mechanical Transfer Functions with COMSOL Multiphysics. Yoichi Aso Department of Physics, University of Tokyo Calculating Mechanical Transfer Functions with COMSOL Multiphysics Yoichi Aso Department of Physics, University of Tokyo Objective Suspension Point You have a pendulum like the one shown on the right.

More information

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way.

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way. Chapter 9. Dynamics in 1D 9.4. Coupled motions in 1D 491 only the forces from the outside; the interaction forces cancel because they come in equal and opposite (action and reaction) pairs. So we get:

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track...

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track... Contents 1 Introduction... 1 1.1 The Basic Function of the Wheel/rail System.... 1 1.2 Significance of Dynamics on the Operation of Rail Vehicles... 2 1.3 On the History of Research in the Field of Railway

More information

AN INTRODUCTION TO LAGRANGE EQUATIONS. Professor J. Kim Vandiver October 28, 2016

AN INTRODUCTION TO LAGRANGE EQUATIONS. Professor J. Kim Vandiver October 28, 2016 AN INTRODUCTION TO LAGRANGE EQUATIONS Professor J. Kim Vandiver October 28, 2016 kimv@mit.edu 1.0 INTRODUCTION This paper is intended as a minimal introduction to the application of Lagrange equations

More information

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions k 2 Wheels roll without friction k 1 Motion will not cause block to hit the supports

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 1: Applications of Oscillatory Motion Prof. WAN, Xin ( 万歆 ) inwan@zju.edu.cn http://zimp.zju.edu.cn/~inwan/ Outline The pendulum Comparing simple harmonic motion and uniform circular

More information

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Exact Solutions Relation between Discrete and Distributed

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009 NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION Professor G.G.Ross Oxford University Hilary Term 009 This course of twelve lectures covers material for the paper CP4: Differential Equations, Waves and

More information

Calculus/Physics Schedule, Second Semester. Wednesday Calculus

Calculus/Physics Schedule, Second Semester. Wednesday Calculus / Schedule, Second Semester Note to instructors: There are two key places where the calculus and physics are very intertwined and the scheduling is difficult: GaussÕ Law and the differential equation for

More information

WEEKS 8-9 Dynamics of Machinery

WEEKS 8-9 Dynamics of Machinery WEEKS 8-9 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2011 Mechanical Vibrations, Singiresu S. Rao, 2010 Mechanical Vibrations: Theory and

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016) AA 242B / ME 242B: Mechanical Vibrations (Spring 206) Solution of Homework #3 Control Tab Figure : Schematic for the control tab. Inadequacy of a static-test A static-test for measuring θ would ideally

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

CHAPTER 11 TEST REVIEW

CHAPTER 11 TEST REVIEW AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations: TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

More information

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering Static & Dynamic Analysis of Structures A Physical Approach With Emphasis on Earthquake Engineering Edward LWilson Professor Emeritus of Civil Engineering University of California, Berkeley Fourth Edition

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Simple Harmonic Motion Lectures 24-25 Chapter 10 (Cutnell & Johnson, Physics 7 th edition) 1 The Ideal Spring Springs are objects that exhibit elastic behavior. It will return back

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

The Torsion Pendulum (One or two weights)

The Torsion Pendulum (One or two weights) The Torsion Pendulum (One or two weights) Exercises I through V form the one-weight experiment. Exercises VI and VII, completed after Exercises I -V, add one weight more. Preparatory Questions: 1. The

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Translational Mechanical Systems

Translational Mechanical Systems Translational Mechanical Systems Basic (Idealized) Modeling Elements Interconnection Relationships -Physical Laws Derive Equation of Motion (EOM) - SDOF Energy Transfer Series and Parallel Connections

More information

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider

More information

Ch 3.7: Mechanical & Electrical Vibrations

Ch 3.7: Mechanical & Electrical Vibrations Ch 3.7: Mechanical & Electrical Vibrations Two important areas of application for second order linear equations with constant coefficients are in modeling mechanical and electrical oscillations. We will

More information

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement Course Name: AP Physics Team Names: Jon Collins 1 st 9 weeks Objectives Vocabulary 1. NEWTONIAN MECHANICS and lab skills: Kinematics (including vectors, vector algebra, components of vectors, coordinate

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 7 Instability in rotor systems Lecture - 4 Steam Whirl and

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING DEFINITIONS AND TERMINOLOGY Course Name : ENGINEERING MECHANICS Course Code : AAEB01 Program :

More information

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements. PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

More information

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran Response Spectrum Analysis Shock and Seismic FEMAP & NX Nastran Table of Contents 1. INTRODUCTION... 3 2. THE ACCELEROGRAM... 4 3. CREATING A RESPONSE SPECTRUM... 5 4. NX NASTRAN METHOD... 8 5. RESPONSE

More information

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 Honor Pledge: On my honor, I pledge that this exam represents my own work, and that I have neither given nor received inappropriate aid in the preparation

More information

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70 Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power

More information

Lab 12. Spring-Mass Oscillations

Lab 12. Spring-Mass Oscillations Lab 12. Spring-Mass Oscillations Goals To determine experimentally whether the supplied spring obeys Hooke s law, and if so, to calculate its spring constant. To determine the spring constant by another

More information

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p.

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. 7 Review & Summary p. 8 Problems p. 8 Motion Along

More information

A Physical Pendulum 2

A Physical Pendulum 2 A Physical Pendulum 2 Ian Jacobs, Physics Advisor, KVIS, Rayong, Thailand Introduction A physical pendulum rotates back and forth about a fixed axis and may be of any shape. All pendulums are driven by

More information

Lab 11. Spring-Mass Oscillations

Lab 11. Spring-Mass Oscillations Lab 11. Spring-Mass Oscillations Goals To determine experimentally whether the supplied spring obeys Hooke s law, and if so, to calculate its spring constant. To find a solution to the differential equation

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017 Program System for Machine Dynamics Abstract Version 5.0 November 2017 Ingenieur-Büro Klement Lerchenweg 2 D 65428 Rüsselsheim Phone +49/6142/55951 hd.klement@t-online.de What is MADYN? The program system

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

In this lecture you will learn the following

In this lecture you will learn the following Module 9 : Forced Vibration with Harmonic Excitation; Undamped Systems and resonance; Viscously Damped Systems; Frequency Response Characteristics and Phase Lag; Systems with Base Excitation; Transmissibility

More information