(DO NOT WRITE ON THIS TEST)

Size: px
Start display at page:

Download "(DO NOT WRITE ON THIS TEST)"

Transcription

1 Phy Final Prep Chap 8 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If Nellie Newton pushes an object with twice the force for twice the distance, she does a. twice the work. b. the same work. c. four times the work. d. eight times the work. 2. The unit of work is the a. watt. b. meter. c. joule. d. newton. e. second. 3. Power is defined as the a. force on an object divided by the time the force acts. b. work done times the time taken to do that work. c. work done on an object divided by the time taken to do the work. d. distance divided by the time taken to move that distance. e. force on an object times the distance the object moves. 4. How much farther will a car traveling at 100 km/s skid than the same car traveling at 50 km/s? a. Half as far. b. The same distance. c. Twice as far. d. Four times as far. e. Five times as far. 5. An arrow in a bow has 70 J of potential energy. Assuming no loss of energy to heat, how much kinetic energy will it have after it has been shot? a. 0 J b. 35 J c. 50 J d. 70 J e. 140 J 6. As a pendulum swings back and forth a. at the end points of its swing, its energy is all potential. b. at the lowest part of its swing, its energy is all kinetic. c. kinetic energy is transformed into potential energy. d. potential energy is transformed into kinetic energy. e. all of the above 7. Rockets are launched from an airplane in the forward direction of motion. The kinetic energy of the airplane will be a. unchanged. b. increased. c. decreased.

2 8. A woman can lift barrels a vertical distance of 1 meter or can roll them up a 2-meter long ramp to the same elevation. If she uses the ramp, the applied force required is a. 1 4 b. 1 2 as much. as much. c. the same amount. d. 2 times as much. e. 4 times as much. 9. An object that has kinetic energy must be a. at rest. b. falling. c. moving. d. elevated. 10. A heavy object and a light object are released from rest at the same height and time in a vacuum. As they fall, they have equal a. energies. b. weights. c. momenta. d. all of the above 11. If an object has kinetic energy, then it also must have a. impulse. b. force. c. momentum. d. acceleration. 12. If the velocity of a moving object doubles, then what else doubles? a. acceleration. b. kinetic energy. c. momentum. d. all of the above 13. A small economy car (low mass) and a limousine (high mass) are pushed from rest across a parking lot, equal distances with equal forces. The car that receives more kinetic energy is the a. the limousine. b. the small economy car. c. neither one they receive the same amount of kinetic energy. 14. How many joules of work are done on a box when a force of 25 N pushes it 3 m? a. 1 J b. 3 J c. 8 J d. 25 J e. 75 J

3 15. How much work is done on a 20-N crate that you lift 2 m? a. 0 J b. 1 J c. 2 J d. 20 J e. 40 J 16. How much power is expended if you lift a 60 N crate 10 meters in 1 second? a. 0 W b. 6 W c. 10 W d. 60 W e. 600 W 17. It takes 80 J to push a large box 8 m across a floor. Assuming the push is in the same direction as the move, what is the magnitude of the force on the box? a. 8 N b. 10 N c. 80 N d. 640 N 18. A 60-N object moves at 1 m/s. Its kinetic energy is a. 1 J. b. 3 J. c. 60 J. d. more than 60 J. 19. Sue can easily lift a 45.0-N rock with the help of a lever. When she pushes down with 20.0 N of force, she lifts the rock 0.3 meters. How far does she move her arms to do this? a. 0.3 m b. 0.7 m c. 6.0 m d. 2.3 m e m 20. A certain jack has a theoretical mechanical advantage of 300. However, due to frictional forces, the actual mechanical advantage is only 100. What is the efficiency of the jack? a. 1 3 b. 3 c. 30 d. 300 e. 30,000

4 True/False Indicate whether the statement is true or false. 21. The rate at which work is done is called energy. 22. The unit of power is the watt. 23. When we carry an object across a room, without lifting it or setting it down, we do no physical work on it. 24. In a grandfather clock, mechanical energy enables a pendulum to swing back and forth. 25. Fossil fuels are both plentiful and inexpensive. Problem (Show your work) 26. What is the work done in lifting 60 kg of blocks to a height of 20 m? 27. A toy cart moves with a kinetic energy of 10 J. If its speed is doubled, what will its kinetic energy be? 28. A 30-kg girl runs up the staircase to a floor 5 m higher in 8 seconds. What is her power output? 29. At what height does a 1000-kg mass have a potential energy of 1 J relative to the ground? 30. The 4.0-kg head of an ax is moving at 4.0 m/s when it strikes a log and penetrates 0.01 m into the log. What is the average force the blade exerts on the log? 31. An anvil hanging vertically from a long rope in a barn is pulled to the side and raised like a pendulum 1.60 m above its equilibrium position. It then swings to its lowermost point where the rope is cut by a sharp blade. The anvil then has a horizontal velocity with which it sails across the barn and hits the floor, 10.0 m below. How far horizontally along the floor will the anvil land?

5 Phy Final Prep Chap 8 Answer Section MULTIPLE CHOICE 1. ANS: C PTS: 1 DIF: L2 OBJ: 9.1 Work STA: Ph.3.a KEY: force distance BLM: comprehension 2. ANS: C PTS: 1 DIF: L1 OBJ: 9.1 Work STA: Ph.3.a KEY: work joule BLM: knowledge 3. ANS: C PTS: 1 DIF: L1 OBJ: 9.2 Power KEY: power work time BLM: knowledge 4. ANS: D PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: energy speed BLM: comprehension 5. ANS: D PTS: 1 DIF: L2 OBJ: 9.6 Work-Energy Theorem STA: Ph.2.c KEY: potential energy kinetic BLM: comprehension 6. ANS: E PTS: 1 DIF: L2 OBJ: 9.6 Work-Energy Theorem STA: Ph.2.c KEY: pendulum potential kinetic BLM: comprehension 7. ANS: C PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: kinetic motion BLM: comprehension 8. ANS: B PTS: 1 DIF: L2 OBJ: 9.8 Machines KEY: force ramp BLM: application 9. ANS: C PTS: 1 DIF: L1 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: kinetic energy BLM: knowledge 10. ANS: E PTS: 1 DIF: L2 OBJ: 9.3 Mechanical Energy KEY: vacuum fall weight BLM: comprehension 11. ANS: C PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: kinetic momentum BLM: comprehension 12. ANS: C PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: velocity momentum BLM: comprehension 13. ANS: C PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: kinetic energy BLM: comprehension 14. ANS: E PTS: 1 DIF: L2 OBJ: 9.1 Work STA: Ph.3.a KEY: joule work force BLM: application 15. ANS: E PTS: 1 DIF: L2 OBJ: 9.1 Work STA: Ph.3.a KEY: lift work distance BLM: application 16. ANS: E PTS: 1 DIF: L2 OBJ: 9.2 Power KEY: power time BLM: application 17. ANS: B PTS: 1 DIF: L2 OBJ: 9.1 Work STA: Ph.3.a KEY: force joule magnitude BLM: application 18. ANS: B PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: kinetic energy BLM: application 19. ANS: B PTS: 1 DIF: L2 OBJ: 9.7 Conservation of Energy KEY: lever force distance BLM: application 20. ANS: A PTS: 1 DIF: L2 OBJ: 9.8 Machines KEY: mechanical advantage actual BLM: application

6 TRUE/FALSE 21. ANS: F PTS: 1 DIF: L1 OBJ: 9.2 Power KEY: work energy rate BLM: knowledge 22. ANS: T PTS: 1 DIF: L1 OBJ: 9.2 Power KEY: power watt BLM: knowledge 23. ANS: T PTS: 1 DIF: L2 OBJ: 9.1 Work STA: Ph.3.a KEY: work BLM: comprehension 24. ANS: T PTS: 1 DIF: L1 OBJ: 9.3 Mechanical Energy KEY: mechanical energy BLM: application 25. ANS: F PTS: 1 DIF: L2 OBJ: 9.10 Energy for Life KEY: energy conservation BLM: comprehension PROBLEM 26. ANS: 12,000 J PTS: 1 DIF: L2 OBJ: 9.1 Work STA: Ph.3.a KEY: work BLM: application 27. ANS: 40 J PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: kinetic energy speed BLM: application 28. ANS: 188 W PTS: 1 DIF: L2 OBJ: 9.2 Power KEY: mass power BLM: application 29. ANS: 0.00 m PTS: 1 DIF: L2 OBJ: 9.4 Potential Energy STA: Ph.2.b KEY: mass potential energy BLM: application 30. ANS: 3200 N PTS: 1 DIF: L2 OBJ: 9.5 Kinetic Energy STA: Ph.2.a KEY: force BLM: application 31. ANS: 8.0 m PTS: 1 DIF: L2 OBJ: 9.6 Work-Energy Theorem STA: Ph.2.c KEY: pendulum velocity BLM: application

Chapter 9 Conceptual Physics Study Guide

Chapter 9 Conceptual Physics Study Guide Name : Date: Period: Chapter 9 Conceptual Physics Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In physics, work is defined as a. force times

More information

Chapter 7 Energy and Machines Unit Test - Ms. Nechita

Chapter 7 Energy and Machines Unit Test - Ms. Nechita hapter 7 Energy and Machines Unit Test - Ms. Nechita Your Name: Printed Feb 26, 2015 03:12 PM Question #1 of 38 1 pt - Which has greater kinetic energy, a car traveling at 30 km/hr or a car of half the

More information

Physics Final Practice Exam Part 1

Physics Final Practice Exam Part 1 Physics Final Practice Exam Part 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics?

More information

CP Snr and Hon Freshmen Study Guide

CP Snr and Hon Freshmen Study Guide CP Snr and Hon Freshmen Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Displacement is which of the following types of quantities? a. vector

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

S15--Phys Q2 Momentum

S15--Phys Q2 Momentum Name: Class: Date: ID: A S15--Phys Q2 Momentum Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If the momentum of an object changes and its mass remains

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

Physics 130: Questions to study for midterm #1 from Chapter 7

Physics 130: Questions to study for midterm #1 from Chapter 7 Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be one-half the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.

More information

Semester one Physics

Semester one Physics Class: Date: 2014-2015 Semester one Physics Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The table shows the results of an experiment with a projectile

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

S15--AP Q1 Work and Energy PRACTICE

S15--AP Q1 Work and Energy PRACTICE Name: Class: Date: S15--AP Q1 Work and Energy PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rupel pushes a box 5.00 m by applying a 25.0-N horizontal

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Ch 8 Momentum Test Review!

Ch 8 Momentum Test Review! Ch 8 Test Review! Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The momentum of an object is defined as the object's a. mass times its velocity. b. force

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0. Newton's Laws 1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4.

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4. 1. The work done in accelerating an object along a frictionless horizontal surface is equal to the change in the object s 1. momentum 2. velocity 3. potential energy 4. kinetic energy 2. The graph below

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Work. Work, Energy, and Power

Work. Work, Energy, and Power Work http://www.physicsclassroom.com/class/energy/u5l1a.html http://www.physicsclassroom.com/class/energy/u5l1aa.html MOP Connection: Work and Energy: sublevel 1 1. An impulse is a force acting over some

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Copyright 2014 Edmentum - All rights reserved. Science Physics Energy and Power Blizzard Bag 2014-2015 1. A woman wants to lift a 10.0-kg rock from the ground to a height of 8.0 m. What is the minimum

More information

Name Student ID Phys121 Win2011

Name Student ID Phys121 Win2011 (1) (3 pts) The airplane in the figure below is travelling at a constant speed and at a fixed altitude with its engines providing forward thrust. Which of the free-body diagrams below best represents the

More information

Chapter 10-Work, Energy & Power

Chapter 10-Work, Energy & Power DULLES HIGH SCHOOL Chapter 10-Work, Energy & Power Energy Transformations Judy Matney 1/12/2016 In this chapter, we will study the concepts of force and work; we will understand the transformations of

More information

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work falls into two categories: Work falls into two categories: work done against

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Chapter 1 about science 1. Differentiate between hypothesis and theory.

Chapter 1 about science 1. Differentiate between hypothesis and theory. Physics A Exam Review Name Hr PHYSICS SCIENTIFIC METHOD FACT HYPOTHESIS LAW THEORY PHYSICAL SCIENCE UNITS VECTOR MAGNITUDE FORCE MECHANICAL EQUILIBRIUM NET FORCE SCALAR RESULTANT TENSION SUPPORT FORCE

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

Physics: Momentum, Work, Energy, Power

Physics: Momentum, Work, Energy, Power Name: ate: 1. The momentum of a 5-kilogram object moving at 6 meters per second is. 1 kg m/sec. 5 kg m/sec. 11 kg m/sec. 30 kg m/sec 2. 60-kilogram student running at 3.0 meters per second has a kinetic

More information

Teacher Version. Winnetonka 9th Grade Physics: Work, Energy, Power

Teacher Version. Winnetonka 9th Grade Physics: Work, Energy, Power Teacher Version Winnetonka 9th Grade Physics: Work, Energy, Power 1. What is the formula to calculate work? a. w =!! b. w = F d c. w =!! d. w = F t 2. When force increases, distance stays the same, work.

More information

UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET.

UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET. PHYSICAL SCIENCE UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET. name 1. Which of the following processes requires the most work? a. A 10 kg weight rests on a table. b. A person holds a 1 kg

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Physics 180A Test Points

Physics 180A Test Points Physics 180A Test 2-120 Points Name 1) Describe each situation and fill in the blanks to the diagram below. There are 4 situations and 8 blanks. (12 pts) 2) A crate slides up an inclined ramp and then

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

CHAPTER 5. Chapter 5, Energy

CHAPTER 5. Chapter 5, Energy CHAPTER 5 2. A very light cart holding a 300-N box is moved at constant velocity across a 15-m level surface. What is the net work done in the process? a. zero b. 1/20 J c. 20 J d. 2 000 J 4. An rock is

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

IB PHYSICS SL SEMESTER 1 FINAL REVIEW

IB PHYSICS SL SEMESTER 1 FINAL REVIEW Class: Date: IB PHYSICS SL SEMESTER 1 FINAL REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A rocket is fired vertically. At its highest point,

More information

Vectors & scalars: Force as vector Review

Vectors & scalars: Force as vector Review Vectors & scalars: Force as vector Review Name 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

The work-energy theorem

The work-energy theorem The work-energy theorem Objectives Investigate quantities using the work-energy theorem in various situations. Calculate quantities using the work-energy theorem in various situations. Design and implement

More information

Conservation of Energy Review

Conservation of Energy Review onservation of Energy Review Name: ate: 1. An electrostatic force exists between two +3.20 10 19 -coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges

More information

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers.

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. Ch 9 Energy Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. 9.1 Work Work is the product of the force on an object and the distance through

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Physics Test 9: Work and Energy page 1

Physics Test 9: Work and Energy page 1 Name Physics Test 9: Work and Energy page 1 Multiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. Which of the following is a unit

More information

Conceptual Physics Momentum and Impulse Take Home Exam

Conceptual Physics Momentum and Impulse Take Home Exam Conceptual Physics Momentum and Impulse Take Home Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Write notes in the margin explaining your answer 1.

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

Physics Semester 1 Review

Physics Semester 1 Review Physics Semester 1 Review Name: 1. Define: Speed Velocity Acceleration Use the graph to the right to answer questions 2-4. 2. How far did the object travel in 3 seconds? 3. How long did it take for the

More information

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40.

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40. 1. As a pendulum swings from position A to position B as shown in the diagram, its total mechanical energy (neglecting friction) A) decreases B) increases C) remains the same 2. Base your answer to the

More information

Efficiency = power out x 100% power in

Efficiency = power out x 100% power in Work, Energy and Power Review Package 1) Work: change in energy. Measured in Joules, J. W = Fd W = ΔE Work is scalar, but can be negative. To remember this, ask yourself either: Is the object is losing

More information

Physics Fall final. Multiple Choice Identify the choice that best completes the statement or answers the question.

Physics Fall final. Multiple Choice Identify the choice that best completes the statement or answers the question. Physics Fall final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A tow truck exerts a force of 2000 N on a car, accelerating it at 1 m/s/s. What is the

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Section 1: Work, Power, and Machines Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Key Ideas How is work calculated? What is the relationship

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics.

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics. Name: ate: 1. ase your answer to the following question on the information and diagram below and on your knowledge of physics. student pushes a box, weighing 50. newtons, 6.0 meters up an incline at a

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below.

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. Name Vectors Practice 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the object, will establish

More information

Energy and Momentum Review Problems

Energy and Momentum Review Problems Energy and Momentum Review Problems NAME 1. In which one of the following situations is zero net work done? A) A ball rolls down an inclined plane. B) A physics student stretches a spring. C) A projectile

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Exam 2--PHYS 101--Fall 2014

Exam 2--PHYS 101--Fall 2014 Class: Date: Exam 2--PHYS 101--Fall 2014 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider these vectors. What is A-B? a. a c. c b. b d. d 2. Consider

More information

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

More information

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity.

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Name: 1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Graph A Graph B Graph C Graph D Graph E Graph F Graph G Graph H (a)

More information

CPO Science Foundations of Physics

CPO Science Foundations of Physics CPO Science Foundations of Physics Unit 4, Chapter 10 Chapter 9 Unit 4: Energy and Momentum Chapter 10 Work and Energy 10.1 Machines and Mechanical Advantage 10.3 Energy and Conservation of Energy Chapter

More information

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m Name VECTORS 1) An airplane undergoes the following displacements: First, it flies 59 km in a direction 30 east of north. Next, it flies 58 km due south. Finally, it flies 100 km 30 north of west. Using

More information

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)

More information

m/s m/s m/s m/s

m/s m/s m/s m/s P and J review Name 10-FEB-03 1. The diagram shows two carts on a horizontal, frictionless surface being pushed apart when a compressed spring attached to one of the carts is released. Cart A has a mass

More information

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed.

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Momentum_P2 1 NA 2NA 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Draw the free-body diagram for the sledge at the position shown on the snow slope. 3b. [3 marks] 1

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Add more here! Equation Sandbox In Unit 7, some of the following equations will be used. Practice isolating variables to prepare for it.

Add more here! Equation Sandbox In Unit 7, some of the following equations will be used. Practice isolating variables to prepare for it. Unit 7 Work, Energy, Conservation of Energy, Power Essential Fundamentals of Work, Energy, Power 1. Energy is transferred between systems in different ways. Early E. C.: / 1 Total HW Points Unit 7: / 32

More information

Chapter 8 Energy Flow and Systems

Chapter 8 Energy Flow and Systems Conceptual Physics/ PEP Name: Date: Chapter 8 Energy Flow and Systems Section Review 8.1 1. In an experiment, you learn that the total energy at the end is a little less than it was at the beginning. Explain

More information

WORK & ENERGY. Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done?

WORK & ENERGY. Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? PHYSICS HOMEWORK #41 Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? 2. A force of 120 N is applied to the front of

More information

W = 750 m. PHYS 101 SP17 Exam 1 BASE (A) PHYS 101 Exams. The next two questions pertain to the situation described below.

W = 750 m. PHYS 101 SP17 Exam 1 BASE (A) PHYS 101 Exams. The next two questions pertain to the situation described below. PHYS 101 Exams PHYS 101 SP17 Exa BASE (A) The next two questions pertain to the situation described below. A boat is crossing a river with a speed to the water. The river is flowing at a speed W = 750

More information