Heat Transfer. Revision Examples

Size: px
Start display at page:

Download "Heat Transfer. Revision Examples"

Transcription

1 Hea Transfer Revision Examples

2 Hea ransfer: energy ranspor because of a emperaure difference. Thermal energy is ransferred from one region o anoher. Hea ranspor is he same phenomena lie mass ransfer, momenum ransfer and elecrical conducion. Similar rae equaions, where flux is proporional o a poenial difference. Poenial difference emperaure difference Three modes of hea ransfer: - Thermal Conducion - Thermal Convecion - Thermal Radiaion

3 Thermal conducion The mechanism: energy is ranspored beween pars of coninuum by he ransfer of ineic energy beween paricles or groups of paricles a he aomic level. Purely hermal conducion: in solid opaque bodies (opaque: no permeable for radiaion) he hermal conducion is he significan hea ransfer mechanism because he maerial doesn flow and here is no radiaion. In flowing fluids, hermal conducion dominaes in he region very close o he boundary layer, where he flow is laminar he flow parallel o he surface here is no eddy moion 3

4 Seady-sae conducion Seady-sae condiions: = F() = consan For seady-sae hea conducion, in one dimension, he Fourier-law is q ( A) d dx q hea flow rae, W hermal conduciviy or hea conducion coefficien, W/m K A cross secional area normal o flow, m d/dx emperaure gradien, K/m The equaion saes ha he hea flow rae (q) in he x direcion is direcly proporional o he emperaure gradien d/dx and he cross secional area A normal o he hea flow. The proporionaliy facor is he hermal conduciviy. The minus sign indicaes ha he hea flow is posiive in he direcion of decreasing emperaure. 4

5 If A and are consan (e.g. a a wall) he equaion q A ( ) L L wall hicness emperaure a x = 0 emperaure a x = L A surface of he wall hermal conduciviy 5

6 One-layer fla wall W, x x A x x A q L R R A R A L A L A q where W, R hermal resisance, K/W 6

7 Example Given is a solid bric wall, wih he following daa: Maerial: bric, fired clay, densiy: 760 g/m 3, conduciviy (): 0.8 W/m K Surface (A): 5 m x 3 m = 5 m Inerior surface emperaure ( ): 0 C Exerior surface emperaure ( ): 0 C Thicness of he wall (L): 38 cm = 0.38 m Calculae a) he hea flow hrough he wall b) he hermal resisance 7

8 Muli-layer fla wall W, R A R A R A q If he number of layers is n: n i i n R A q 8

9 Example Given is an insulaed concree wall, which daa are: Layers: sand and gravel concree, 400 g/m 3, =.5 W/m K, L = 6 cm expanded polysyrene, 0 g/m 3, = W/m K, L = 6 cm 3 sand and gravel concree, 400 g/m 3, 3 =.5 W/m K, L 3 = 8 cm Surface (A): 5 m x 3 m = 5 m Inerior surface emperaure ( ): 0 C Exerior surface emperaure ( 4 ): 0 C a) Calculae he hea flow hrough he wall and he emperaure on he surface of he layers b) Illusrae he emperaure in he wall 9

10 Thermal conducion a a one-layer pipe The Fourier-equaion in cylinder coordinaes: Q r L d dr, W q r L d/dr he hea flow rae radius lengh of he pipe hermal conduciviy emperaure gradien 0

11 The soluion of he equaion: W, r r ln L Q W, R Q The hermal conducion resisance: W K m, ln or ln d d L R r r L R A he same way, wih he hermal conducion resisance:

12 Thermal convecion Energy ransfer is involved by fluid movemen and molecular conducion. Hea ransfer means energy ransfer from liquids and gases o he surface of a body or a wall, or from he surface of a body o he liquid.

13 If in he flow he Reynolds number is large enough, hree differen flow regions exis: A he wall: laminar sublayer (boundary layer) hermal conducion Ouside he laminar layer: buffer layer eddy mixing and conducion Beyond he buffer layer: urbulen region eddy mixing 3

14 Convecion is divided ino wo caegories: Free convecion, naural convecion: he flow is generaed by nonhomogeneous densiies caused emperaure difference. Forced convecion: he flow is produced by exernal sources (pump, fan). 4

15 The hea flow rae is described by he Newon s formula: q h A( ) c s f h c A Where q hea flow rae, W h c convecional hea ransfer coefficien, W/m K A surface of he wall, m s emperaure of he surface, K or C f emperaure of he fluid, K or C 5

16 The hea ransfer coefficien can be calculaed wih dimensionless numbers, from similariy heory. Generally Nu = F (Pr; Gr; Re) I means, Nussel number is a funcion of he produc of Prandl number, Grashof number and Reynolds number. Dimensionless Numbers h c L Nu h c hea ransfer coefficien, W/m K L characerisic dimension, m hermal conduciviy of he fluid, W/m K 6

17 Dimensionless Numbers In he equaion of Nussel number Pr c p absolue viscosiy, g/m s or Ns/m c p specific hea, J/g K hermal conduciviy of he fluid, W/m K Gr L 3 g L characerisic dimension, m densiy, g/m 3 coefficien of hermal expansion, /K g graviaional acceleraion, m/s emperaure difference, K or C Re v L absolue viscosiy, g/m s or Ns/m v velociy, m/s L characerisic dimension, m D, diameer inemaic viscosiy = /, m /s 7

18 Pracical cases of convecion Naural or free convecion: effec of emperaure difference. General relaionship: n c Gr C L h Nu Pr) ( n f p n f c c g L L C h av 3 8

19 Open spaces: h c = F(; direcion of hea flow) Direcion of hea flow: Ceiling down Wall Floor horizonal up = s air > 0 h c up >h c hor > h c down Some values for h c hea ransfer coefficien Air, gas 4 0 W/m K Waer, liquid W/m K 9

20 Forced convecion: fluid sream derived from ouer force Nu = F(Pr, Re) = F(v) Some values for h c hea ransfer coefficien Air, gas 0 50 W/m K Waer, liquid W/m K 0

21 Example 3 Given are a room and a radiaor. Surface emperaure: s = 85 C Parameers of ambien air: air = 30 C, bar, dry air Naural convecion, lengh in direcion of flow: 0,5 m

22 Soluion: Nu h c L C ( Gr Pr) n h c C L L 3 g av n f c p n f Properies of dry air a air = 30 C densiy, 30 =.70 g/m 3 coefficien of hermal expansion, 30 = /K graviaional acceleraion, g = m/s absolue viscosiy, 30 = Ns/m specific hea, c p30 = 03 J/g K hermal conduciviy of he fluid, 30 = W/m K Temperaure difference = = 55 C Average emperaure av = ( )/ = 5/ ~ 60 C absolue viscosiy a 60 C 60 = Ns/m

23 ASHRAE Fundamenals 005, Chaper 3, Page 3.7 Table 0 3

24 A special problem of convecion: Convecion in closed spaces: hollows, air layer beween surfaces e.g. window consrucion > A = A Complex process of hea ransfer: conducion convecion radiaion Equivalen hea conducion coefficien: e Equivalen conducion resisance of air layer: R equi L equi From able, e.g. ASHRAE Fundamenals 00, Chaper 5, Table 3 Thermal Resisances of Plane Air spaces, m K/W 4

25 Thermal radiaion The radiaion energy ransfer is hrough energy-carrying elecromagneic waves ha are emied by aoms and molecules due o change in heir energy conen. I means: does no depend on an inermediae maerial. The rae of hermal energy emied by a surface depends on is quaniy and is absolue emperaure. A blac surface absorbs all inciden radiaion. 5

26 The oal energy emied per uni ime and uni area is given by he Sefan-Bolzman law: E blac T 4 where Sefan-Bolzmann consan: W/m K 4 For nonblac surfaces E Eblac T 4 where hemispherical emiance or emissiviy. is a funcion of he maerial, condiion of is surface. 6

27 Lamber s cosine law: Lamber's cosine law is he saemen ha he oal power observed from a "Lamberian" surface is direcly proporional o he cosine of he angle Φ made by he observer's line of sigh and he line normal o he surface. E E n cos Uilising he Lamber s law he oal energy radiaed o he hemisphere is: E Toal E n 7

28 The hea flow rae beween he surfaces Given are wo surfaces: 8

29 Firs le s examine wo general plane elemens! The energy flux which leaves da elemen and which is absorbed by da elemen is quadraicly small: d E = E n cos da dw From his, he radiaion absorbed by da is: d E - = d E The hea exchange hrough radiaion beween he wo plane elemens is: d q - = d E - d E - 9

30 Angle Facor The fracion of all radian energy leaving a surface i ha is direcly inciden on surface is he angle facor F i (also nown as view facor, shape facor, and configuraion facor). 30

31 3

32 3

33 Overall Hea Transfer From inside air o ouside air he hea ransfer is a complex process: Inside convecion In he wall consrucion conducion Ouside also convecion The hea flow rae wih overall hea ransfer coefficien: q U A ( ) i o Overall hea ransfer coefficien: U h i n j L i i h o or U R is n j R j R os 33

34 Example 4 Le s see Example There is a bric wall, where he wall consrucion daa are he following: Maerial Densiy Conduiviy Thicness, g/m 3, W/m,K L, m Bric, fired clay R = m K/W Inside emperaure: C Ouside emperaure: 4 C Area of he surface: 5 m 34

35 Hea ransfer coeff./surface resisance on he laminar air layer W/m K ASHRAE F.5. EN 83 Sill air (inside) Horizonal surface (upward) 9.6/0.* 0.0/0. Horizonal surface (downward) 6.3/0.6* 5.9/0.7 Verical surface 8.9/0.* 7.7/0.3 * non reflecive surfaces Moving air (ouside) Any posiion 34/0.03* 5/0.04 * wind velociy 6,7 m/s (4 m/h) 35

36 Hungary: 7/006. Miniserial Decree energeical calculaions regulae he energy consumpion of buildings in harmony wih he european regulaions. Required U-values: Exernal wall.. Ec W/m K 36

37 Example 5 We improve he bric wall wih a new insulaion The wall consrucion daa are he following: Maerial Densiy Conduiviy Thicness, g/m 3, W/m,K L, m Bric, fired clay Expanded polysyrene R = m K/W Inside emperaure: C Ouside emperaure: 4 C Area of he surface: 5 m 37

Activity 4 Solutions: Transfer of Thermal Energy

Activity 4 Solutions: Transfer of Thermal Energy Aciviy 4 Soluions: Transfer of Thermal nergy 4.1 How Does Temperaure Differ from Thermal nergy? a) Temperaure Your insrucor will demonsrae molecular moion a differen emperaures. 1) Wha happens o molecular

More information

Energy Transport. Chapter 3 Energy Balance and Temperature. Temperature. Topics to be covered. Blackbody - Introduction

Energy Transport. Chapter 3 Energy Balance and Temperature. Temperature. Topics to be covered. Blackbody - Introduction Energy Transpor Chaper Energy Balance and Temperaure Energy can be ransmied by:. Conducion. Radiaion. Convecion Asro 960 One mechanism usually dominaes In solids, conducion dominaes In space and enuous

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

COS 2AB Physics Year 11 Programme 2012

COS 2AB Physics Year 11 Programme 2012 COS AB Physics Year 11 Programme 01 Semeser Week 1 & 30 Jan 6 Feb Monday is School Dev Day Week 3 13 Feb Week 4 0 Feb a & b Disribue Programme, Assessmen srucure, Syllabus, Course ouline Heaing and cooling

More information

Load Calculations Heat Balance Method - Theory. Prof. Jeffrey D. Spitler School of Mechanical and Aerospace Engineering, Oklahoma State University

Load Calculations Heat Balance Method - Theory. Prof. Jeffrey D. Spitler School of Mechanical and Aerospace Engineering, Oklahoma State University Load Calculaions Hea Balance Mehod - Theory Prof. Jeffrey D. Spiler School of Mechanical and Aerospace Engineering, Oklahoma Sae Universiy Tonigh The hea balance mehod heory The hea balance mehod applicaion

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Turbulence in Fluids. Plumes and Thermals. Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College

Turbulence in Fluids. Plumes and Thermals. Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College Turbulence in Fluids Plumes and Thermals enoi Cushman-Roisin Thayer School of Engineering Darmouh College Why do hese srucures behave he way hey do? How much mixing do hey accomplish? 1 Plumes Plumes are

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Thermal Modeling of a Honeycomb Reformer including Radiative Heat Transfer

Thermal Modeling of a Honeycomb Reformer including Radiative Heat Transfer Thermal Modeling of a Honeycomb Reformer including Radiaive Hea Transfer J Schöne *1, A Körnig 1, W Becer 1 and A Michaelis 1 1 Fraunhofer IKTS, Winerbergsraße 8, 0177 Dresden *Corresponding auhor: jaobschoene@isfraunhoferde

More information

Simplified Indices Assessing Building Envelope's Dynamic Thermal Performance: A Survey

Simplified Indices Assessing Building Envelope's Dynamic Thermal Performance: A Survey Simplified Indices Assessing Building Envelope's Dynamic Thermal Performance: A Survey Ferrari, S. Building Environmen Science and Technology Deparmen, Poliecnico di Milano (email: simone.ferrari@polimi.i)

More information

Steady Heat Conduction (Chapter 3) Zan Wu Room: 5113

Steady Heat Conduction (Chapter 3) Zan Wu Room: 5113 Seady Hea Conducion Chaper 3 Zan Wu zan.wu@energy.lh.se Room: 53 Ojecives Seady-sae hea conducion Wihou inernal hea generaion - Derive emperaure profile for a plane wall - Derive emperaure profile for

More information

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Kragujevac J. Sci. 3 () 7-4. UDC 53.5:536. 4 THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Hazem A. Aia Dep. of Mahemaics, College of Science,King Saud Universiy

More information

Unsteady Mixed Convection Heat and Mass Transfer Past an Infinite Porous Plate with Thermophoresis Effect

Unsteady Mixed Convection Heat and Mass Transfer Past an Infinite Porous Plate with Thermophoresis Effect Unseady Mixed Convecion Hea and Mass Transfer Pas an Infinie Porous Plae wih Thermophoresis Effec TARIQ AL-AZAB Mechanical Engineering Deparmen, Al-Al-Sal Communiy College Al-Balqa Applied Universiy P.O.Box

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Diffusion & Viscosity: Navier-Stokes Equation

Diffusion & Viscosity: Navier-Stokes Equation 4/5/018 Diffusion & Viscosiy: Navier-Sokes Equaion 1 4/5/018 Diffusion Equaion Imagine a quaniy C(x,) represening a local propery in a fluid, eg. - hermal energy densiy - concenraion of a polluan - densiy

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

ENVIRONMENTAL FLUID MECHANICS

ENVIRONMENTAL FLUID MECHANICS ENVIONMENTAL FLUID MECHANICS Plumes & Thermals Why do hese srucures behave he way hey do? How much mixing do hey accomplish? enoi Cushman-oisin Thayer School of Engineering Darmouh College hp://hayer.darmouh.edu/~cushman/books/efm/chap1.pdf

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Physics Equation List :Form 4 Introduction to Physics

Physics Equation List :Form 4 Introduction to Physics Physics Equaion Lis :Form 4 Inroducion o Physics Relaive Deviaion Relaive Deviaion Mean Deviaion 00% Mean Value Prefixes Unis for Area and Volume Prefixes Value Sandard form Symbol Tera 000 000 000 000

More information

CORRELATION EQUATIONS: FORCED AND FREE CONVECTION

CORRELATION EQUATIONS: FORCED AND FREE CONVECTION CHAPER 0 0. Inroducion CORREAION EQUAIONS: FORCED AND FREE CONECION A ey facor in convecion is e ea e ea ransfer coefficien. Insead of deermining we deermine e ssel number, wic a dimensionless ea ransfer

More information

STUDY ON THE AIR MOVEMENT CHARACTER IN SOLAR WALL SYSTEM. Y Li, X Duanmu, Y Sun, J Li and H Jia

STUDY ON THE AIR MOVEMENT CHARACTER IN SOLAR WALL SYSTEM. Y Li, X Duanmu, Y Sun, J Li and H Jia Proceedings: Building Simulaion 007 SUDY ON HE AIR MOVEMEN CHARACER IN SOLAR WALL SYSEM Y Li, X Duanmu, Y Sun, J Li and H Jia College of Archiecure and Civil Engineering, Beijing Universiy of echnology,

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

N. Sandeep 1 and V. Sugunamma 2

N. Sandeep 1 and V. Sugunamma 2 Journal of Applied Fluid Mechanics, Vol. 7, No., pp. 75-86, 4. Available online a www.jafmonline.ne, ISSN 735-357, EISSN 735-3645. Radiaion and Inclined Magneic Field Effecs on Unseady Hydromagneic Free

More information

MECHANICAL PROPERTIES OF FLUIDS NCERT

MECHANICAL PROPERTIES OF FLUIDS NCERT Chaper Ten MECHANICAL PROPERTIES OF FLUIDS MCQ I 10.1 A all cylinder is filled wih iscous oil. A round pebble is dropped from he op wih zero iniial elociy. From he plo shown in Fig. 10.1, indicae he one

More information

Numerical investigation of Ranque-Hilsch energy separation effect A.S. Noskov 1,a, V.N. Alekhin 1,b, A.V. Khait 1,a

Numerical investigation of Ranque-Hilsch energy separation effect A.S. Noskov 1,a, V.N. Alekhin 1,b, A.V. Khait 1,a Applied Mechanics and Maerials Online: 2013-01-11 ISSN: 1662-7482, Vol. 281, pp 355-358 doi:10.4028/www.scienific.ne/amm.281.355 2013 Trans Tech Publicaions, Swizerland Numerical invesigaion of Ranque-Hilsch

More information

CH.5. BALANCE PRINCIPLES. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.5. BALANCE PRINCIPLES. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.5. BALANCE PRINCIPLES Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Overview Balance Principles Convecive Flux or Flux by Mass Transpor Local and Maerial Derivaive of a olume Inegral Conservaion

More information

125 TIE Theory of Indoor Environment THERMAL COMFORT

125 TIE Theory of Indoor Environment THERMAL COMFORT ČVUT v Praze Fakula savební Kaedra echnických zařízení budov 125 TIE Theory of Indoor Environmen THERMAL COMFORT Zuzana Veverková THERMAL COMFORT OVERALL COMFORT 8 Measuremens of facors for evaluaion of

More information

4. Electric field lines with respect to equipotential surfaces are

4. Electric field lines with respect to equipotential surfaces are Pre-es Quasi-saic elecromagneism. The field produced by primary charge Q and by an uncharged conducing plane disanced from Q by disance d is equal o he field produced wihou conducing plane by wo following

More information

Area A 0 level is h 0, assuming the pipe flow to be laminar. D, L and assuming the pipe flow to be highly turbulent.

Area A 0 level is h 0, assuming the pipe flow to be laminar. D, L and assuming the pipe flow to be highly turbulent. Pipe Flows (ecures 5 o 7). Choose he crec answer (i) While deriving an expression f loss of head due o a sudden expansion in a pipe, in addiion o he coninuiy and impulse-momenum equaions, one of he following

More information

Dr. János VAD AXIAL FLOW TURBOMACHINERY Classification, restriction of topic under discussion

Dr. János VAD AXIAL FLOW TURBOMACHINERY Classification, restriction of topic under discussion Dr. János VAD AXIAL FLOW TURBOMACHINERY. INTRODUCTION.. Classificaion, resricion of opic under discussion Fluid: Gas (Liuid) (Muliphase fluid) ower inpu / oupu: ower inpu ransporaion of fluid from a domain

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

PHYS 1401 General Physics I Test 3 Review Questions

PHYS 1401 General Physics I Test 3 Review Questions PHYS 1401 General Physics I Tes 3 Review Quesions Ch. 7 1. A 6500 kg railroad car moving a 4.0 m/s couples wih a second 7500 kg car iniially a res. a) Skech before and afer picures of he siuaion. b) Wha

More information

Variable acceleration, Mixed Exercise 11

Variable acceleration, Mixed Exercise 11 Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

System design and simulation of constant temperature box using semiconductor refrigeration device

System design and simulation of constant temperature box using semiconductor refrigeration device In. J. Compuer Applicaions in Technology, Vol. Sysem design and simulaion of consan emperaure box using semiconducor refrigeraion device Hui Zhang* The School of Insrumen Science and Opo-elecronic Engineering,

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

copper ring magnetic field

copper ring magnetic field IB PHYSICS: Magneic Fields, lecromagneic Inducion, Alernaing Curren 1. This quesion is abou elecromagneic inducion. In 1831 Michael Faraday demonsraed hree ways of inducing an elecric curren in a ring

More information

( ) is the stretch factor, and x the

( ) is the stretch factor, and x the (Lecures 7-8) Liddle, Chaper 5 Simple cosmological models (i) Hubble s Law revisied Self-similar srech of he universe All universe models have his characerisic v r ; v = Hr since only his conserves homogeneiy

More information

NUMERICAL SIMULATION OF A LIQUID SODIUM TURBULENT FLOW OVER A BACKWARD FACING STEP WITH A FOUR PARAMETER LOGARITHMIC TURBULENCE MODEL

NUMERICAL SIMULATION OF A LIQUID SODIUM TURBULENT FLOW OVER A BACKWARD FACING STEP WITH A FOUR PARAMETER LOGARITHMIC TURBULENCE MODEL h European Conference on Compuaional Mechanics (ECCM ) 7h European Conference on Compuaional Fluid Dynamics (ECFD 7) 11 June, Glasgow, UK NUMERICAL SIMULATION OF A LIQUID SODIUM TURBULENT FLOW OVER A BACKWARD

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

Finite Element Analysis of Structures

Finite Element Analysis of Structures KAIT OE5 Finie Elemen Analysis of rucures Mid-erm Exam, Fall 9 (p) m. As shown in Fig., we model a russ srucure of uniform area (lengh, Area Am ) subjeced o a uniform body force ( f B e x N / m ) using

More information

Chapter 14 Homework Answers

Chapter 14 Homework Answers 4. Suden responses will vary. (a) combusion of gasoline (b) cooking an egg in boiling waer (c) curing of cemen Chaper 4 Homework Answers 4. A collision beween only wo molecules is much more probable han

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

Ch1: Introduction and Review

Ch1: Introduction and Review //6 Ch: Inroducion and Review. Soli and flui; Coninuum hypohesis; Transpor phenomena (i) Solid vs. Fluid No exernal force : An elemen of solid has a preferred shape; fluid does no. Under he acion of a

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Plasma Astrophysics Chapter 3: Kinetic Theory. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 3: Kinetic Theory. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Asrophysics Chaper 3: Kineic Theory Yosuke Mizuno Insiue o Asronomy Naional Tsing-Hua Universiy Kineic Theory Single paricle descripion: enuous plasma wih srong exernal ields, imporan or gaining

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Flow-Induced Vibration Analysis of Supported Pipes with a Crack

Flow-Induced Vibration Analysis of Supported Pipes with a Crack Flow-Induced Vibraion Analsis of Suppored Pipes wih a Crack Jin-Huk Lee, Samer Masoud Al-Said Deparmen of Mechanical Engineering American Universi of Sharjah, UAE Ouline Inroducion and Moivaion Aeroacousicall

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

Physics 30: Chapter 2 Exam Momentum & Impulse

Physics 30: Chapter 2 Exam Momentum & Impulse Physics 30: Chaper 2 Exam Momenum & Impulse Name: Dae: Mark: /29 Numeric Response. Place your answers o he numeric response quesions, wih unis, in he blanks a he side of he page. (1 mark each) 1. A golfer

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

written by Soma Vesztergom

written by Soma Vesztergom 8 h Block Invesigaions Concerning he Viscosiy of Gases and he Mean Free Pah of he Molecules English-speaking physical chemisry laboraory classes Auumn 009/010 wrien by Soma Veszergom 1.) Inroducion The

More information

Transient Laminar MHD Free Convective Flow past a Vertical Cone with Non-Uniform Surface Heat Flux

Transient Laminar MHD Free Convective Flow past a Vertical Cone with Non-Uniform Surface Heat Flux Nonlinear Analysis: Modelling and Conrol, 29, Vol. 4, No. 4, 489 53 Transien Laminar MHD Free Convecive Flow pas a Verical Cone wih Non-Uniform Surface Hea Flux Bapuji Pullepu, A. J. Chamkha 2 Deparmen

More information

Proposal of atomic clock in motion: Time in moving clock

Proposal of atomic clock in motion: Time in moving clock Proposal of aomic clock in moion: Time in moving clock Masanori Sao Honda Elecronics Co., d., 0 Oyamazuka, Oiwa-cho, Toyohashi, ichi 441-3193, Japan E-mail: msao@honda-el.co.jp bsrac: The ime in an aomic

More information

A NUMERICAL STUDY OF THE EFFECT OF CONTACT ANGLE ON THE DYNAMICS OF A SINGLE BUBBLE DURING POOL BOILING

A NUMERICAL STUDY OF THE EFFECT OF CONTACT ANGLE ON THE DYNAMICS OF A SINGLE BUBBLE DURING POOL BOILING Proceedings of IMECE ASME Inernaional Mechanical Engineering Congress & Exposiion November 17-,, New Orleans, Louisiana IMECE-33876 A NUMERICAL STUDY OF THE EFFECT OF CONTACT ANGLE ON THE DYNAMICS OF A

More information

Topic 1: Linear motion and forces

Topic 1: Linear motion and forces TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Chapter 1 Rotational dynamics 1.1 Angular acceleration

Chapter 1 Rotational dynamics 1.1 Angular acceleration Chaper Roaional dynamics. Angular acceleraion Learning objecives: Wha do we mean by angular acceleraion? How can we calculae he angular acceleraion of a roaing objec when i speeds up or slows down? How

More information

Initial Value Problems

Initial Value Problems Iniial Value Problems ChEn 2450 d d f(, ) (0) 0 6 ODE.key - November 26, 2014 Example - Cooking a Lobser Assumpions: The lobser remains a a uniform emperaure. This implies ha he hermal conduciviy of he

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture

Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture Scienific Herald of he Voronezh Sae Universiy of Archiecure and Civil Engineering. Consrucion and Archiecure UDC 625.863.6:551.328 Voronezh Sae Universiy of Archiecure and Civil Engineering Ph. D. applican

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

U. S. Rajput and Gaurav Kumar

U. S. Rajput and Gaurav Kumar MATEMATIKA, 2018, Volume 34, Number 2, 433 443 c Penerbi UTM Press. All righs reserved Effec of Hall Curren on Unseady Magneo Hydrodynamic Flow Pas an Exponenially Acceleraed Inclined Plae wih Variable

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC Ch.. Group Work Unis Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Uni 2 Jusify wheher he following saemens are rue or false: a) Two sreamlines, corresponding o a same insan of ime, can never inersec

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

5 Dilute systems. 5.1 Weight, drag and Particle Reynolds number

5 Dilute systems. 5.1 Weight, drag and Particle Reynolds number 5 Dilue sysems This chaper considers he behaviour of a single paricle suspended in a fluid. In pracice, he equaions and principles described are used o undersand how a number of paricles behave, provided

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

INFLUENCE OF TEMPERATURE-DEPENDENT VISCOSITY ON THE MHD COUETTE FLOW OF DUSTY FLUID WITH HEAT TRANSFER

INFLUENCE OF TEMPERATURE-DEPENDENT VISCOSITY ON THE MHD COUETTE FLOW OF DUSTY FLUID WITH HEAT TRANSFER INFLUENCE OF TEMPERATURE-DEPENDENT VISCOSITY ON THE MHD COUETTE FLOW OF DUSTY FLUID WITH HEAT TRANSFER HAZEMA.ATTIA Received December 5; Revised February 6; Acceped 9 May 6 This paper sudies he effec of

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

IN-SITU THERMAL RESISTANCE EVALUATION OF WALLS USING AN ITERATIVE DYNAMIC MODEL

IN-SITU THERMAL RESISTANCE EVALUATION OF WALLS USING AN ITERATIVE DYNAMIC MODEL In. Journal for Housing Science, Vol.38, No.1 pp.1-12, 214 Pulished in he Unied Saes IN-SITU THERMAL RESISTANCE EVALUATION OF WALLS USING AN ITERATIVE DYNAMIC MODEL Anónio Jóse Barreo TADEU and Nuno SIMÕES

More information

WORK, ENERGY AND POWER NCERT

WORK, ENERGY AND POWER NCERT Exemplar Problems Physics Chaper Six WORK, ENERGY AND POWER MCQ I 6.1 An elecron and a proon are moving under he influence of muual forces. In calculaing he change in he kineic energy of he sysem during

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Unsteady Mass- Transfer Models

Unsteady Mass- Transfer Models See T&K Chaper 9 Unseady Mass- Transfer Models ChEn 6603 Wednesday, April 4, Ouline Conex for he discussion Soluion for ransien binary diffusion wih consan c, N. Soluion for mulicomponen diffusion wih

More information