Accelerating AES Using Instruction Set Extensions for Elliptic Curve Cryptography. Stefan Tillich, Johann Großschädl

Size: px
Start display at page:

Download "Accelerating AES Using Instruction Set Extensions for Elliptic Curve Cryptography. Stefan Tillich, Johann Großschädl"

Transcription

1 Accelerating AES Using Instruction Set Extensions for Elliptic Curve Cryptography International Workshop on Information Security & Hiding (ISH '05) Institute for Applied Information Processing and Communications () Group Faculty of Computer Science Graz University of Technology

2 Introduction NIST's Advanced Encryption Standard (AES) defines a symmetric-key cipher Lot of focus on efficient implementations (both software and hardware) Pure software vs. pure hardware implementations Our work deals with optimizing AES software implementations on 32-bit platforms with cryptographic extensions Accelerating AES using ISE for ECC 2

3 AES Overview AES_encrypt(byte in[4*4], byte out[4*4], word w[4*(nr+1)]) byte state[4,4]; state = in; AddRoundKey(state, w[0, 3]); // Initial AddRoundKey for round = 1 step 1 to Nr 1 // (Nr-1) rounds SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state, w[round*4, (round+1)*3]); end for // Last round (no MixColumns) SubBytes(state); ShiftRows(state); AddRoundKey(state, w[nr*4, (Nr+1)*3]); out = state; end s 0,0 s 0,1 s 0,2 s 0,3 s 1,0 s 1,1 s 1,2 s 1,3 s 2,0 s 2,1 s 2,2 s 2,3 s 3,0 s 3,1 s 3,2 s 3,3 State matrix Accelerating AES using ISE for ECC 3

4 AES Overview (cont'd) Each round consists of four transformations: SubBytes, ShiftRows, MixColumns, AddRoundKey ShiftRows, AddRoundKey simple to implement in software SubBytes requires a 256-byte lookup table (cannot be calculated efficiently in software on general-purpose processors) MixColumns multiplies two polynomials with coefficients in GF(2 8 ) Accelerating AES using ISE for ECC 4

5 AES Optimization Whole round (SubBytes, ShiftRows, MixColumns as lookup. Requires a lookup-table of at least 1 KB for encryption and decryption each. May be slow on systems with slow memory and no or small cache Calculate transformations: MixColumns complex -> Target for optimization Accelerating AES using ISE for ECC 5

6 32-bit AES Software Implementations Column-wise 32-bit words hold columns of the state Row-wise (Bertoni et al) 32-bit words hold rows of the state MixColumns can be implemented efficiently s 0,0 s 0,1 s 0,2 s 0,3 s 0,0 s 0,1 s 0,2 s 0,3 s 1,0 s 1,1 s 1,2 s 1,3 s 1,0 s 1,1 s 1,2 s 1,3 s 2,0 s 2,1 s 2,2 s 2,3 s 2,0 s 2,1 s 2,2 s 2,3 s 3,0 s 3,1 s 3,2 s 3,3 s 3,0 s 3,1 s 3,2 s 3,3 Accelerating AES using ISE for ECC 6

7 ECC Extensions MixColumns interprets 32-bit words as polynomials of degree 3 over GF(2 8 ) and multiplies two such polynomials ECC extensions for curves over GF(2 m ) perform similar operations efficiently Proposed extensions e.g. ISEC, PAX If ECC extensions already present, AES can be accelerated for free! Accelerating AES using ISE for ECC 7

8 ISEC ECC Extensions Unified hardware multiplier for integers and binary polynomials 72-bit accumulator (8 guard bits for integer multiply-accumulate): ACC Instructions to support arithmetic in the finite fields GF(p) and GF(2 m ) Accelerating AES using ISE for ECC 8

9 ISEC ECC Extensions for GF(2 m ) gf2mul A,B : Multiply A and B as binary polynomials of degree 31 A B ACC.hi ACC.lo gf2mac A,B : Multiply A and B as binary polynomials and add to ACC A B ACC.hi ACC.lo ACC.hi ACC.lo shacr A : shift ACC right by 32 bits, put low word into A ACC.lo ACC.hi A ACC.lo 0 ACC.hi Accelerating AES using ISE for ECC 9

10 Calculating MixColumns Multiplication of two polynomials of degree 3 over GF(2 8 ) modulo (x 4 + 1), where one of the polynomials is constant, the other is a column of the state a(x) = s 3,i x 3 + s 2,i x 2 + s 1,i x + s 0,i b(x) = 03 x x x + 02 c(x) = a(x) b(x) s 0,i s 1,i s 2,i s 3,i MSB LSB Accelerating AES using ISE for ECC 10

11 Fast MixColumns (Column-wise AES) ACC.hi ACC.lo MixColumns using ECC extensions 3 steps: Polynomial multiplication Coefficient reduction Polynomial reduction Accelerating AES using ISE for ECC 11

12 Step 1: Polynomial Multiplication s 0,i s 1,i s 2,i s 3,i s 1,i 2 s 3,i 2 s 0,i 2 s 2,i 3 s 1,i 3 s 3,i 3 s 0,i 3 s 2,i s 0,i s 1,i s 2,i s 3,i s 0,i s 1,i s 2,i s 3,i The coefficients in the state column are ordered from least significant to most significant Therefore we multiply the column by the fixed polynomial (01 x x x + 02) to get the result in the same coefficient order Using gf2mul: Result is put in ACC Accelerating AES using ISE for ECC 12

13 Step 2: Coefficient Reduction B == 01 1A 11B 1B MSBs( s 0,i s 1,i s 2,i s 3,i ) >> 7 r 1,i r 3,i r 0,i r 2,i r 1,i r 3,i r 0,i r 2,i Some of the coefficient summands may not be reduced elements of GF(2 8 ): Exactly then when MSB(s k,i ) == 1 and s k,i has been multiplied with 02 or 03 in step 1 For each of the non-reduced summands the reduction polynomial (0x11B) must be added The reduction values r k,i are calculated from the MSBs of the state bytes s k,i and added to the ACC with gf2mac Accelerating AES using ISE for ECC 13

14 Step 3: Polynomial Reduction 3 s 0,i s 0,i s 1,i s 0,i s 1,i s 2,i s 0,i s 1,i s 2,i s 3,i Polynomial modulo (x 4 + 1) means that x i mod (x 4 + 1) = x (i mod 4) Therefore the coefficients for x 4, x 5, x 6 must be added to the coefficients of x 0, x 1, x 2 respectively This is easily done by adding ACC.hi to ACC.lo Accelerating AES using ISE for ECC 14

15 MixColumns using Extensions word mask, low_word, high_word; mask = column & 0x ; // MSBs of state bytes mask = mask >> 7; // Get bits into LSBs gf2mul(column, 0x ); // Step 1 gf2mac(mask, 0x00011a1b); // Step 2 shacr(low_word); // Coefficients of x 3 -x 0 shacr(high_word); // Coefficients of x 6 -x 4 column = low_word ^ high_word; // Step 3 Accelerating AES using ISE for ECC 15

16 Fast InvMixColumns (Column-wise AES) Similar to Mix Columns A little more complicated because of the higher coefficient values of the constant polynomial (09 x 3 + 0D x 2 + 0B x + 0E) To calculate the reduction values r k,i an additional gf2mac is required Accelerating AES using ISE for ECC 16

17 InvMixColumns using Extensions word red_vals, low_word, high_word; red_vals = column & 0xE0E0E0E0; // 3 MSBs of state bytes gf2mul(red_vals, 0x090D0B0E); // Compute excessive bits shacr(low_word); shacr(high_word); low_word = low_word ^ high_word; high_word = high_word << 24; low_word = low_word >> 8; low_word = low_word ^ high_word; red_vals = low_word & 0x ; // Reduction value calculated gf2mac(column, 0x090D0B0E); // Step 1 gf2mac(red_vals, 0x11B); // Step 2 shacr(low_word); // Coefficients of x 3 -x 0 shacr(high_word); // Coefficients of x 6 -x 4 column = low_word ^ high_word; // Step 3 Accelerating AES using ISE for ECC 17

18 Row-wise AES Implementation Trades off overhead for transposition of the state matrix and a transposed key expansion with a more efficient implementation of MixColumns and InvMixColumns Can also be accelerated with ECC extensions but only minimally Accelerating AES using ISE for ECC 18

19 Practical Results SPARC V8-compatible LEON-2 embedded processor with ECC instruction set extensions (ISEC) (32x16)-bit integer/polynomial multiplier with a 72-bit accumulator gf2mul in 3 cycles, gf2mac 1 cycle with 1 delay slot Area overhead for extensions < 6 kgates Cycle counter for timing measurements Three different AES-128 implementations: Gladman, Column-oriented, Row-oriented Accelerating AES using ISE for ECC 19

20 Precomputed Key Schedule (Execution time in clock cycles) Key expansion Encryption Decryption Gladman NOTABLES* 522 1,860 3,125 Gladman NOTABLES* optimized 522 1,755 1,906 Column-oriented 497 1,672 2,962 Column-oriented optimized 497 1,257 1,576 Row-oriented 738 1,636 1,954 Row-oriented optimized 738 1,502 1,567 Speedup 23.1 % 19.8 % *i.e. No T lookup tables Best implementation without extensions Best implementation with extensions Accelerating AES using ISE for ECC 20

21 On-the-fly Key Expansion (Execution time in clock cycles) Encryption Decryption* Column-oriented 2,254 3,357 Column-oriented optimized 1,674 2,018 Row-oriented 2,328 2,433 Row-oriented optimized 2,230 2,176 Speedup 25.7 % 17.0 % *Last roundkey supplied by caller Best implementation without extensions Best implementation with extensions Accelerating AES using ISE for ECC 21

22 Practical Results (cont'd) Performance gain for AES-192 and AES-256 should be similar to AES-128 Code size between 2.5 and 3.5 KB (plain C except for optimized MixColumns/InvMixColumns); reduced by using extensions Susceptibility to side-channel attacks remains unchanged Accelerating AES using ISE for ECC 22

23 Conclusions Performance gains up to 25% for AES encryption by using ECC extensions If ECC extensions are already present, this speedup is "free" Column-oriented AES can be optimized best Accelerating AES using ISE for ECC 23

24 Further Work Design and evaluation of custom instructions explicitly designed for AES Custom instruction for SubBytes Custom instruction for MixColumns including reduction for GF(2 8 ) Accelerating AES using ISE for ECC 24

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael Outline CPSC 418/MATH 318 Introduction to Cryptography Advanced Encryption Standard Renate Scheidler Department of Mathematics & Statistics Department of Computer Science University of Calgary Based in

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES CS355: Cryptography Lecture 9: Encryption modes. AES Encryption modes: ECB } Message is broken into independent blocks of block_size bits; } Electronic Code Book (ECB): each block encrypted separately.

More information

A Simple Architectural Enhancement for Fast and Flexible Elliptic Curve Cryptography over Binary Finite Fields GF(2 m )

A Simple Architectural Enhancement for Fast and Flexible Elliptic Curve Cryptography over Binary Finite Fields GF(2 m ) A Simple Architectural Enhancement for Fast and Flexible Elliptic Curve Cryptography over Binary Finite Fields GF(2 m ) Stefan Tillich, Johann Großschädl Institute for Applied Information Processing and

More information

Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design:

Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design: Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design: Secret Key Systems Encrypting a small block of text (say 64 bits) General considerations

More information

(Solution to Odd-Numbered Problems) Number of rounds. rounds

(Solution to Odd-Numbered Problems) Number of rounds. rounds CHAPTER 7 AES (Solution to Odd-Numbered Problems) Review Questions. The criteria defined by NIST for selecting AES fall into three areas: security, cost, and implementation. 3. The number of round keys

More information

Elliptic Curve Cryptography and Security of Embedded Devices

Elliptic Curve Cryptography and Security of Embedded Devices Elliptic Curve Cryptography and Security of Embedded Devices Ph.D. Defense Vincent Verneuil Institut de Mathématiques de Bordeaux Inside Secure June 13th, 2012 V. Verneuil - Elliptic Curve Cryptography

More information

A Five-Round Algebraic Property of the Advanced Encryption Standard

A Five-Round Algebraic Property of the Advanced Encryption Standard A Five-Round Algebraic Property of the Advanced Encryption Standard Jianyong Huang, Jennifer Seberry and Willy Susilo Centre for Computer and Information Security Research (CCI) School of Computer Science

More information

Table Of Contents. ! 1. Introduction to AES

Table Of Contents. ! 1. Introduction to AES 1 Table Of Contents! 1. Introduction to AES! 2. Design Principles behind AES Linear Cryptanalysis Differential Cryptanalysis Square Attack Biclique Attack! 3. Quantum Cryptanalysis of AES Applying Grover

More information

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen.

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen. Yoyo Game with AES Navid Ghaedi Bardeh University of Bergen May 8, 2018 1 / 33 Outline 1 Introduction on Block cipher 2 Yoyo Game 3 Application on AES 4 Conclusion 2 / 33 Classical Model of Symmetric Cryptography

More information

Design of Low Power Optimized MixColumn/Inverse MixColumn Architecture for AES

Design of Low Power Optimized MixColumn/Inverse MixColumn Architecture for AES Design of Low Power Optimized MixColumn/Inverse MixColumn Architecture for AES Rajasekar P Assistant Professor, Department of Electronics and Communication Engineering, Kathir College of Engineering, Neelambur,

More information

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 CPSC 418/MATH 318 L01 October 17, 2018 Time: 50 minutes

More information

The Rijndael Block Cipher

The Rijndael Block Cipher The Rijndael Block Cipher Vincent Leith MATH 27.2 May 3, 2 A brief look at the mathematics behind the Rijndael Block Chiper. Introduction The Rijndael Block Chiper was brought about by Joan Daemen and

More information

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Computer and Network Security Topic 3.1 Secret Key Cryptography Algorithms CSC/ECE 574 Dr. Peng Ning 1 Outline Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Dr. Peng Ning 2 Introduction

More information

Module 2 Advanced Symmetric Ciphers

Module 2 Advanced Symmetric Ciphers Module 2 Advanced Symmetric Ciphers Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University E-mail: natarajan.meghanathan@jsums.edu Data Encryption Standard (DES) The DES algorithm

More information

Introduction to Side Channel Analysis. Elisabeth Oswald University of Bristol

Introduction to Side Channel Analysis. Elisabeth Oswald University of Bristol Introduction to Side Channel Analysis Elisabeth Oswald University of Bristol Outline Part 1: SCA overview & leakage Part 2: SCA attacks & exploiting leakage and very briefly Part 3: Countermeasures Part

More information

PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM

PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM Nabihah Ahmad Department of Electronic Engineering, Faculty of Electrical and Electronic Engineering, Universiti

More information

A Multiple Bit Parity Fault Detection Scheme for The Advanced Encryption Standard Galois/ Counter Mode

A Multiple Bit Parity Fault Detection Scheme for The Advanced Encryption Standard Galois/ Counter Mode Western University Scholarship@Western Electronic Thesis and Dissertation Repository October 2014 A Multiple Bit Parity Fault Detection Scheme for The Advanced Encryption Standard Galois/ Counter Mode

More information

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems Other Public-Key Cryptosystems Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

More information

Introduction to Modern Cryptography. (1) Finite Groups, Rings and Fields. (2) AES - Advanced Encryption Standard

Introduction to Modern Cryptography. (1) Finite Groups, Rings and Fields. (2) AES - Advanced Encryption Standard Introduction to Modern Cryptography Lecture 3 (1) Finite Groups, Rings and Fields (2) AES - Advanced Encryption Standard +,0, and -a are only notations! Review - Groups Def (group): A set G with a binary

More information

Extended Criterion for Absence of Fixed Points

Extended Criterion for Absence of Fixed Points Extended Criterion for Absence of Fixed Points Oleksandr Kazymyrov, Valentyna Kazymyrova Abstract One of the criteria for substitutions used in block ciphers is the absence of fixed points. In this paper

More information

Hardware implementations of ECC

Hardware implementations of ECC Hardware implementations of ECC The University of Electro- Communications Introduction Public- key Cryptography (PKC) The most famous PKC is RSA and ECC Used for key agreement (Diffie- Hellman), digital

More information

The Advanced Encryption Standard

The Advanced Encryption Standard Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 48 The Advanced Encryption Standard Successor of DES DES considered insecure; 3DES considered too slow. NIST competition in 1997 15

More information

Instruction Set Extensions for Reed-Solomon Encoding and Decoding

Instruction Set Extensions for Reed-Solomon Encoding and Decoding Instruction Set Extensions for Reed-Solomon Encoding and Decoding Suman Mamidi and Michael J Schulte Dept of ECE University of Wisconsin-Madison {mamidi, schulte}@caewiscedu http://mesaecewiscedu Daniel

More information

arxiv: v1 [cs.cr] 13 Sep 2016

arxiv: v1 [cs.cr] 13 Sep 2016 Hacking of the AES with Boolean Functions Michel Dubois Operational Cryptology and Virology Laboratory Éric Filiol Operational Cryptology and Virology Laboratory September 14, 2016 arxiv:1609.03734v1 [cs.cr]

More information

Elliptic Curves I. The first three sections introduce and explain the properties of elliptic curves.

Elliptic Curves I. The first three sections introduce and explain the properties of elliptic curves. Elliptic Curves I 1.0 Introduction The first three sections introduce and explain the properties of elliptic curves. A background understanding of abstract algebra is required, much of which can be found

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com of SubBytes and InvSubBytes s of AES Algorithm Using Power Analysis Attack Resistant Reversible

More information

Low Complexity Differential Cryptanalysis and Fault Analysis of AES

Low Complexity Differential Cryptanalysis and Fault Analysis of AES Low Complexity Differential Cryptanalysis and Fault Analysis of AES Michael Tunstall May/June, 2011 Michael Tunstall (University of Bristol) May/June, 2011 1 / 34 Introduction We present a survey of low

More information

Symmetric Crypto Systems

Symmetric Crypto Systems T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Symmetric Crypto Systems EECE 412 Copyright 2004-2012 Konstantin Beznosov 1 Module Outline! Stream ciphers under the hood Block ciphers under

More information

The XL and XSL attacks on Baby Rijndael. Elizabeth Kleiman. A thesis submitted to the graduate faculty

The XL and XSL attacks on Baby Rijndael. Elizabeth Kleiman. A thesis submitted to the graduate faculty The XL and XSL attacks on Baby Rijndael by Elizabeth Kleiman A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mathematics

More information

UNDERSTANDING THE COST OF GROVER'S ALGORITHM FOR FINDING A SECRET KEY

UNDERSTANDING THE COST OF GROVER'S ALGORITHM FOR FINDING A SECRET KEY UNDERSTANDING THE COST OF GROVER'S ALGORITHM FOR FINDING A SECRET KEY Rainer Steinwandt 1,2 Florida Atlantic University, USA (joint work w/ B. Amento, M. Grassl, B. Langenberg 2, M. Roetteler) 1 supported

More information

Applying Grover s algorithm to AES: quantum resource estimates

Applying Grover s algorithm to AES: quantum resource estimates Applying Grover s algorithm to AES: quantum resource estimates Markus Grassl 1, Brandon Langenberg 2, Martin Roetteler 3 and Rainer Steinwandt 2 1 Universität Erlangen-Nürnberg & Max Planck Institute for

More information

McBits: Fast code-based cryptography

McBits: Fast code-based cryptography McBits: Fast code-based cryptography Peter Schwabe Radboud University Nijmegen, The Netherlands Joint work with Daniel Bernstein, Tung Chou December 17, 2013 IMA International Conference on Cryptography

More information

Improved Impossible Differential Cryptanalysis of Rijndael and Crypton

Improved Impossible Differential Cryptanalysis of Rijndael and Crypton Improved Impossible Differential Cryptanalysis of Rijndael and Crypton Jung Hee Cheon 1, MunJu Kim 2, Kwangjo Kim 1, Jung-Yeun Lee 1, and SungWoo Kang 3 1 IRIS, Information and Communications University,

More information

Arithmetic in Integer Rings and Prime Fields

Arithmetic in Integer Rings and Prime Fields Arithmetic in Integer Rings and Prime Fields A 3 B 3 A 2 B 2 A 1 B 1 A 0 B 0 FA C 3 FA C 2 FA C 1 FA C 0 C 4 S 3 S 2 S 1 S 0 http://koclab.org Çetin Kaya Koç Spring 2018 1 / 71 Contents Arithmetic in Integer

More information

Introduction. Outline. CSC/ECE 574 Computer and Network Security. Secret Keys or Secret Algorithms? Secrets? (Cont d) Secret Key Cryptography

Introduction. Outline. CSC/ECE 574 Computer and Network Security. Secret Keys or Secret Algorithms? Secrets? (Cont d) Secret Key Cryptography Outline CSC/ECE 574 Computer and Network Security Introductory Remarks Feistel Cipher DES AES Topic 3.1 Secret Key Cryptography Algorithms CSC/ECE 574 Dr. Peng Ning 1 CSC/ECE 574 Dr. Peng Ning 2 Secret

More information

The Hash Function JH 1

The Hash Function JH 1 The Hash Function JH 1 16 January, 2011 Hongjun Wu 2,3 wuhongjun@gmail.com 1 The design of JH is tweaked in this report. The round number of JH is changed from 35.5 to 42. This new version may be referred

More information

A New Approach for Designing Key-Dependent S-Box Defined over GF (2 4 ) in AES

A New Approach for Designing Key-Dependent S-Box Defined over GF (2 4 ) in AES A New Approach for Designing Key-Dependent S-Box Defined over GF (2 4 ) in AES Hanem M. El-Sheikh, Omayma A. El-Mohsen, Senior Member, IACSIT, Talaat Elgarf, and Abdelhalim Zekry, Senior Member, IACSIT

More information

Provably Secure Higher-Order Masking of AES

Provably Secure Higher-Order Masking of AES Provably Secure Higher-Order Masking of AES Matthieu Rivain 1 and Emmanuel Prouff 2 1 CryptoExperts matthieu.rivain@cryptoexperts.com 2 Oberthur Technologies e.prouff@oberthur.com Abstract. Implementations

More information

Hardware Implementation of Efficient Modified Karatsuba Multiplier Used in Elliptic Curves

Hardware Implementation of Efficient Modified Karatsuba Multiplier Used in Elliptic Curves International Journal of Network Security, Vol.11, No.3, PP.155 162, Nov. 2010 155 Hardware Implementation of Efficient Modified Karatsuba Multiplier Used in Elliptic Curves Sameh M. Shohdy, Ashraf B.

More information

GF(2 m ) arithmetic: summary

GF(2 m ) arithmetic: summary GF(2 m ) arithmetic: summary EE 387, Notes 18, Handout #32 Addition/subtraction: bitwise XOR (m gates/ops) Multiplication: bit serial (shift and add) bit parallel (combinational) subfield representation

More information

Secret Key: stream ciphers & block ciphers

Secret Key: stream ciphers & block ciphers Secret Key: stream ciphers & block ciphers Stream Ciphers Idea: try to simulate one-time pad define a secret key ( seed ) Using the seed generates a byte stream (Keystream): i-th byte is function only

More information

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems Other Public-Key Cryptosystems Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: 10-1 Overview 1. How to exchange

More information

Finite Fields. SOLUTIONS Network Coding - Prof. Frank H.P. Fitzek

Finite Fields. SOLUTIONS Network Coding - Prof. Frank H.P. Fitzek Finite Fields In practice most finite field applications e.g. cryptography and error correcting codes utilizes a specific type of finite fields, namely the binary extension fields. The following exercises

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Appendix A: Symmetric Techniques Block Ciphers A block cipher f of block-size

More information

First-Order DPA Attack Against AES in Counter Mode w/ Unknown Counter. DPA Attack, typical structure

First-Order DPA Attack Against AES in Counter Mode w/ Unknown Counter. DPA Attack, typical structure Josh Jaffe CHES 2007 Cryptography Research, Inc. www.cryptography.com 575 Market St., 21 st Floor, San Francisco, CA 94105 1998-2007 Cryptography Research, Inc. Protected under issued and/or pending US

More information

A Polynomial Description of the Rijndael Advanced Encryption Standard

A Polynomial Description of the Rijndael Advanced Encryption Standard A Polynomial Description of the Rijndael Advanced Encryption Standard arxiv:cs/0205002v1 [cs.cr] 2 May 2002 Joachim Rosenthal Department of Mathematics University of Notre Dame Notre Dame, Indiana 46556,

More information

Keccak. Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1

Keccak. Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1 Keccak Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1 1 STMicroelectronics 2 NXP Semiconductors 17th Workshop on Elliptic Curve Cryptography Leuven, Belgium, September 17th, 2013 1

More information

LOOKING INSIDE AES AND BES

LOOKING INSIDE AES AND BES 23 LOOKING INSIDE AES AND BES Ilia Toli, Alberto Zanoni Università degli Studi di Pisa Dipartimento di Matematica Leonida Tonelli Via F. Buonarroti 2, 56127 Pisa, Italy {toli, zanoni}@posso.dm.unipi.it

More information

CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER

CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER 177 CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER 178 12.1 Introduction The study of cryptography of gray level images [110, 112, 118] by using block ciphers has gained considerable

More information

Symmetric Crypto Systems

Symmetric Crypto Systems T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Symmetric Crypto Systems EECE 412 Copyright 2004-2008 Konstantin Beznosov 09/16/08 Module Outline Stream ciphers under the hood Block ciphers

More information

Block ciphers. Block ciphers. Data Encryption Standard (DES) DES: encryption circuit

Block ciphers. Block ciphers. Data Encryption Standard (DES) DES: encryption circuit Block ciphers Block ciphers Myrto Arapinis School o Inormatics University o Edinburgh January 22, 2015 A block cipher with parameters k and l is a pair o deterministic algorithms (E, D) such that Encryption

More information

ON THE SECURITY OF THE ADVANCED ENCRYPTION STANDARD

ON THE SECURITY OF THE ADVANCED ENCRYPTION STANDARD ON THE SECURITY OF THE ADVANCED ENCRYPTION STANDARD Paul D. Yacoumis Supervisor: Dr. Robert Clarke November 2005 Thesis submitted for the degree of Honours in Pure Mathematics Contents 1 Introduction

More information

Implementation Options for Finite Field Arithmetic for Elliptic Curve Cryptosystems Christof Paar Electrical & Computer Engineering Dept. and Computer Science Dept. Worcester Polytechnic Institute Worcester,

More information

High Performance Computing techniques for attacking reduced version of AES using XL and XSL methods

High Performance Computing techniques for attacking reduced version of AES using XL and XSL methods Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2010 High Performance Computing techniques for attacking reduced version of AES using XL and XSL methods Elizabeth

More information

Algebraic Side-Channel Collision Attacks on AES

Algebraic Side-Channel Collision Attacks on AES Algebraic Side-Channel Collision Attacks on AES Andrey Bogdanov 1 and Andrey Pyshkin 2 1 Chair for Communication Security Ruhr University Bochum, Germany abogdanov@crypto.rub.de 2 Department of Computer

More information

Efficient Application of Countermeasures for Elliptic Curve Cryptography

Efficient Application of Countermeasures for Elliptic Curve Cryptography Efficient Application of Countermeasures for Elliptic Curve Cryptography Vladimir Soukharev, Ph.D. Basil Hess, Ph.D. InfoSec Global Inc. May 19, 2017 Outline Introduction Brief Summary of ECC Arithmetic

More information

Perfect Diffusion Primitives for Block Ciphers

Perfect Diffusion Primitives for Block Ciphers Perfect Diffusion Primitives for Block Ciphers Building Efficient MDS Matrices Pascal Junod and Serge Vaudenay École Polytechnique Fédérale de Lausanne (Switzerland) {pascaljunod, sergevaudenay}@epflch

More information

Implementing GCM on ARMv8

Implementing GCM on ARMv8 Introduction........ Implementation....... Results.... Conclusion Implementing GCM on ARMv8 Conrado P. L. Gouvêa Julio López KRYPTUS Information Security Solutions University of Campinas CT-RSA 2015 Conrado

More information

Differential Fault Analysis of AES using a Single Multiple-Byte Fault

Differential Fault Analysis of AES using a Single Multiple-Byte Fault Differential Fault Analysis of AES using a Single Multiple-Byte Fault Subidh Ali 1, Debdeep Mukhopadhyay 1, and Michael Tunstall 2 1 Department of Computer Sc. and Engg, IIT Kharagpur, West Bengal, India.

More information

8 Elliptic Curve Cryptography

8 Elliptic Curve Cryptography 8 Elliptic Curve Cryptography 8.1 Elliptic Curves over a Finite Field For the purposes of cryptography, we want to consider an elliptic curve defined over a finite field F p = Z/pZ for p a prime. Given

More information

Affine equivalence in the AES round function

Affine equivalence in the AES round function Discrete Applied Mathematics 148 (2005) 161 170 www.elsevier.com/locate/dam Affine equivalence in the AES round function A.M. Youssef a, S.E. Tavares b a Concordia Institute for Information Systems Engineering,

More information

Fields in Cryptography. Çetin Kaya Koç Winter / 30

Fields in Cryptography.   Çetin Kaya Koç Winter / 30 Fields in Cryptography http://koclab.org Çetin Kaya Koç Winter 2017 1 / 30 Field Axioms Fields in Cryptography A field F consists of a set S and two operations which we will call addition and multiplication,

More information

Applications of Finite Sets Jeremy Knight Final Oral Exam Texas A&M University March 29 th 2012

Applications of Finite Sets Jeremy Knight Final Oral Exam Texas A&M University March 29 th 2012 Finite Fields and Cryptography Applications of Finite Sets Jeremy Knight Final Oral Exam Texas A&M University March 29 th 2012 A field is a set that 1. is associative, commutative, and distributive for

More information

Efficient Hardware Calculation of Inverses in GF (2 8 )

Efficient Hardware Calculation of Inverses in GF (2 8 ) Efficient Hardware Calculation of Inverses in GF (2 8 ) R. W. Ward, Dr. T. C. A. Molteno 1 Physics Department University of Otago Box 56, Dunedin, New Zealand 1 Email: tim@physics.otago.ac.nz Abstract:

More information

Cryptography: Key Issues in Security

Cryptography: Key Issues in Security L. Babinkostova J. Keller B. Schreiner J. Schreiner-McGraw K. Stubbs August 1, 2014 Introduction Motivation Group Generated Questions and Notation Translation Based Ciphers Previous Results Definitions

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY On Repeated Squarings in Binary Fields Kimmo Järvinen Helsinki University of Technology August 14, 2009 K. Järvinen On Repeated Squarings in Binary Fields 1/1 Introduction Repeated squaring Repeated squaring:

More information

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves SESSION ID: CRYP-T07 Patrick Longa Microsoft Research http://research.microsoft.com/en-us/people/plonga/

More information

Mathematical Foundations of Cryptography

Mathematical Foundations of Cryptography Mathematical Foundations of Cryptography Cryptography is based on mathematics In this chapter we study finite fields, the basis of the Advanced Encryption Standard (AES) and elliptical curve cryptography

More information

Security of the AES with a Secret S-box

Security of the AES with a Secret S-box Security of the AES with a Secret S-box Tyge Tiessen, Lars R Knudsen, Stefan Kölbl, and Martin M Lauridsen {tyti,lrkn,stek,mmeh}@dtudk DTU Compute, Technical University of Denmark, Denmark Abstract How

More information

Faster ECC over F 2. (feat. PMULL)

Faster ECC over F 2. (feat. PMULL) Faster ECC over F 2 571 (feat. PMULL) Hwajeong Seo 1 Institute for Infocomm Research (I2R), Singapore hwajeong84@gmail.com Abstract. In this paper, we show efficient elliptic curve cryptography implementations

More information

3-6 On Multi Rounds Elimination Method for Higher Order Differential Cryptanalysis

3-6 On Multi Rounds Elimination Method for Higher Order Differential Cryptanalysis 3-6 On Multi Rounds Elimination Method for Higher Order Differential Cryptanalysis TANAKA Hidema, TONOMURA Yuji, and KANEKO Toshinobu A multi rounds elimination method for higher order differential cryptanalysis

More information

Formal Fault Analysis of Branch Predictors: Attacking countermeasures of Asymmetric key ciphers

Formal Fault Analysis of Branch Predictors: Attacking countermeasures of Asymmetric key ciphers Formal Fault Analysis of Branch Predictors: Attacking countermeasures of Asymmetric key ciphers Sarani Bhattacharya and Debdeep Mukhopadhyay Indian Institute of Technology Kharagpur PROOFS 2016 August

More information

18733: Applied Cryptography Anupam Datta (CMU) Block ciphers. Dan Boneh

18733: Applied Cryptography Anupam Datta (CMU) Block ciphers. Dan Boneh 18733: Applied Cryptography Anupam Datta (CMU) Block ciphers Online Cryptography Course What is a block cipher? Block ciphers: crypto work horse n bits PT Block n bits E, D CT Block Key k bits Canonical

More information

Part (02) Modem Encryption techniques

Part (02) Modem Encryption techniques Part (02) Modem Encryption techniques Dr. Ahmed M. ElShafee 1 Block Ciphers and Feistel cipher Dr. Ahmed M. ElShafee 2 introduction Modern block ciphers are widely used to provide encryption of quantities

More information

Differential Fault Analysis on A.E.S.

Differential Fault Analysis on A.E.S. Differential Fault Analysis on A.E.S. P. Dusart, G. Letourneux, O. Vivolo 01/10/2002 Abstract We explain how a differential fault analysis (DFA) works on AES 128, 192 or 256 bits. Contents 1 Introduction

More information

A SIMPLIFIED RIJNDAEL ALGORITHM AND ITS LINEAR AND DIFFERENTIAL CRYPTANALYSES

A SIMPLIFIED RIJNDAEL ALGORITHM AND ITS LINEAR AND DIFFERENTIAL CRYPTANALYSES A SIMPLIFIED RIJNDAEL ALGORITHM AND ITS LINEAR AND DIFFERENTIAL CRYPTANALYSES MOHAMMAD MUSA, EDWARD F SCHAEFER, AND STEPHEN WEDIG Abstract In this paper, we describe a simplified version of the Rijndael

More information

18733: Applied Cryptography Anupam Datta (CMU) Block ciphers. Dan Boneh

18733: Applied Cryptography Anupam Datta (CMU) Block ciphers. Dan Boneh 18733: Applied Cryptography Anupam Datta (CMU) Block ciphers Online Cryptography Course What is a block cipher? Block ciphers: crypto work horse n bits PT Block n bits E, D CT Block Key k bits Canonical

More information

Error-free protection of EC point multiplication by modular extension

Error-free protection of EC point multiplication by modular extension Error-free protection of EC point multiplication by modular extension Martin Seysen February 21, 2017 Giesecke & Devrient GmbH, Prinzregentenstraße 159, D-81677 München, e-mail: m.seysen@gmx.de Abstract

More information

Modular Multiplication in GF (p k ) using Lagrange Representation

Modular Multiplication in GF (p k ) using Lagrange Representation Modular Multiplication in GF (p k ) using Lagrange Representation Jean-Claude Bajard, Laurent Imbert, and Christophe Nègre Laboratoire d Informatique, de Robotique et de Microélectronique de Montpellier

More information

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis Daniel Genkin, Adi Shamir, Eran Tromer Mathematical Attacks Input Crypto Algorithm Key Output Goal: recover the key given access to the inputs

More information

Correlation Power Analysis. Chujiao Ma

Correlation Power Analysis. Chujiao Ma Correlation Power Analysis Chujiao Ma Power Analysis Simple Power Analysis (SPA) different operations consume different power Differential Power Analysis (DPA) different data consume different power Correlation

More information

Hardware Design and Analysis of Block Cipher Components

Hardware Design and Analysis of Block Cipher Components Hardware Design and Analysis of Block Cipher Components Lu Xiao and Howard M. Heys Electrical and Computer Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St.

More information

9 Knapsack Cryptography

9 Knapsack Cryptography 9 Knapsack Cryptography In the past four weeks, we ve discussed public-key encryption systems that depend on various problems that we believe to be hard: prime factorization, the discrete logarithm, and

More information

A Sound Method for Switching between Boolean and Arithmetic Masking

A Sound Method for Switching between Boolean and Arithmetic Masking A Sound Method for Switching between Boolean and Arithmetic Masking Louis Goubin CP8 Crypto Lab, SchlumbergerSema 36-38 rue de la Princesse, BP45 78430 Louveciennes Cedex, France Louis.Goubin@louveciennes.tt.slb.com

More information

Scalar Multiplication on Koblitz Curves using

Scalar Multiplication on Koblitz Curves using Scalar Multiplication on Koblitz Curves using τ 2 NAF Sujoy Sinha Roy 1, Chester Rebeiro 1, Debdeep Mukhopadhyay 1, Junko Takahashi 2 and Toshinori Fukunaga 3 1 Dept. of Computer Science and Engineering

More information

Cryptanalysis of Luffa v2 Components

Cryptanalysis of Luffa v2 Components Cryptanalysis of Luffa v2 Components Dmitry Khovratovich 1, María Naya-Plasencia 2, Andrea Röck 3, and Martin Schläffer 4 1 University of Luxembourg, Luxembourg 2 FHNW, Windisch, Switzerland 3 Aalto University

More information

Hardware Acceleration of the Tate Pairing in Characteristic Three

Hardware Acceleration of the Tate Pairing in Characteristic Three Hardware Acceleration of the Tate Pairing in Characteristic Three CHES 2005 Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 1 Introduction Pairing based cryptography is a (fairly)

More information

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES PRIMITIVES AND SCHEMES FOR NON-ATOMIC INFORMATION AUTHENTICATION GOCE JAKIMOSKI

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES PRIMITIVES AND SCHEMES FOR NON-ATOMIC INFORMATION AUTHENTICATION GOCE JAKIMOSKI THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES PRIMITIVES AND SCHEMES FOR NON-ATOMIC INFORMATION AUTHENTICATION By GOCE JAKIMOSKI A Dissertation submitted to the Department of Computer Science

More information

Inside Keccak. Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1. Keccak & SHA-3 Day Université Libre de Bruxelles March 27, 2013

Inside Keccak. Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1. Keccak & SHA-3 Day Université Libre de Bruxelles March 27, 2013 Inside Keccak Guido Bertoni 1 Joan Daemen 1 Michaël Peeters 2 Gilles Van Assche 1 1 STMicroelectronics 2 NXP Semiconductors Keccak & SHA-3 Day Université Libre de Bruxelles March 27, 2013 1 / 49 Outline

More information

Branch Prediction based attacks using Hardware performance Counters IIT Kharagpur

Branch Prediction based attacks using Hardware performance Counters IIT Kharagpur Branch Prediction based attacks using Hardware performance Counters IIT Kharagpur March 19, 2018 Modular Exponentiation Public key Cryptography March 19, 2018 Branch Prediction Attacks 2 / 54 Modular Exponentiation

More information

Comprehensive Evaluation of AES Dual Ciphers as a Side-Channel Countermeasure

Comprehensive Evaluation of AES Dual Ciphers as a Side-Channel Countermeasure Comprehensive Evaluation of AES Dual Ciphers as a Side-Channel Countermeasure Amir Moradi and Oliver Mischke Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany {moradi,mischke}@crypto.rub.de

More information

Arithmetic operators for pairing-based cryptography

Arithmetic operators for pairing-based cryptography 7. Kryptotag November 9 th, 2007 Arithmetic operators for pairing-based cryptography Jérémie Detrey Cosec, B-IT, Bonn, Germany jdetrey@bit.uni-bonn.de Joint work with: Jean-Luc Beuchat Nicolas Brisebarre

More information

Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) *

Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) * Institute for Applied Information Processing and Communications Graz University of Technology Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) * CHES 2002 Workshop on Cryptographic Hardware and Embedded

More information

AURORA: A Cryptographic Hash Algorithm Family

AURORA: A Cryptographic Hash Algorithm Family AURORA: A Cryptographic Hash Algorithm Family Submitters: Sony Corporation 1 and Nagoya University 2 Algorithm Designers: Tetsu Iwata 2, Kyoji Shibutani 1, Taizo Shirai 1, Shiho Moriai 1, Toru Akishita

More information

Differential Cache Trace Attack Against CLEFIA

Differential Cache Trace Attack Against CLEFIA Differential Cache Trace Attack Against CLEFIA Chester Rebeiro and Debdeep Mukhopadhyay Dept. of Computer Science and Engineering Indian Institute of Technology Kharagpur, India {chester,debdeep}@cse.iitkgp.ernet.in

More information

Chapter 2 Symmetric Encryption Algorithms

Chapter 2 Symmetric Encryption Algorithms Chapter 2 Symmetric Encryption Algorithms February 15, 2010 2 The term symmetric means that the same key used to encrypt is used decrypt. In the widest sense all pre-pkc encryption algorithms are symmetric,

More information

Analysis of Modern Stream Ciphers

Analysis of Modern Stream Ciphers Analysis of Modern Stream Ciphers Josef Pieprzyk Centre for Advanced Computing Algorithms and Cryptography, Macquarie University, Australia CANS - Singapore - December 2007 estream Outline 1. estream Project

More information

Highly Efficient GF(2 8 ) Inversion Circuit Based on Redundant GF Arithmetic and Its Application to AES Design

Highly Efficient GF(2 8 ) Inversion Circuit Based on Redundant GF Arithmetic and Its Application to AES Design Saint-Malo, September 13th, 2015 Cryptographic Hardware and Embedded Systems Highly Efficient GF(2 8 ) Inversion Circuit Based on Redundant GF Arithmetic and Its Application to AES Design Rei Ueno 1, Naofumi

More information

Symmetric Cryptography

Symmetric Cryptography Symmetric Cryptography Stanislav Palúch Fakula riadenia a informatiky, Žilinská univerzita 25. októbra 2017 Stanislav Palúch, Fakula riadenia a informatiky, Žilinská univerzita Symmetric Cryptography 1/54

More information

CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function

CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function CSCE 564, Fall 2001 Notes 6 Page 1 13 Random Numbers The great metaphysical truth in the generation of random numbers is this: If you want a function that is reasonably random in behavior, then take any

More information