CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER

Size: px
Start display at page:

Download "CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER"

Transcription

1 177 CHAPTER 12 CRYPTOGRAPHY OF A GRAY LEVEL IMAGE USING A MODIFIED HILL CIPHER

2 Introduction The study of cryptography of gray level images [110, 112, 118] by using block ciphers has gained considerable impetus in the recent years. The transformation of an image from its original form to some other form, such that it cannot be deciphered what it is, is really an interesting one. In a recent investigation [125, 128], we have developed two large block ciphers by modifying the Hill cipher [5]. In these ciphers, the key is of size 512 bits and the plaintext is of size 2048 bits. In one of the chapters [112], the plaintext matrix is multiplied by the key on one side and by its modular arithmetic inverse on the other side. From the cryptanalysis and the avalanche effect, we have noticed that the cipher is a strong one and it cannot be broken by any cryptanalytic attack. In the present chapter, our objective is to develop a block cipher, and to use it for the cryptography of a gray level image. Here, we have taken a key containing 64 decimal numbers (as it was in [125]), and generated a key matrix of size 32 x 32 by extending the key in a special manner (discussed later), and applied it in the cryptography of a gray level image. In Section 2, we have developed a procedure for the cryptography of a gray level image. In Section 3, we have used an example and illustrated the process. Finally, in Section 4, we have drawn conclusions from the analysis.

3 Development of a Procedure for the Cryptography of a Gray level image Consider a gray level image whose gray level values can be represented in the form of a matrix given by P = [Pij], i = 1 to n, j = 1 to n. (2.1) Here, each Pij lies between Let us choose a key k let it be represented in the form of a matrix given by K = [Kij], i = 1 to n, j = 1 to n, (2.2) where each Kij is in the interval [0, 255]. Let C = [Cij], i = 1 to n, j = 1 to n (2.3) be a matrix, obtained on encryption.

4 180 The process of encryption and the process of decryption, which are quite suitable, for the problem on hand, are given in Fig. 1. Here, Mix ( ) is a function used for mixing thoroughly the decimal numbers (on converting them into binary bits) arising in the process of encryption at each stage of iteration. IMix ( ) is a function which represents the reverse process of Mix ( ). For a detailed discussion of these functions, and the algorithms involved in the processes of encryption and decryption, we refer to [125].

5 Illustration of the cryptography of the image Let us choose a key Q consisting of 64 numbers. This can be written in the form of a matrix given by Q = (3.1) The length of the secret key (which is to be transmitted) is 512 bits. On using this key, we can generate a new key E in the form Q R E = (3.2) S U where U = Q T, in which T denotes the transpose of a matrix, and R and S are obtained from Q and U as follows. On interchanging the 1 st row and the 8 th row of Q, the 2 nd row and the 7 th row of Q, etc., we get R. Similarly, we obtain S from U. Thus, we have E = (3.3)

6 182 The size of this matrix is 16 x 16. This can be further extended to a matrix L of size 32 x 32 where E F L = (3.4) G H where H = E T, in which T denotes the transpose of a matrix, and F and G are obtained from E and H as follows. On interchanging the 1 st row and the 16 th row of E, the 2 nd row and the 15 th row of E, etc., we get F. Similarly, we obtain G from H. Thus, we have L. Here, F = (3.5) G = (3.6)

7 H = (3.7) Now we obtain the key matrix K given by E F K = (3.8) G J where J is obtained from H by rotating, circularly, two rows in the downward direction J = (3.9)

8 184 The afore mentioned operations are performed for 1) enhancing the size of the key matrix to 32 x 32, and 2) obtaining the modular arithmetic inverse of K, in a trial and error manner. The modular arithmetic inverse of K is obtained as W X K 1 = (3.10) Y Z W = (3.11) X = (3.12)

9 Y = (3.13) Z = (3.14) From (3.8) and (3.10), we can readily find that K K 1 mod 256 = K 1 K mod 256 = I. (3.15) Let us consider the image of a hand, which is given below. Fig. 2. Image of a Hand

10 186 This image can be represented in the form of a binary matrix P given by P = (3.16) where 1 denotes black and 0 denotes white.

11 187 On adopting the iterative procedure given in Fig. 1, we get the encrypted image C C = (3.17) On using (3.8), (3.10), (3.17), and the procedure for decryption (See Fig. 1.(b)), we get back the original binary image P, given by (3.16).

12 188 From the matrix C, on connecting each 1 with its neighbouring 1, we get an image which is in a zigzag manner (See Fig. 3). Fig. 3. Encrypted image of the hand It is interesting to note that, the original image and the encrypted image differ totally, and the former one, exhibits all the features very clearly, while the later one does not reveal anything. 6.4 Computations and Conclusions In this analysis, we have made use of a modified Hill cipher for encrypting a binary image. Here we have illustrated the procedure by considering a pair of examples: (1) the image of a hand, and (2) the image of upper half of a person. Here, we have noticed that, the encrypted image is totally different from the original image, and the security of the image is completely enhanced, as no feature of the original image can be traced out in any way from the encrypted image. This analysis can be extended for the images of signatures and thumb impressions.

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 82 CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 83 5.1 Introduction In a pioneering paper, Hill [5] developed a block cipher by using the modular arithmetic inverse

More information

A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix

A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix S. Udaya Kumar V. U. K. Sastry A. Vinaya babu Abstract In this paper, we have developed a block cipher

More information

A Block Cipher using an Iterative Method involving a Permutation

A Block Cipher using an Iterative Method involving a Permutation Journal of Discrete Mathematical Sciences & Cryptography Vol. 18 (015), No. 3, pp. 75 9 DOI : 10.1080/097059.014.96853 A Block Cipher using an Iterative Method involving a Permutation Lakshmi Bhavani Madhuri

More information

Modified Hill Cipher with Interlacing and Iteration

Modified Hill Cipher with Interlacing and Iteration Journal of Computer Science 3 (11): 854-859, 2007 ISSN 1549-3636 2007 Science Publications Modified Hill Cipher with Interlacing and Iteration 1 V.U.K. Sastry and 2 N. Ravi Shankar 1 Department of R and

More information

Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration

Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration Journal of Computer Science 4 (1): 15-20, 2008 ISSN 1549-3636 2008 Science Publications Modified Hill Cipher for a Large Block of Plaintext with Interlacing and Iteration V.U.K. Sastry and N. Ravi Shankar

More information

K Anup Kumar et al,int.j.comp.tech.appl,vol 3 (1), 23-31

K Anup Kumar et al,int.j.comp.tech.appl,vol 3 (1), 23-31 K Anup Kumar et al,int.j.comp.tech.appl,vol 3 (1), 23-31 A Modified Feistel Cipher involving a key as a multiplicant on both the sides of the Plaintext matrix and supplemented with Mixing Permutation and

More information

V.U.K. Sastry et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1), 2012,

V.U.K. Sastry et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1), 2012, VUK Sastry et al, / (IJCSIT) International Journal of Computer Science Information Technologies, Vol 3 (1), 2012, 3119-3128 A Modified Feistel Cipher involving a pair of key matrices,supplemented with

More information

A Large Block Cipher Involving Key Dependent Permutation, Interlacing and Iteration

A Large Block Cipher Involving Key Dependent Permutation, Interlacing and Iteration BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 13, No 3 Sofia 2013 Print ISSN: 1311-02; Online ISSN: 1314-4081 DOI: 10.2478/cait-2013-0025 A Large Block Cipher Involving

More information

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m.

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m. Final Exam Math 10: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 0 April 2002 :0 11:00 a.m. Instructions: Please be as neat as possible (use a pencil), and show

More information

CHAPTER 10 A GENERALIZED PLAYFAIR CIPHER INVOLVING INTERTWINING, INTERWEAVING AND ITERATION

CHAPTER 10 A GENERALIZED PLAYFAIR CIPHER INVOLVING INTERTWINING, INTERWEAVING AND ITERATION 151 CHAPTE 10 A GENEALIZED PLAYFAI CIPHE INVOLVING INTETWINING, INTEWEAVING AND ITEATION 152 10.1. INTODUCTION The Playfair cipher, which enjoyed its prominence during the Second World War, encrypts data

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CSG 252 Fall 2006 Riccardo Pucella Goals of Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to communications Alice and Bob share a key K Alice

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9.

17.1 Binary Codes Normal numbers we use are in base 10, which are called decimal numbers. Each digit can be 10 possible numbers: 0, 1, 2, 9. ( c ) E p s t e i n, C a r t e r, B o l l i n g e r, A u r i s p a C h a p t e r 17: I n f o r m a t i o n S c i e n c e P a g e 1 CHAPTER 17: Information Science 17.1 Binary Codes Normal numbers we use

More information

Module 2 Advanced Symmetric Ciphers

Module 2 Advanced Symmetric Ciphers Module 2 Advanced Symmetric Ciphers Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University E-mail: natarajan.meghanathan@jsums.edu Data Encryption Standard (DES) The DES algorithm

More information

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael Outline CPSC 418/MATH 318 Introduction to Cryptography Advanced Encryption Standard Renate Scheidler Department of Mathematics & Statistics Department of Computer Science University of Calgary Based in

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

8 Elliptic Curve Cryptography

8 Elliptic Curve Cryptography 8 Elliptic Curve Cryptography 8.1 Elliptic Curves over a Finite Field For the purposes of cryptography, we want to consider an elliptic curve defined over a finite field F p = Z/pZ for p a prime. Given

More information

Introduction to Cryptology. Lecture 2

Introduction to Cryptology. Lecture 2 Introduction to Cryptology Lecture 2 Announcements 2 nd vs. 1 st edition of textbook HW1 due Tuesday 2/9 Readings/quizzes (on Canvas) due Friday 2/12 Agenda Last time Historical ciphers and their cryptanalysis

More information

Implementation Tutorial on RSA

Implementation Tutorial on RSA Implementation Tutorial on Maciek Adamczyk; m adamczyk@umail.ucsb.edu Marianne Magnussen; mariannemagnussen@umail.ucsb.edu Adamczyk and Magnussen Spring 2018 1 / 13 Overview Implementation Tutorial Introduction

More information

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems CPE 776:DATA SECURITY & CRYPTOGRAPHY Some Number Theory and Classical Crypto Systems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Some Number Theory

More information

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen.

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen. Yoyo Game with AES Navid Ghaedi Bardeh University of Bergen May 8, 2018 1 / 33 Outline 1 Introduction on Block cipher 2 Yoyo Game 3 Application on AES 4 Conclusion 2 / 33 Classical Model of Symmetric Cryptography

More information

The RSA Cipher and its Algorithmic Foundations

The RSA Cipher and its Algorithmic Foundations Chapter 1 The RSA Cipher and its Algorithmic Foundations The most important that is, most applied and most analyzed asymmetric cipher is RSA, named after its inventors Ron Rivest, Adi Shamir, and Len Adleman.

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES CS355: Cryptography Lecture 9: Encryption modes. AES Encryption modes: ECB } Message is broken into independent blocks of block_size bits; } Electronic Code Book (ECB): each block encrypted separately.

More information

Public Key Cryptography. All secret key algorithms & hash algorithms do the same thing but public key algorithms look very different from each other.

Public Key Cryptography. All secret key algorithms & hash algorithms do the same thing but public key algorithms look very different from each other. Public Key Cryptography All secret key algorithms & hash algorithms do the same thing but public key algorithms look very different from each other. The thing that is common among all of them is that each

More information

Lecture 12: Block ciphers

Lecture 12: Block ciphers Lecture 12: Block ciphers Thomas Johansson T. Johansson (Lund University) 1 / 19 Block ciphers A block cipher encrypts a block of plaintext bits x to a block of ciphertext bits y. The transformation is

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics 2011 What is Cryptography? cryptography: study of methods for sending messages in a form that only be understood

More information

Impossible Differential Cryptanalysis of Mini-AES

Impossible Differential Cryptanalysis of Mini-AES Impossible Differential Cryptanalysis of Mini-AES Raphael Chung-Wei Phan ADDRESS: Swinburne Sarawak Institute of Technology, 1 st Floor, State Complex, 93576 Kuching, Sarawak, Malaysia. rphan@swinburne.edu.my

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-27 Recap ADFGX Cipher Block Cipher Modes of Operation Hill Cipher Inverting a Matrix (mod n) Encryption: Hill Cipher Example Multiple

More information

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and )

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) A Better Cipher The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) To the first letter, add 1 To the second letter, add 14 To the third

More information

Akelarre. Akelarre 1

Akelarre. Akelarre 1 Akelarre Akelarre 1 Akelarre Block cipher Combines features of 2 strong ciphers o IDEA mixed mode arithmetic o RC5 keyed rotations Goal is a more efficient strong cipher Proposed in 1996, broken within

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme

Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme P. Delsarte Philips Research Laboratory, Avenue Van Becelaere, 2 B-1170 Brussels, Belgium Y. Desmedt Katholieke Universiteit Leuven, Laboratorium

More information

Number theory (Chapter 4)

Number theory (Chapter 4) EECS 203 Spring 2016 Lecture 12 Page 1 of 8 Number theory (Chapter 4) Review Compute 6 11 mod 13 in an efficient way What is the prime factorization of 100? 138? What is gcd(100, 138)? What is lcm(100,138)?

More information

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment.

CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES. The questions with a * are extension questions, and will not be included in the assignment. CODING AND CRYPTOLOGY III CRYPTOLOGY EXERCISES A selection of the following questions will be chosen by the lecturer to form the Cryptology Assignment. The Cryptology Assignment is due by 5pm Sunday 1

More information

Innovation and Cryptoventures. Cryptology. Campbell R. Harvey. Duke University, NBER and Investment Strategy Advisor, Man Group, plc.

Innovation and Cryptoventures. Cryptology. Campbell R. Harvey. Duke University, NBER and Investment Strategy Advisor, Man Group, plc. Innovation and Cryptoventures Cryptology Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc January 20, 2017 Overview Cryptology Cryptography Cryptanalysis Symmetric

More information

8.1 Principles of Public-Key Cryptosystems

8.1 Principles of Public-Key Cryptosystems Public-key cryptography is a radical departure from all that has gone before. Right up to modern times all cryptographic systems have been based on the elementary tools of substitution and permutation.

More information

For your quiz in recitation this week, refer to these exercise generators:

For your quiz in recitation this week, refer to these exercise generators: Monday, Oct 29 Today we will talk about inverses in modular arithmetic, and the use of inverses to solve linear congruences. For your quiz in recitation this week, refer to these exercise generators: GCD

More information

Symmetric Cryptanalytic Techniques. Sean Murphy ショーン マーフィー Royal Holloway

Symmetric Cryptanalytic Techniques. Sean Murphy ショーン マーフィー Royal Holloway Symmetric Cryptanalytic Techniques Sean Murphy ショーン マーフィー Royal Holloway Block Ciphers Encrypt blocks of data using a key Iterative process ( rounds ) Modified by Modes of Operation Data Encryption Standard

More information

Breaking an encryption scheme based on chaotic Baker map

Breaking an encryption scheme based on chaotic Baker map Breaking an encryption scheme based on chaotic Baker map Gonzalo Alvarez a, and Shujun Li b a Instituto de Física Aplicada, Consejo Superior de Investigaciones Científicas, Serrano 144 28006 Madrid, Spain

More information

Public Key Cryptography

Public Key Cryptography T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Public Key Cryptography EECE 412 1 What is it? Two keys Sender uses recipient s public key to encrypt Receiver uses his private key to decrypt

More information

Cook-Levin Theorem. SAT is NP-complete

Cook-Levin Theorem. SAT is NP-complete Cook-Levin Theorem SAT is NP-complete In other words SAT NP A NP A P SAT 1 Consider any A NP NTM N that decides A in polytime n k For any input w Σ * valid tableau of configurations 2 Properties of an

More information

CS1800 Discrete Structures Fall 2017 October, CS1800 Discrete Structures Midterm Version A

CS1800 Discrete Structures Fall 2017 October, CS1800 Discrete Structures Midterm Version A CS1800 Discrete Structures Fall 2017 October, 2017 CS1800 Discrete Structures Midterm Version A Instructions: 1. The exam is closed book and closed notes. You may not use a calculator or any other electronic

More information

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3 Shift Cipher For 0 i 25, the ith plaintext character is shifted by some value 0 k 25 (mod 26). E.g. k = 3 a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y

More information

Alternative Approaches: Bounded Storage Model

Alternative Approaches: Bounded Storage Model Alternative Approaches: Bounded Storage Model A. Würfl 17th April 2005 1 Motivation Description of the Randomized Cipher 2 Motivation Motivation Description of the Randomized Cipher Common practice in

More information

Lattice Reduction Attack on the Knapsack

Lattice Reduction Attack on the Knapsack Lattice Reduction Attack on the Knapsack Mark Stamp 1 Merkle Hellman Knapsack Every private in the French army carries a Field Marshal wand in his knapsack. Napoleon Bonaparte The Merkle Hellman knapsack

More information

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Peter Schwabe October 21 and 28, 2011 So far we assumed that Alice and Bob both have some key, which nobody else has. How

More information

Discrete Mathematics GCD, LCM, RSA Algorithm

Discrete Mathematics GCD, LCM, RSA Algorithm Discrete Mathematics GCD, LCM, RSA Algorithm Abdul Hameed http://informationtechnology.pk/pucit abdul.hameed@pucit.edu.pk Lecture 16 Greatest Common Divisor 2 Greatest common divisor The greatest common

More information

10 Modular Arithmetic and Cryptography

10 Modular Arithmetic and Cryptography 10 Modular Arithmetic and Cryptography 10.1 Encryption and Decryption Encryption is used to send messages secretly. The sender has a message or plaintext. Encryption by the sender takes the plaintext and

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor RSA Public Key Encryption Factoring Algorithms Lecture 7 Tel-Aviv University Revised March 1st, 2008 Reminder: The Prime Number Theorem Let π(x) denote the

More information

Cryptography. pieces from work by Gordon Royle

Cryptography. pieces from work by Gordon Royle Cryptography pieces from work by Gordon Royle The set-up Cryptography is the mathematics of devising secure communication systems, whereas cryptanalysis is the mathematics of breaking such systems. We

More information

NET 311D INFORMATION SECURITY

NET 311D INFORMATION SECURITY 1 NET 311D INFORMATION SECURITY Networks and Communication Department TUTORIAL 3 : Asymmetric Ciphers (RSA) A Symmetric-Key Cryptography (Public-Key Cryptography) Asymmetric-key (public key cryptography)

More information

Implementation of the RSA algorithm and its cryptanalysis. Abstract. Introduction

Implementation of the RSA algorithm and its cryptanalysis. Abstract. Introduction Implementation of the RSA algorithm and its cryptanalysis Chandra M. Kota and Cherif Aissi 1 University of Louisiana at Lafayette, College of Engineering Lafayette, LA 70504, USA Abstract Session IVB4

More information

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 CPSC 418/MATH 318 L01 October 17, 2018 Time: 50 minutes

More information

The Artin-Feistel Symmetric Cipher

The Artin-Feistel Symmetric Cipher The Artin-Feistel Symmetric Cipher May 23, 2012 I. Anshel, D. Goldfeld. Introduction. The Feistel cipher and the Braid Group The main aim of this paper is to introduce a new symmetric cipher, which we

More information

( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1

( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1 ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2 0 1 6 C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1 CHAPTER 17: Information Science In this chapter, we learn how data can

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 08 Shannon s Theory (Contd.)

More information

CIS 551 / TCOM 401 Computer and Network Security

CIS 551 / TCOM 401 Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2008 Lecture 15 3/20/08 CIS/TCOM 551 1 Announcements Project 3 available on the web. Get the handout in class today. Project 3 is due April 4th It

More information

The Hill Cipher A Linear Algebra Perspective

The Hill Cipher A Linear Algebra Perspective The Hill Cipher A Linear Algebra Perspective Contents 1 Introduction to Classical Cryptography 3 1.1 Alice, Bob & Eve................................. 3 1.2 Types of Attacks.................................

More information

Written examination. Tuesday, August 18, 2015, 08:30 a.m.

Written examination. Tuesday, August 18, 2015, 08:30 a.m. Advanced Methods of Cryptography Univ.-Prof. Dr. rer. nat. Rudolf Mathar 1 2 3 4 19 20 11 20 70 Written examination Tuesday, August 18, 2015, 08:30 a.m. Name: Matr.-No.: Field of study: Please pay attention

More information

5. Classical Cryptographic Techniques from modular arithmetic perspective

5. Classical Cryptographic Techniques from modular arithmetic perspective . Classical Cryptographic Techniques from modular arithmetic perspective By classical cryptography we mean methods of encipherment that have been used from antiquity through the middle of the twentieth

More information

9 Knapsack Cryptography

9 Knapsack Cryptography 9 Knapsack Cryptography In the past four weeks, we ve discussed public-key encryption systems that depend on various problems that we believe to be hard: prime factorization, the discrete logarithm, and

More information

Univ.-Prof. Dr. rer. nat. Rudolf Mathar. Written Examination. Cryptography. Tuesday, August 29, 2017, 01:30 p.m.

Univ.-Prof. Dr. rer. nat. Rudolf Mathar. Written Examination. Cryptography. Tuesday, August 29, 2017, 01:30 p.m. Cryptography Univ.-Prof. Dr. rer. nat. Rudolf Mathar 1 2 3 4 15 15 15 15 60 Written Examination Cryptography Tuesday, August 29, 2017, 01:30 p.m. Name: Matr.-No.: Field of study: Please pay attention to

More information

(Solution to Odd-Numbered Problems) Number of rounds. rounds

(Solution to Odd-Numbered Problems) Number of rounds. rounds CHAPTER 7 AES (Solution to Odd-Numbered Problems) Review Questions. The criteria defined by NIST for selecting AES fall into three areas: security, cost, and implementation. 3. The number of round keys

More information

Notes 10: Public-key cryptography

Notes 10: Public-key cryptography MTH6115 Cryptography Notes 10: Public-key cryptography In this section we look at two other schemes that have been proposed for publickey ciphers. The first is interesting because it was the earliest such

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

COMM1003. Information Theory. Dr. Wassim Alexan Spring Lecture 5

COMM1003. Information Theory. Dr. Wassim Alexan Spring Lecture 5 COMM1003 Information Theory Dr. Wassim Alexan Spring 2018 Lecture 5 The Baconian Cipher A mono alphabetic cipher invented by Sir Francis Bacon In this cipher, each letter is replaced by a sequence of five

More information

A Knapsack Cryptosystem Based on The Discrete Logarithm Problem

A Knapsack Cryptosystem Based on The Discrete Logarithm Problem A Knapsack Cryptosystem Based on The Discrete Logarithm Problem By K.H. Rahouma Electrical Technology Department Technical College in Riyadh Riyadh, Kingdom of Saudi Arabia E-mail: kamel_rahouma@yahoo.com

More information

MasterMath Cryptology /2 - Cryptanalysis

MasterMath Cryptology /2 - Cryptanalysis MasterMath Cryptology 2015 2/2 Cryptanalysis Wednesday, 8 April, 2015 10:38 9. Differential cryptanalysis (v2) 9.1. Differential cryptanalysis In differential analysis we simultaneously consider two encryptions

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Encryption: The RSA Public Key Cipher

Encryption: The RSA Public Key Cipher Encryption: The RSA Public Key Cipher Michael Brockway March 5, 2018 Overview Transport-layer security employs an asymmetric public cryptosystem to allow two parties (usually a client application and a

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

B. Encryption using quasigroup

B. Encryption using quasigroup Sequence Randomization Using Quasigroups and Number Theoretic s Vaignana Spoorthy Ella Department of Computer Science Oklahoma State University Stillwater, Oklahoma, USA spoorthyella@okstateedu Abstract

More information

AES side channel attacks protection using random isomorphisms

AES side channel attacks protection using random isomorphisms Rostovtsev A.G., Shemyakina O.V., St. Petersburg State Polytechnic University AES side channel attacks protection using random isomorphisms General method of side-channel attacks protection, based on random

More information

Number Theory in Cryptography

Number Theory in Cryptography Number Theory in Cryptography Introduction September 20, 2006 Universidad de los Andes 1 Guessing Numbers 2 Guessing Numbers (person x) (last 6 digits of phone number of x) 3 Guessing Numbers (person x)

More information

Powers in Modular Arithmetic, and RSA Public Key Cryptography

Powers in Modular Arithmetic, and RSA Public Key Cryptography 1 Powers in Modular Arithmetic, and RSA Public Key Cryptography Lecture notes for Access 2006, by Nick Korevaar. It was a long time from Mary Queen of Scotts and substitution ciphers until the end of the

More information

Network Security Based on Quantum Cryptography Multi-qubit Hadamard Matrices

Network Security Based on Quantum Cryptography Multi-qubit Hadamard Matrices Global Journal of Computer Science and Technology Volume 11 Issue 12 Version 1.0 July Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN:

More information

Asymmetric Cryptography

Asymmetric Cryptography Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman General idea: Use two different keys -K and +K for encryption and decryption Given a

More information

Chapter 4 Asymmetric Cryptography

Chapter 4 Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman [NetSec/SysSec], WS 2008/2009 4.1 Asymmetric Cryptography General idea: Use two different keys -K and +K for

More information

Block Cipher Cryptanalysis: An Overview

Block Cipher Cryptanalysis: An Overview 0/52 Block Cipher Cryptanalysis: An Overview Subhabrata Samajder Indian Statistical Institute, Kolkata 17 th May, 2017 0/52 Outline Iterated Block Cipher 1 Iterated Block Cipher 2 S-Boxes 3 A Basic Substitution

More information

Mathematics of Cryptography

Mathematics of Cryptography UNIT - III Mathematics of Cryptography Part III: Primes and Related Congruence Equations 1 Objectives To introduce prime numbers and their applications in cryptography. To discuss some primality test algorithms

More information

CSc 466/566. Computer Security. 5 : Cryptography Basics

CSc 466/566. Computer Security. 5 : Cryptography Basics 1/84 CSc 466/566 Computer Security 5 : Cryptography Basics Version: 2012/03/03 10:44:26 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2012 Christian Collberg Christian

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University February 5 2018 Review Relation between PRF and PRG Construct PRF from

More information

Jay Daigle Occidental College Math 401: Cryptology

Jay Daigle Occidental College Math 401: Cryptology 3 Block Ciphers Every encryption method we ve studied so far has been a substitution cipher: that is, each letter is replaced by exactly one other letter. In fact, we ve studied stream ciphers, which produce

More information

Solutions for week 1, Cryptography Course - TDA 352/DIT 250

Solutions for week 1, Cryptography Course - TDA 352/DIT 250 Solutions for week, Cryptography Course - TDA 352/DIT 250 In this weekly exercise sheet: you will use some historical ciphers, the OTP, the definition of semantic security and some combinatorial problems.

More information

arxiv: v2 [cs.cr] 6 Aug 2017

arxiv: v2 [cs.cr] 6 Aug 2017 Cryptanalyzing an Image Scrambling Encryption Algorithm of Pixel Bits Chengqing Li a,, Dongdong Lin a, Jinhu Lü b a Hunan Province Cooperative Innovation Center for Wind Power Equipment and Energy Conversion,

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

Overview. Background / Context. CSC 580 Cryptography and Computer Security. March 21, 2017

Overview. Background / Context. CSC 580 Cryptography and Computer Security. March 21, 2017 CSC 580 Cryptography and Computer Security Math for Public Key Crypto, RSA, and Diffie-Hellman (Sections 2.4-2.6, 2.8, 9.2, 10.1-10.2) March 21, 2017 Overview Today: Math needed for basic public-key crypto

More information

Combinatorics of p-ary Bent Functions

Combinatorics of p-ary Bent Functions Combinatorics of p-ary Bent Functions MIDN 1/C Steven Walsh United States Naval Academy 25 April 2014 Objectives Introduction/Motivation Definitions Important Theorems Main Results: Connecting Bent Functions

More information

A New Trapdoor in Modular Knapsack Public-Key Cryptosystem

A New Trapdoor in Modular Knapsack Public-Key Cryptosystem A New Trapdoor in Modular Knapsack Public-Key Cryptosystem Takeshi Nasako Yasuyuki Murakami Abstract. Merkle and Hellman proposed a first knapsack cryptosystem. However, it was broken because the density

More information

cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications

cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications cse 311: foundations of computing Fall 2015 Lecture 12: Primes, GCD, applications n-bit unsigned integer representation Represent integer x as sum of powers of 2: If x = n 1 i=0 b i 2 i where each b i

More information

Zero-Correlation Linear Cryptanalysis of Reduced-Round LBlock

Zero-Correlation Linear Cryptanalysis of Reduced-Round LBlock Zero-Correlation Linear Cryptanalysis of Reduced-Round LBlock Hadi Soleimany and Kaisa Nyberg Department of Information and Computer Science, Aalto University School of Science, Finland WCC 2013 1/53 Outline

More information

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks 1 Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks Michael Albert michael.albert@cs.otago.ac.nz 2 This week Arithmetic Knapsack cryptosystems Attacks on knapsacks Some

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

Applications Of Encryptionand Decryption Scheme By Using Binary, Hexa And Octa Systems

Applications Of Encryptionand Decryption Scheme By Using Binary, Hexa And Octa Systems : Applications Of Encryptionand Decryption Scheme By Using Binary, Hexa And Octa Systems G.Venkatasubbaiah, Lecturer in Mathematics, Government College for Men,Kadapa Email:venkat_g2010@yahoo.com Prof.

More information

A block cipher enciphers each block with the same key.

A block cipher enciphers each block with the same key. Ciphers are classified as block or stream ciphers. All ciphers split long messages into blocks and encipher each block separately. Block sizes range from one bit to thousands of bits per block. A block

More information

Aspect of Prime Numbers in Public Key Cryptosystem

Aspect of Prime Numbers in Public Key Cryptosystem Aspect of Prime Numbers in Public Key Cryptosystem Md.Mehedi Masud, Huma Galzie, Kazi Arif Hossain and Md.Minhaj Ul Islam Computer Science and Engineering Discipline Khulna University, Khulna-9208, Bangladesh

More information

MATH3302 Cryptography Problem Set 2

MATH3302 Cryptography Problem Set 2 MATH3302 Cryptography Problem Set 2 These questions are based on the material in Section 4: Shannon s Theory, Section 5: Modern Cryptography, Section 6: The Data Encryption Standard, Section 7: International

More information

Theme : Cryptography. Instructor : Prof. C Pandu Rangan. Speaker : Arun Moorthy CS

Theme : Cryptography. Instructor : Prof. C Pandu Rangan. Speaker : Arun Moorthy CS 1 C Theme : Cryptography Instructor : Prof. C Pandu Rangan Speaker : Arun Moorthy 93115 CS 2 RSA Cryptosystem Outline of the Talk! Introduction to RSA! Working of the RSA system and associated terminology!

More information

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 7 Cryptanalysis Cryptanalysis Attacks such as exhaustive key-search do not exploit any properties of the encryption algorithm or implementation. Structural attacks

More information

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms CRYPTOGRAPHY 19 Cryptography 5 ElGamal cryptosystems and Discrete logarithms Definition Let G be a cyclic group of order n and let α be a generator of G For each A G there exists an uniue 0 a n 1 such

More information