E( x ) [b(n) - a(n, m)x(m) ]

Size: px
Start display at page:

Download "E( x ) [b(n) - a(n, m)x(m) ]"

Transcription

1 Homework #, EE5353. An XOR network has two inuts, one hidden unit, and one outut. It is fully connected. Gie the network's weights if the outut unit has a ste actiation and the hidden unit actiation is (a) Also a ste function (b) The square of the its net function. Gie an algorithm for conerting decimal format class numbers, i c, to (a) Coded format desired oututs, t (i). (b) Uncoded format desired oututs, t (i). 3. In this roblem, we are inestigating the ector X which is used in functional link neural networks. X must be efficiently generated from the feature ector x. (a) Gie an efficient algorithm for generating X for the second degree case. The elements do not hae to be in any articular order. (b) Gie an efficient algorithm for generating X for the third degree case. (Hint; use three nested loos) (c) Find an exression for K(n,). 4. For the linear set of equations Ax = b, the residual error is b - Ax, and the norm squared residual error is E(x) = b - Ax, which is M E( x ) [b(n) - a(n, m)x(m) ] = n= m= Here, x and b hae resectiely and M elements, and A is M by. (a) Gie g(k) = E/ x(k) in terms of the cross correlation c(k) and the autocorrelation r(k,m). Gie exressions for these correlations. (b) Gie an exression for B in terms of (), c(), r(). (c) Gie seudocode for the conjugate gradient algorithm for minimizing E, in terms of symbols it, i it,, n, X n, X d, x(n), g(n), (n), B, B.

2 5. A functional link net has inuts, M oututs, and is degree D. The weights w ik, which feed into outut number i, are found by minimizing the error function, E(i) = [t (i) - y (i)] = y (i) = L m= w im X (m) using the conjugate gradient aroach (a) Gie an exression for the gradient of E(i) with resect to w ij in terms of the autocorrelation r(m,n) and the cross-correlation c(n,i). (b) How many conjugate gradient iterations are required to minimize E(i)? (c) Gien the direction ector elements (k), for k L, find an exression for B, such that the weight ector elements w ik +B (k) minimize E(i). (d) If some of the X (m) are linearly deendent (so that X (m) = a X (n) + b X (j) for examle), what adantages the conjugate gradient solution hae oer a Gauss-Jordan or other linear equation soler? 6. An MLP s kth hidden unit has threshold w(k,+) and weights w(k,n). Let x n be zero-mean, and assume that net control is to be erformed, where m d and σ d resectiely denote the desired hidden unit net function mean and standard deiation. Let r(k,m) be defined as the autocorrelation E[x k x m ]. (a) Find the mean m k of the kth hidden unit s net function. (b) Find the standard deiation σ k of the kth hidden unit s net function. (c) Gien w(k,+)and w(k,n), how should they be changed so that the net function has the desired mean and standard deiation? 7. MLP number has weight matrices W, W oh, and W oi, and has inuts modeled as x (n) = (n) + m(n) where m(n) is the mean of the nth inut, taken oer all training atterns. (n) ( of which (n) is the th examle) is zero-mean. MLP number has the same structure and most of the same weights, but the inuts are (n). Remember, x (+) = x(+) =. (a) Find hidden unit thresholds w (k,+) for MLP no., in terms of w(k,+), m(n), and w(k,n) so that both networks hae identical net functions. (b) Gien the networks of art (a), find outut thresholds w oi (i,+) for MLP no. so that the two networks hae identical oututs for all atterns.

3 8. MLP number has inut ectors x of dimension (+), where x (+)=. Additional arameters are w(k,n), w oh (i,k), and w oi (i,n). Let x be transformed as modeled as z = Ax where A is (+) by (+). For MLP no., z is the inut ector. MLP no. has arameters w (k,n), w oh (i,k), and w oi (i,n). (a) Gien W, find the h by net function ector n in terms of W and x. (b) Assume that MLP no. is equialent to MLP no. and has the same net function ectors, so (n = n!). Find its inut weight matrix W in terms of W and A. (c) Let G be a negatie gradient matrix whose elements are E g(k, n) = δ (k)x (n) w(k, n) = so the h by (+) negatie gradient matrix for W is G = δ ( x ) = T where δ is the h by ector of hidden unit delta functions. G is the negatie gradient matrix for MLP no., with elements g (k,n) = - E/ w (k,n). Find G in terms of G and A. Remember that n = n so δ = δ. (d) Using your results from art (b), G can be maed back to MLP no. and the resulting negatie gradient matrix is G, which can be used to train MLP. Exress G in terms of G and A. (e) If G = G, what condition should A satisfy? (f) If E is minimized with resect to W in MLP no., is E also minimized with resect to W in MLP no.?

4 9. Outut weights for a one-outut (M=) neural net (linear, FL, or MLP) are to be designed by minimizing the error function u E = [ t w( n) X ( n)] = n = (a) Find the gradient ector element g(m) = E/ w(m) in terms of the autocorrelation r() and the cross-correlation c(), and define r() and c(). (b) Gie the outut weight ector w in terms of the matrix R and the cross-correlation ector c. (c) Gie the Hessian matrix element E/ w(u) w(m) in terms of releant quantities from arts (a) or (b). (d) Using ewton s method, exress the outut weight ector w in terms of releant quantities from arts (a), (b) or (c). Is w from ewton s algorithm the same as w from art (b)? 0. In the BP art of OWO-BP, we find the direction matrix D which equals the negatie gradient matrix G of dimensions h by (+). We then minimize the error function M E( z) = [ t ( i) y ( i)] with resect to z, where = i = + + h y ( i) = w ( i, n) x ( n) + w ( i, k) f ( ( w( k, n) + z d( k, n)) x ( n)) oi oh n= k = n= (a) Gie E(z)/ z in terms of the symbol y (i)/ z. (b) Gie the Gauss-ewton aroximation of E(z)/ z in terms of the symbol y (i)/ z. (c) Gie the otimal learning factor in terms of the symbols E(z)/ z and E(z)/ z. (d) Gie y (i)/ z in terms of aroriate weights and symbols, including n (k),, h, d(k,n), etc.

5 . In two-stage OWO-BP training, we use the negatie gradient matrix G and the otimal learning factor (OLF) z to modify W. In the multile otimal learning factors (MOLF) algorithm, we use a different OLF z k for each hidden unit. After we e found G, our error function in terms of z and G is z M z E( z) = [ t ( i) y ( i)], z =. = i=. z h where the outut, in terms of the OLFs is + + h y ( i) = w ( i, n) x ( n) + w ( i, k) f ( [ w( k, n) + z g( k, n)] x ( n)) oi oh k n= k = n= (a) Gie y (i)/ z m where the artial is ealuated for z k s equal to 0. Remember, f(n (k) ) = O (k). (b) Gie an exression for g(m) = - E(z)/ z m in terms of the symbols y (i)/ z m, t (i), y (i), etc. ote that g(m) is an element of g. (c) If ewton s algorithm is used to find z in a gien iteration, the Hessian matrix elements are h(u,) = E/( z u z ). Gie the Gauss-ewton exression for h(u,). What are the dimensions of H? (d) Gie the equations to be soled for z, in matrix ector form. What method can be used to sole these linear equations?

6 . Some comilers roduce faster executables when matrix oerations are used in the source code. In a FL, let the rows of the data matrices D X, D t, and D y store (X ) T (t ) T and (y ) T resectiely, so that the data matrices dimensions are by L, by M, and by M. Assume that the MSE E to be minimized is defined, as usual, as E = M i= E( i), E( i) = [ t ( i) y ( i)] = (a) If y = W X write D y in terms of D X and W. (Hint: use the transose oeration) (b) We want to conert the D y equation of art (a) into our familiar equations C = R W T. In order to do this, what do we re-multily the D y equation by? (c) Let D y (i) and D t (i) denote the ith columns resectiely of D y and D t. Write E(i) in terms of D y (i), D t (i) and any other necessary symbols. (d) Relacing D y (i) and D t (i) in your E(i) exression by D y and D t and using the trace oerator (tr(a) = a(,)+a(,) ), generate the exression for E. Is this calculation efficient?

E( x ) = [b(n) - a(n,m)x(m) ]

E( x ) = [b(n) - a(n,m)x(m) ] Exam #, EE5353, Fall 0. Here we consider MLPs with binary-valued inuts (0 or ). (a) If the MLP has inuts, what is the maximum degree D of its PBF model? (b) If the MLP has inuts, what is the maximum value

More information

Sensitivity of Nonlinear Network Training to Affine Transformed Inputs

Sensitivity of Nonlinear Network Training to Affine Transformed Inputs Sensitiity of Nonlinear Network raining to Affine ransformed Inuts Changhua Yu, Michael Manry, Pramod Lakshmi Narasimha Deartment of Electrical Engineering Uniersity of exas at Arlington, X 76019 changhua

More information

Radial Basis Function Networks: Algorithms

Radial Basis Function Networks: Algorithms Radial Basis Function Networks: Algorithms Introduction to Neural Networks : Lecture 13 John A. Bullinaria, 2004 1. The RBF Maing 2. The RBF Network Architecture 3. Comutational Power of RBF Networks 4.

More information

LIMITATIONS OF RECEPTRON. XOR Problem The failure of the perceptron to successfully simple problem such as XOR (Minsky and Papert).

LIMITATIONS OF RECEPTRON. XOR Problem The failure of the perceptron to successfully simple problem such as XOR (Minsky and Papert). LIMITATIONS OF RECEPTRON XOR Problem The failure of the ercetron to successfully simle roblem such as XOR (Minsky and Paert). x y z x y z 0 0 0 0 0 0 Fig. 4. The exclusive-or logic symbol and function

More information

Recent Developments in Multilayer Perceptron Neural Networks

Recent Developments in Multilayer Perceptron Neural Networks Recent Develoments in Multilayer Percetron eural etworks Walter H. Delashmit Lockheed Martin Missiles and Fire Control Dallas, Texas 75265 walter.delashmit@lmco.com walter.delashmit@verizon.net Michael

More information

Round-off Errors and Computer Arithmetic - (1.2)

Round-off Errors and Computer Arithmetic - (1.2) Round-off Errors and Comuter Arithmetic - (.). Round-off Errors: Round-off errors is roduced when a calculator or comuter is used to erform real number calculations. That is because the arithmetic erformed

More information

PROFIT MAXIMIZATION. π = p y Σ n i=1 w i x i (2)

PROFIT MAXIMIZATION. π = p y Σ n i=1 w i x i (2) PROFIT MAXIMIZATION DEFINITION OF A NEOCLASSICAL FIRM A neoclassical firm is an organization that controls the transformation of inuts (resources it owns or urchases into oututs or roducts (valued roducts

More information

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points.

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points. Solved Problems Solved Problems P Solve the three simle classification roblems shown in Figure P by drawing a decision boundary Find weight and bias values that result in single-neuron ercetrons with the

More information

Machine Learning: Homework 4

Machine Learning: Homework 4 10-601 Machine Learning: Homework 4 Due 5.m. Monday, February 16, 2015 Instructions Late homework olicy: Homework is worth full credit if submitted before the due date, half credit during the next 48 hours,

More information

Multilayer Perceptron Neural Network (MLPs) For Analyzing the Properties of Jordan Oil Shale

Multilayer Perceptron Neural Network (MLPs) For Analyzing the Properties of Jordan Oil Shale World Alied Sciences Journal 5 (5): 546-552, 2008 ISSN 1818-4952 IDOSI Publications, 2008 Multilayer Percetron Neural Network (MLPs) For Analyzing the Proerties of Jordan Oil Shale 1 Jamal M. Nazzal, 2

More information

Node-voltage method using virtual current sources technique for special cases

Node-voltage method using virtual current sources technique for special cases Node-oltage method using irtual current sources technique for secial cases George E. Chatzarakis and Marina D. Tortoreli Electrical and Electronics Engineering Deartments, School of Pedagogical and Technological

More information

Principal Components Analysis and Unsupervised Hebbian Learning

Principal Components Analysis and Unsupervised Hebbian Learning Princial Comonents Analysis and Unsuervised Hebbian Learning Robert Jacobs Deartment of Brain & Cognitive Sciences University of Rochester Rochester, NY 1467, USA August 8, 008 Reference: Much of the material

More information

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Deartment of Electrical Engineering and Comuter Science Massachuasetts Institute of Technology c Chater Matrix Norms

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume, Number, Jun. 8 ISSN 995-6665 Pages 7-75 Efficiency of Atkinson Engine at Maximum Power Density using emerature Deendent Secific Heats

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

General Linear Model Introduction, Classes of Linear models and Estimation

General Linear Model Introduction, Classes of Linear models and Estimation Stat 740 General Linear Model Introduction, Classes of Linear models and Estimation An aim of scientific enquiry: To describe or to discover relationshis among events (variables) in the controlled (laboratory)

More information

Participation Factors. However, it does not give the influence of each state on the mode.

Participation Factors. However, it does not give the influence of each state on the mode. Particiation Factors he mode shae, as indicated by the right eigenvector, gives the relative hase of each state in a articular mode. However, it does not give the influence of each state on the mode. We

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes)

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes) CSE555: Introduction to Pattern Recognition Midterm Exam Solution (00 points, Closed book/notes) There are 5 questions in this exam. The last page is the Appendix that contains some useful formulas.. (5pts)

More information

Image Alignment Computer Vision (Kris Kitani) Carnegie Mellon University

Image Alignment Computer Vision (Kris Kitani) Carnegie Mellon University Lucas Kanade Image Alignment 16-385 Comuter Vision (Kris Kitani) Carnegie Mellon University htt://www.humansensing.cs.cmu.edu/intraface/ How can I find in the image? Idea #1: Temlate Matching Slow, combinatory,

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

Introduction to MVC. least common denominator of all non-identical-zero minors of all order of G(s). Example: The minor of order 2: 1 2 ( s 1)

Introduction to MVC. least common denominator of all non-identical-zero minors of all order of G(s). Example: The minor of order 2: 1 2 ( s 1) Introduction to MVC Definition---Proerness and strictly roerness A system G(s) is roer if all its elements { gij ( s)} are roer, and strictly roer if all its elements are strictly roer. Definition---Causal

More information

Finite Mixture EFA in Mplus

Finite Mixture EFA in Mplus Finite Mixture EFA in Mlus November 16, 2007 In this document we describe the Mixture EFA model estimated in Mlus. Four tyes of deendent variables are ossible in this model: normally distributed, ordered

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding Outline EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Error detection using arity Hamming code for error detection/correction Linear Feedback Shift

More information

Convex Optimization methods for Computing Channel Capacity

Convex Optimization methods for Computing Channel Capacity Convex Otimization methods for Comuting Channel Caacity Abhishek Sinha Laboratory for Information and Decision Systems (LIDS), MIT sinhaa@mit.edu May 15, 2014 We consider a classical comutational roblem

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Numerous alications in statistics, articularly in the fitting of linear models. Notation and conventions: Elements of a matrix A are denoted by a ij, where i indexes the rows and

More information

Hotelling s Two- Sample T 2

Hotelling s Two- Sample T 2 Chater 600 Hotelling s Two- Samle T Introduction This module calculates ower for the Hotelling s two-grou, T-squared (T) test statistic. Hotelling s T is an extension of the univariate two-samle t-test

More information

Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt Algorithm Knuth-Morris-Pratt Algorithm The roblem of tring Matching Given a string, the roblem of string matching deals with finding whether a attern occurs in and if does occur then returning osition in where occurs.

More information

State Estimation with ARMarkov Models

State Estimation with ARMarkov Models Deartment of Mechanical and Aerosace Engineering Technical Reort No. 3046, October 1998. Princeton University, Princeton, NJ. State Estimation with ARMarkov Models Ryoung K. Lim 1 Columbia University,

More information

A Recursive Block Incomplete Factorization. Preconditioner for Adaptive Filtering Problem

A Recursive Block Incomplete Factorization. Preconditioner for Adaptive Filtering Problem Alied Mathematical Sciences, Vol. 7, 03, no. 63, 3-3 HIKARI Ltd, www.m-hiari.com A Recursive Bloc Incomlete Factorization Preconditioner for Adative Filtering Problem Shazia Javed School of Mathematical

More information

Hermite subdivision on manifolds via parallel transport

Hermite subdivision on manifolds via parallel transport Adances in Comutational Mathematics manuscrit No. (will be inserted by the editor Hermite subdiision on manifolds ia arallel transort Caroline Moosmüller Receied: date / Acceted: date Abstract We roose

More information

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018 Comuter arithmetic Intensive Comutation Annalisa Massini 7/8 Intensive Comutation - 7/8 References Comuter Architecture - A Quantitative Aroach Hennessy Patterson Aendix J Intensive Comutation - 7/8 3

More information

THE multilayer perceptron (MLP) is a nonlinear signal

THE multilayer perceptron (MLP) is a nonlinear signal Proceedings of International Joint Conference on Neural Networks, Dallas, Texas, USA, August 4-9, 013 Partially Affine Invariant Training Using Dense Transform Matrices Melvin D Robinson and Michael T

More information

Announcements Wednesday, September 05

Announcements Wednesday, September 05 Announcements Wednesday, September 05 WeBWorK 2.2, 2.3 due today at 11:59pm. The quiz on Friday coers through 2.3 (last week s material). My office is Skiles 244 and Rabinoffice hours are: Mondays, 12

More information

A Method to Solve Optimization Problem in Model. Predictive Control for Twin Rotor MIMO System. Using Modified Genetic Algorithm

A Method to Solve Optimization Problem in Model. Predictive Control for Twin Rotor MIMO System. Using Modified Genetic Algorithm International Journal of Comuting and Otimization Vol. 4, 217, no. 1, 31-41 HIKARI Ltd, www.m-iari.com tts://doi.org/1.12988/ijco.217.734 A Metod to Sole Otimization Problem in Model Predictie Control

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

Series Handout A. 1. Determine which of the following sums are geometric. If the sum is geometric, express the sum in closed form.

Series Handout A. 1. Determine which of the following sums are geometric. If the sum is geometric, express the sum in closed form. Series Handout A. Determine which of the following sums are geometric. If the sum is geometric, exress the sum in closed form. 70 a) k= ( k ) b) 50 k= ( k )2 c) 60 k= ( k )k d) 60 k= (.0)k/3 2. Find the

More information

Neural network models for river flow forecasting

Neural network models for river flow forecasting Neural network models for river flow forecasting Nguyen Tan Danh Huynh Ngoc Phien* and Ashim Das Guta Asian Institute of Technology PO Box 4 KlongLuang 220 Pathumthani Thailand Abstract In this study back

More information

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III AI*IA 23 Fusion of Multile Pattern Classifiers PART III AI*IA 23 Tutorial on Fusion of Multile Pattern Classifiers by F. Roli 49 Methods for fusing multile classifiers Methods for fusing multile classifiers

More information

Finite-Sample Bias Propagation in the Yule-Walker Method of Autoregressive Estimation

Finite-Sample Bias Propagation in the Yule-Walker Method of Autoregressive Estimation Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 008 Finite-Samle Bias Proagation in the Yule-Walker Method of Autoregressie Estimation Piet

More information

Best approximation by linear combinations of characteristic functions of half-spaces

Best approximation by linear combinations of characteristic functions of half-spaces Best aroximation by linear combinations of characteristic functions of half-saces Paul C. Kainen Deartment of Mathematics Georgetown University Washington, D.C. 20057-1233, USA Věra Kůrková Institute of

More information

Training sequence optimization for frequency selective channels with MAP equalization

Training sequence optimization for frequency selective channels with MAP equalization 532 ISCCSP 2008, Malta, 12-14 March 2008 raining sequence otimization for frequency selective channels with MAP equalization Imed Hadj Kacem, Noura Sellami Laboratoire LEI ENIS, Route Sokra km 35 BP 3038

More information

Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning

Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning TNN-2009-P-1186.R2 1 Uncorrelated Multilinear Princial Comonent Analysis for Unsuervised Multilinear Subsace Learning Haiing Lu, K. N. Plataniotis and A. N. Venetsanooulos The Edward S. Rogers Sr. Deartment

More information

The Full-rank Linear Least Squares Problem

The Full-rank Linear Least Squares Problem Jim Lambers COS 7 Spring Semeseter 1-11 Lecture 3 Notes The Full-rank Linear Least Squares Problem Gien an m n matrix A, with m n, and an m-ector b, we consider the oerdetermined system of equations Ax

More information

EE 508 Lecture 13. Statistical Characterization of Filter Characteristics

EE 508 Lecture 13. Statistical Characterization of Filter Characteristics EE 508 Lecture 3 Statistical Characterization of Filter Characteristics Comonents used to build filters are not recisely redictable R L C Temerature Variations Manufacturing Variations Aging Model variations

More information

CSC165H, Mathematical expression and reasoning for computer science week 12

CSC165H, Mathematical expression and reasoning for computer science week 12 CSC165H, Mathematical exression and reasoning for comuter science week 1 nd December 005 Gary Baumgartner and Danny Hea hea@cs.toronto.edu SF4306A 416-978-5899 htt//www.cs.toronto.edu/~hea/165/s005/index.shtml

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0.

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0. Page 5- Chater 5: Lalace Transforms The Lalace Transform is a useful tool that is used to solve many mathematical and alied roblems. In articular, the Lalace transform is a technique that can be used to

More information

Radial-Basis Function Networks

Radial-Basis Function Networks Radial-Basis Function etworks A function is radial () if its output depends on (is a nonincreasing function of) the distance of the input from a given stored vector. s represent local receptors, as illustrated

More information

Cryptanalysis of Pseudorandom Generators

Cryptanalysis of Pseudorandom Generators CSE 206A: Lattice Algorithms and Alications Fall 2017 Crytanalysis of Pseudorandom Generators Instructor: Daniele Micciancio UCSD CSE As a motivating alication for the study of lattice in crytograhy we

More information

1/25/2018 LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE

1/25/2018 LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE /25/28 Definition: An indexed set of vectors {v,, v } in R n is said to be linearly indeendent if the vector equation x v x v... x v 2 2 has only the trivial solution. The set {v,, v } is said to be linearly

More information

Positive decomposition of transfer functions with multiple poles

Positive decomposition of transfer functions with multiple poles Positive decomosition of transfer functions with multile oles Béla Nagy 1, Máté Matolcsi 2, and Márta Szilvási 1 Deartment of Analysis, Technical University of Budaest (BME), H-1111, Budaest, Egry J. u.

More information

AN ALGORITHM FOR MATRIX EXTENSION AND WAVELET CONSTRUCTION W. LAWTON, S. L. LEE AND ZUOWEI SHEN Abstract. This paper gives a practical method of exten

AN ALGORITHM FOR MATRIX EXTENSION AND WAVELET CONSTRUCTION W. LAWTON, S. L. LEE AND ZUOWEI SHEN Abstract. This paper gives a practical method of exten AN ALGORITHM FOR MATRIX EXTENSION AND WAVELET ONSTRUTION W. LAWTON, S. L. LEE AND ZUOWEI SHEN Abstract. This aer gives a ractical method of extending an nr matrix P (z), r n, with Laurent olynomial entries

More information

Nonlinear Static Analysis of Cable Net Structures by Using Newton-Raphson Method

Nonlinear Static Analysis of Cable Net Structures by Using Newton-Raphson Method Nonlinear Static Analysis of Cable Net Structures by Using Newton-Rahson Method Sayed Mahdi Hazheer Deartment of Civil Engineering University Selangor (UNISEL) Selangor, Malaysia hazheer.ma@gmail.com Abstract

More information

Single layer NN. Neuron Model

Single layer NN. Neuron Model Single layer NN We consider the simple architecture consisting of just one neuron. Generalization to a single layer with more neurons as illustrated below is easy because: M M The output units are independent

More information

Monopolist s mark-up and the elasticity of substitution

Monopolist s mark-up and the elasticity of substitution Croatian Oerational Research Review 377 CRORR 8(7), 377 39 Monoolist s mark-u and the elasticity of substitution Ilko Vrankić, Mira Kran, and Tomislav Herceg Deartment of Economic Theory, Faculty of Economics

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

2-D Analysis for Iterative Learning Controller for Discrete-Time Systems With Variable Initial Conditions Yong FANG 1, and Tommy W. S.

2-D Analysis for Iterative Learning Controller for Discrete-Time Systems With Variable Initial Conditions Yong FANG 1, and Tommy W. S. -D Analysis for Iterative Learning Controller for Discrete-ime Systems With Variable Initial Conditions Yong FANG, and ommy W. S. Chow Abstract In this aer, an iterative learning controller alying to linear

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations Linear Equations: a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n

More information

PRICE-BASED MARKET CLEARING UNDER MARGINAL PRICING: A BILEVEL PROGRAMMING APPROACH

PRICE-BASED MARKET CLEARING UNDER MARGINAL PRICING: A BILEVEL PROGRAMMING APPROACH RICE-BSED MRKE CLERING UNDER MRGINL RICING: BILEVEL ROGRMMING ROCH Ricardo Fernández-Blanco Ricardo.FCarramolino@uclm.es José M. rroo JoseManuel.rroo@uclm.es edro J. Muñoz jmunoz@gmail.com Natalia lguacil

More information

ON POLYNOMIAL SELECTION FOR THE GENERAL NUMBER FIELD SIEVE

ON POLYNOMIAL SELECTION FOR THE GENERAL NUMBER FIELD SIEVE MATHEMATICS OF COMPUTATIO Volume 75, umber 256, October 26, Pages 237 247 S 25-5718(6)187-9 Article electronically ublished on June 28, 26 O POLYOMIAL SELECTIO FOR THE GEERAL UMBER FIELD SIEVE THORSTE

More information

RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS

RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS CHANDRASHEKAR SUBRAMANIAN MICHAEL T. MANRY Department Of Electrical Engineering The University Of Texas At Arlington Arlington, TX 7619 JORGE NACCARINO

More information

ECON Answers Homework #2

ECON Answers Homework #2 ECON 33 - Answers Homework #2 Exercise : Denote by x the number of containers of tye H roduced, y the number of containers of tye T and z the number of containers of tye I. There are 3 inut equations that

More information

EE 508 Lecture 13. Statistical Characterization of Filter Characteristics

EE 508 Lecture 13. Statistical Characterization of Filter Characteristics EE 508 Lecture 3 Statistical Characterization of Filter Characteristics Comonents used to build filters are not recisely redictable L C Temerature Variations Manufacturing Variations Aging Model variations

More information

Scattering matrix of the interface

Scattering matrix of the interface Scattering matrix of the interface Let us consider a generalied version of the roblem: when waves are incident on the interface from both media scattering: 0 E A ex j B ex j y 0, 0, 1, 1, 0 E C ex j D

More information

EIGENVALUES AND EIGENVECTORS

EIGENVALUES AND EIGENVECTORS CHAPTER 6 EIGENVALUES AND EIGENVECTORS SECTION 6. INTRODUCTION TO EIGENVALUES In each of Problems we first list the characteristic polynomial p( λ) A λi of the gien matrix A and then the roots of p( λ

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Why do non-gauge invariant terms appear in the vacuum polarization tensor?

Why do non-gauge invariant terms appear in the vacuum polarization tensor? Why do non-gauge inariant terms aear in the acuum olarization tensor? Author: Dan Solomon. Email: dsolom@uic.edu Abstract. It is well known that quantum field theory at the formal leel is gauge inariant.

More information

LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL

LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL Mohammad Bozorg Deatment of Mechanical Engineering University of Yazd P. O. Box 89195-741 Yazd Iran Fax: +98-351-750110

More information

CHAPTER 5. The Operational Amplifier 1

CHAPTER 5. The Operational Amplifier 1 EECE22 NETWORK ANALYSIS I Dr. Charle J. Kim Cla Note 9: Oerational Amlifier (OP Am) CHAPTER. The Oerational Amlifier A. INTRODUCTION. The oerational amlifier or o am for hort, i a eratile circuit building

More information

Generalized Coiflets: A New Family of Orthonormal Wavelets

Generalized Coiflets: A New Family of Orthonormal Wavelets Generalized Coiflets A New Family of Orthonormal Wavelets Dong Wei, Alan C Bovik, and Brian L Evans Laboratory for Image and Video Engineering Deartment of Electrical and Comuter Engineering The University

More information

PARALLEL MATRIX MULTIPLICATION: A SYSTEMATIC JOURNEY

PARALLEL MATRIX MULTIPLICATION: A SYSTEMATIC JOURNEY PARALLEL MATRIX MULTIPLICATION: A SYSTEMATIC JOURNEY MARTIN D SCHATZ, ROBERT A VAN DE GEIJN, AND JACK POULSON Abstract We exose a systematic aroach for develoing distributed memory arallel matrix matrix

More information

Solution of Linear systems

Solution of Linear systems Solution of Linear systems Direct Methods Indirect Methods -Elimination Methods -Inverse of a matrix -Cramer s Rule -LU Decomposition Iterative Methods 2 A x = y Works better for coefficient matrices with

More information

Multi-Operation Multi-Machine Scheduling

Multi-Operation Multi-Machine Scheduling Multi-Oeration Multi-Machine Scheduling Weizhen Mao he College of William and Mary, Williamsburg VA 3185, USA Abstract. In the multi-oeration scheduling that arises in industrial engineering, each job

More information

Unit 1 - Computer Arithmetic

Unit 1 - Computer Arithmetic FIXD-POINT (FX) ARITHMTIC Unit 1 - Comuter Arithmetic INTGR NUMBRS n bit number: b n 1 b n 2 b 0 Decimal Value Range of values UNSIGND n 1 SIGND D = b i 2 i D = 2 n 1 b n 1 + b i 2 i n 2 i=0 i=0 [0, 2

More information

Multilayer Perceptrons and Backpropagation

Multilayer Perceptrons and Backpropagation Multilayer Perceptrons and Backpropagation Informatics 1 CG: Lecture 7 Chris Lucas School of Informatics University of Edinburgh January 31, 2017 (Slides adapted from Mirella Lapata s.) 1 / 33 Reading:

More information

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation Uniformly best wavenumber aroximations by satial central difference oerators: An initial investigation Vitor Linders and Jan Nordström Abstract A characterisation theorem for best uniform wavenumber aroximations

More information

Review of Matrices and Vectors 1/45

Review of Matrices and Vectors 1/45 Reiew of Matrices and Vectors /45 /45 Definition of Vector: A collection of comple or real numbers, generally put in a column [ ] T "! Transpose + + + b a b a b b a a " " " b a b a Definition of Vector

More information

Approximating min-max k-clustering

Approximating min-max k-clustering Aroximating min-max k-clustering Asaf Levin July 24, 2007 Abstract We consider the roblems of set artitioning into k clusters with minimum total cost and minimum of the maximum cost of a cluster. The cost

More information

G1110 & 852G1 Numerical Linear Algebra

G1110 & 852G1 Numerical Linear Algebra The University of Sussex Department of Mathematics G & 85G Numerical Linear Algebra Lecture Notes Autumn Term Kerstin Hesse (w aw S w a w w (w aw H(wa = (w aw + w Figure : Geometric explanation of the

More information

Evaluating Circuit Reliability Under Probabilistic Gate-Level Fault Models

Evaluating Circuit Reliability Under Probabilistic Gate-Level Fault Models Evaluating Circuit Reliability Under Probabilistic Gate-Level Fault Models Ketan N. Patel, Igor L. Markov and John P. Hayes University of Michigan, Ann Arbor 48109-2122 {knatel,imarkov,jhayes}@eecs.umich.edu

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Parametrization of All Stabilizing Controllers Subject to Any Structural Constraint

Parametrization of All Stabilizing Controllers Subject to Any Structural Constraint 49th IEEE Conference on Decision and Control December 15-17, 2010 Hilton Atlanta Hotel, Atlanta, GA, USA Parametrization of All Stabilizing Controllers Subject to Any Structural Constraint Michael C Rotkowitz

More information

Chapter 3. Systems of Linear Equations: Geometry

Chapter 3. Systems of Linear Equations: Geometry Chapter 3 Systems of Linear Equations: Geometry Motiation We ant to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes,

More information

Number Theory Naoki Sato

Number Theory Naoki Sato Number Theory Naoki Sato 0 Preface This set of notes on number theory was originally written in 1995 for students at the IMO level. It covers the basic background material that an IMO

More information

Hidden Predictors: A Factor Analysis Primer

Hidden Predictors: A Factor Analysis Primer Hidden Predictors: A Factor Analysis Primer Ryan C Sanchez Western Washington University Factor Analysis is a owerful statistical method in the modern research sychologist s toolbag When used roerly, factor

More information

Open-air traveling-wave thermoacoustic generator

Open-air traveling-wave thermoacoustic generator rticle Engineering Thermohysics July 11 Vol.56 No.: 167 173 doi: 1.17/s11434-11-447-x SPECIL TOPICS: Oen-air traeling-wae thermoacoustic generator XIE XiuJuan 1*, GO Gang 1,, ZHOU Gang 1 & LI Qing 1 1

More information

A Geometric Review of Linear Algebra

A Geometric Review of Linear Algebra A Geometric Reiew of Linear Algebra The following is a compact reiew of the primary concepts of linear algebra. The order of presentation is unconentional, with emphasis on geometric intuition rather than

More information

PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Single Layer Percetron

PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Single Layer Percetron PMR5406 Redes Neurais e Aula 3 Single Layer Percetron Baseado em: Neural Networks, Simon Haykin, Prentice-Hall, 2 nd edition Slides do curso por Elena Marchiori, Vrije Unviersity Architecture We consider

More information

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21 Trimester 1 Pretest (Otional) Use as an additional acing tool to guide instruction. August 21 Beyond the Basic Facts In Trimester 1, Grade 8 focus on multilication. Daily Unit 1: Rational vs. Irrational

More information

Algorithms and Data Structures 2014 Exercises and Solutions Week 14

Algorithms and Data Structures 2014 Exercises and Solutions Week 14 lgorithms and ata tructures 0 xercises and s Week Linear programming. onsider the following linear program. maximize x y 0 x + y 7 x x 0 y 0 x + 3y Plot the feasible region and identify the optimal solution.

More information

FFTs in Graphics and Vision. Rotational and Reflective Symmetry Detection

FFTs in Graphics and Vision. Rotational and Reflective Symmetry Detection FFTs in Grahics and Vision Rotational and Relectie Symmetry Detection Outline Reresentation Theory Symmetry Detection Rotational Symmetry Relectie Symmetry Reresentation Theory Recall: A rou is a set o

More information

Section 1.7. Linear Independence

Section 1.7. Linear Independence Section 1.7 Linear Independence Motiation Sometimes the span of a set of ectors is smaller than you expect from the number of ectors. Span{, w} w Span{u,, w} w u This means you don t need so many ectors

More information

MATH 361: NUMBER THEORY THIRD LECTURE

MATH 361: NUMBER THEORY THIRD LECTURE MATH 36: NUMBER THEORY THIRD LECTURE. Introduction The toic of this lecture is arithmetic functions and Dirichlet series. By way of introduction, consider Euclid s roof that there exist infinitely many

More information

Research Article An Iterative Algorithm for the Reflexive Solution of the General Coupled Matrix Equations

Research Article An Iterative Algorithm for the Reflexive Solution of the General Coupled Matrix Equations he Scientific World Journal Volume 013 Article ID 95974 15 ages htt://dxdoiorg/101155/013/95974 Research Article An Iterative Algorithm for the Reflexive Solution of the General Couled Matrix Euations

More information

Distributed Rule-Based Inference in the Presence of Redundant Information

Distributed Rule-Based Inference in the Presence of Redundant Information istribution Statement : roved for ublic release; distribution is unlimited. istributed Rule-ased Inference in the Presence of Redundant Information June 8, 004 William J. Farrell III Lockheed Martin dvanced

More information

Math 304 (Spring 2010) - Lecture 2

Math 304 (Spring 2010) - Lecture 2 Math 304 (Spring 010) - Lecture Emre Mengi Department of Mathematics Koç University emengi@ku.edu.tr Lecture - Floating Point Operation Count p.1/10 Efficiency of an algorithm is determined by the total

More information