INTRODUCTION HIERARCHY OF CLASSIFIERS

Size: px
Start display at page:

Download "INTRODUCTION HIERARCHY OF CLASSIFIERS"

Transcription

1 INTRODUCTION DETECTION AND FOLDED HIERARCHIES FOR EFFICIENT DONALD GEMAN JOINT WORK WITH FRANCOIS FLEURET 2 / 35 INTRODUCTION DETECTION (CONT.) HIERARCHY OF CLASSIFIERS Advantages - Highly efficient scene parsing; - Organized focusing on hard examples. Disadvantages Many classifiers to learn; - Inefficient learning (unless training examples can be synthesized). 3 / 35 4 / 35

2 INTRODUCTION RELATED WORK Part-based Models - Constellation (M. Weber, M. Welling, P. Perona), - Composite (D. J. Crandall, D. P. Huttenlocher), - Implicit Shape (E. Seemann, M. Fritz, B. Schiele), - Patchwork of Parts (Y. Amit, A. Trouvé), - Compositional (S. Geman). Wholistic - Convolutional Networks (Y. Lecun), - Boosted Cascades (P. Viola, M. Jones), - Bag-of-Features (A.Zisserman, F.F.Li,). INTRODUCTION POSE SPACE Let Y be the space of poses and Y 1,..., Y K a partition. Let I be an image and Y = (Y 1,..., Y K ), where, for each k, Y k is a Boolean variable stating if there is an object in I with pose in Y k. 5 / 35 6 / 35 INTRODUCTION POSE SPACE (CONT.) For faces, typically y = (u c, v c, θ, s). Cats are more complex. TRAINING A DETECTOR FRAGMENTATION Given a training set {( I (t), Y (t))} t, we are interested in building, for each k, a classifier f k : I {0, 1} A coarse description is y = (u h, v h, s h, u b, v b ). for predicting Y k. Without additional knowledge about the relationship between k, Y k and I, we would train f k with {( )} I (t), Y (t) k Hence, each f k is trained with a fragment ( 1/K ) of the positive population. t. 7 / 35 8 / 35

3 TRAINING A DETECTOR AGGREGATION TRAINING A DETECTOR AGGREGATION (CONT.) To avoid fragmentation, samples are often normalized in pose. Let ξ : I R N denote an N-dimensional vector of features. Let ψ : {1,..., K } I I be a transformation such that the conditional distribution of ξ(ψ(k, I)) given Y k = 1 does not depend on k. Then train a single classifier g with the training set {( ( ψ k, I (t)) )}, Y (t) k and define f k (I) = g(ψ(k, I)). t, k Here, samples are aggregated for training: all positive samples are used to build each f k. 9 / / 35 TRAINING A DETECTOR AGGREGATION (CONT.) However: - Evaluating ψ is computationally intensive for any non-trivial transformation. - The mapping ψ does not exist for a complex pose. INTRODUCTION We directly index the features with the pose. {1,..., K } I I ψ X ξ R N Hence, in practice, fragmentation is still the norm to deal with many deformations. But how does on deal with complex poses? 11 / / 35

4 DEFINITION DEFINITION (CONT.) Hence, we define a family of pose-indexed features as a mapping X : {1,..., K } I R N such that they are stationary in the following sense: for every k {1,..., K }, the probability distribution does not depend on k. P(X(k, I) = x Y k = 1), x R N 13 / / 35 TOY EXAMPLE, 1D SIGNAL { } Y = (θ 1, θ 2 ) {1,..., N} 2, 1 < θ 1 < θ 2 < N P(I Y = (θ 1, θ 2 )) = φ 0 (I n ) φ 1 (I n ) φ 0 (I n ) n<θ 1 θ 1 n θ 2 θ 2 <n TRAINING We then define f k (I) = g(x(k, I)), k {1,..., K }, where one single classifier g : R N {0, 1} is trained with {( ( X k, I (t)) )}, Y (t) k t, k X((θ 1, θ 2 ), I) = (I(θ 1 1), I(θ 1 ), I(θ 2 ), I(θ 2 + 1)) Notice that stationarity is the main condition required to ensure that the training samples are identically distributed. P(X = (x 1, x 2, x 3, x 4 ) Y = (θ 1, θ 2 )) = φ 0 (x 1 )φ 1 (x 2 )φ 1 (x 3 )φ 0 (x 4 ) 15 / / 35

5 EDGE DETECTORS EDGE DETECTORS (CONT.) Let e φ,σ (I, u, v) be the presence on an edge in image I at location (u, v) with orientation φ {0,..., 7} at scale σ {1, 2, 4}. σ = 1 17 / / 35 EDGE DETECTORS (CONT.) EDGE DETECTORS (CONT.) σ = 2 σ = 4 19 / / 35

6 BASE FEATURES We use three types of stationary features: The windows W and W are indexed either with respect to the head or with respect to the head-belly. - Proportion of an edge (φ, σ) in a window W. - L 1 -distance between the histograms of orientations at scale σ in two windows W and W. - L 1 -distance between the histograms of gray-levels in two windows W and W. h h Head registration 21 / 35 h h 22 / 35 CLASSIFIER FOLDED HIERARCHIES b SUMMARY b We build classifiers with Adaboost and an asymmetric weighting by sampling. If the weighted error rate is L(h) = t,k ω t,k 1 { }, h(k, I (t) ) Z (t) k we use all the positive samples, and sub-sample negative ones with µ(k, t) ω t,k 1 { Y (t) k =0}. Total of 2327 scenes containing 1683 cats, 85% for training. Experiments (not shown) demonstrate: - Fragmentation applied Head-belly to complex registration poses is disastrous in practice; - Naive, brute-force exploration of the pose space is computationally intractable. Alternatively: - Stationary features largely avoid fragmentation; - Hierarchical search concentrates computation on ambiguous regions. We call this alternative a folded hierarchy of classifiers. 23 / / 35

7 FOLDED HIERARCHIES SUMMARY (CONT.) SCENE PARSING STRATEGY g 1 g 2 25 / / 35 SCENE PARSING ERROR CRITERION SCENE PARSING ERROR RATES TP H B HB 85% (3.61) 80% (3.87) 5.07 (1.08) 70% (2.89) 1.88 (0.32) 60% 7.80 (1.98) 0.95 (0.22) 50% 5.41 (1.62) 0.53 (0.13) Average number of FAs per / / 35

8 S CENE PARSING S CENE PARSING E RROR R ESULTS ( PICKED RATES ( CONT.) AT RANDOM ) 1 H B HB True positive rate Average number of FAs per 640x / / 35 S CENE PARSING S CENE PARSING R ESULTS ( PICKED R ESULTS ( SELECTED AT RANDOM, CONT.) 31 / 35 FALSE ALARMS ) 32 / 35

9 SCENE PARSING SELECTED CONCLUSION A folded hierarchy of classifiers is highly efficient: - For (offline) learning; - For (online) scene processing. It combines the strengths of: - Template matching; - Powerful, wholistic machine learning; - Hierarchical search. However, this is achieved at the expense of - Rich annotation of the training samples. - Designing stationary features. 33 / / 35 ACKNOWLEDGMENT 35 / 35

PROCEEDINGS OF SPIE. , "Front Matter: Volume 6814," Proc. SPIE 6814, Computational Imaging VI, (12 May 2008); doi: /12.

PROCEEDINGS OF SPIE. , Front Matter: Volume 6814, Proc. SPIE 6814, Computational Imaging VI, (12 May 2008); doi: /12. PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Front Matter: Volume 6814, "Front Matter: Volume 6814," Proc. SPIE 6814, Computational Imaging VI, 681401 (12 May 2008); doi: 10.1117/12.796836

More information

Multi-Layer Boosting for Pattern Recognition

Multi-Layer Boosting for Pattern Recognition Multi-Layer Boosting for Pattern Recognition François Fleuret IDIAP Research Institute, Centre du Parc, P.O. Box 592 1920 Martigny, Switzerland fleuret@idiap.ch Abstract We extend the standard boosting

More information

COS 429: COMPUTER VISON Face Recognition

COS 429: COMPUTER VISON Face Recognition COS 429: COMPUTER VISON Face Recognition Intro to recognition PCA and Eigenfaces LDA and Fisherfaces Face detection: Viola & Jones (Optional) generic object models for faces: the Constellation Model Reading:

More information

Visual Object Detection

Visual Object Detection Visual Object Detection Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu 1 / 47 Visual Object

More information

A Hierarchy of Support Vector Machines for Pattern Detection

A Hierarchy of Support Vector Machines for Pattern Detection A Hierarchy of Support Vector Machines for Pattern Detection Hichem Sahbi Imedia research Group INRIA Rocquencourt, BP 105-78153 Le Chesnay cedex, FRANCE Donald Geman Center for Imaging Science 302 Clark

More information

Self-Normalized Linear Tests

Self-Normalized Linear Tests Self-Normalized Linear Tests Sachin Gangaputra Dept. of Electrical and Computer Engineering The Johns Hopkins University Baltimore, MD 21218 sachin@jhu.edu Donald Geman Dept. of Applied Mathematics and

More information

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract Scale-Invariance of Support Vector Machines based on the Triangular Kernel François Fleuret Hichem Sahbi IMEDIA Research Group INRIA Domaine de Voluceau 78150 Le Chesnay, France Abstract This paper focuses

More information

Self-Normalized Linear Tests

Self-Normalized Linear Tests Self-Normalized Linear Tests Sachin Gangaputra Dept. of Electrical and Computer Engineering The Johns Hopkins University Baltimore, MD 21218 sachin@jhu.edu Donald Geman Dept. of Applied Mathematics and

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Discriminative part-based models. Many slides based on P. Felzenszwalb

Discriminative part-based models. Many slides based on P. Felzenszwalb More sliding window detection: ti Discriminative part-based models Many slides based on P. Felzenszwalb Challenge: Generic object detection Pedestrian detection Features: Histograms of oriented gradients

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation

End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation Wei Yang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang Department of Electronic Engineering,

More information

Object Detection Grammars

Object Detection Grammars Object Detection Grammars Pedro F. Felzenszwalb and David McAllester February 11, 2010 1 Introduction We formulate a general grammar model motivated by the problem of object detection in computer vision.

More information

Hierarchical Boosting and Filter Generation

Hierarchical Boosting and Filter Generation January 29, 2007 Plan Combining Classifiers Boosting Neural Network Structure of AdaBoost Image processing Hierarchical Boosting Hierarchical Structure Filters Combining Classifiers Combining Classifiers

More information

Introduction to Boosting and Joint Boosting

Introduction to Boosting and Joint Boosting Introduction to Boosting and Learning Systems Group, Caltech 2005/04/26, Presentation in EE150 Boosting and Outline Introduction to Boosting 1 Introduction to Boosting Intuition of Boosting Adaptive Boosting

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Category Representation 2014-2015 Jakob Verbeek, ovember 21, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Pictorial Structures Revisited: People Detection and Articulated Pose Estimation. Department of Computer Science TU Darmstadt

Pictorial Structures Revisited: People Detection and Articulated Pose Estimation. Department of Computer Science TU Darmstadt Pictorial Structures Revisited: People Detection and Articulated Pose Estimation Mykhaylo Andriluka Stefan Roth Bernt Schiele Department of Computer Science TU Darmstadt Generic model for human detection

More information

CS 231A Section 1: Linear Algebra & Probability Review

CS 231A Section 1: Linear Algebra & Probability Review CS 231A Section 1: Linear Algebra & Probability Review 1 Topics Support Vector Machines Boosting Viola-Jones face detector Linear Algebra Review Notation Operations & Properties Matrix Calculus Probability

More information

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang CS 231A Section 1: Linear Algebra & Probability Review Kevin Tang Kevin Tang Section 1-1 9/30/2011 Topics Support Vector Machines Boosting Viola Jones face detector Linear Algebra Review Notation Operations

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Category Representation 2012-2013 Jakob Verbeek, ovember 23, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.12.13

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities

Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities Bangpeng Yao and Li Fei-Fei Computer Science Department, Stanford University {bangpeng,feifeili}@cs.stanford.edu

More information

Distinguish between different types of scenes. Matching human perception Understanding the environment

Distinguish between different types of scenes. Matching human perception Understanding the environment Scene Recognition Adriana Kovashka UTCS, PhD student Problem Statement Distinguish between different types of scenes Applications Matching human perception Understanding the environment Indexing of images

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

PCA FACE RECOGNITION

PCA FACE RECOGNITION PCA FACE RECOGNITION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Shree Nayar (Columbia) including their own slides. Goal

More information

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual Outline: Ensemble Learning We will describe and investigate algorithms to Ensemble Learning Lecture 10, DD2431 Machine Learning A. Maki, J. Sullivan October 2014 train weak classifiers/regressors and how

More information

Homework 1 Solutions Probability, Maximum Likelihood Estimation (MLE), Bayes Rule, knn

Homework 1 Solutions Probability, Maximum Likelihood Estimation (MLE), Bayes Rule, knn Homework 1 Solutions Probability, Maximum Likelihood Estimation (MLE), Bayes Rule, knn CMU 10-701: Machine Learning (Fall 2016) https://piazza.com/class/is95mzbrvpn63d OUT: September 13th DUE: September

More information

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lesson 1 5 October 2016 Learning and Evaluation of Pattern Recognition Processes Outline Notation...2 1. The

More information

Boosting: Algorithms and Applications

Boosting: Algorithms and Applications Boosting: Algorithms and Applications Lecture 11, ENGN 4522/6520, Statistical Pattern Recognition and Its Applications in Computer Vision ANU 2 nd Semester, 2008 Chunhua Shen, NICTA/RSISE Boosting Definition

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Reading for today: R&N 18.1-18.4 Next lecture: R&N 18.6-18.12, 20.1-20.3.2 Outline The importance of a good representation Different types of learning problems Different

More information

Presentation in Convex Optimization

Presentation in Convex Optimization Dec 22, 2014 Introduction Sample size selection in optimization methods for machine learning Introduction Sample size selection in optimization methods for machine learning Main results: presents a methodology

More information

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline Other Measures 1 / 52 sscott@cse.unl.edu learning can generally be distilled to an optimization problem Choose a classifier (function, hypothesis) from a set of functions that minimizes an objective function

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Object Recognition 2017-2018 Jakob Verbeek Clustering Finding a group structure in the data Data in one cluster similar to

More information

Learning Methods for Linear Detectors

Learning Methods for Linear Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2011/2012 Lesson 20 27 April 2012 Contents Learning Methods for Linear Detectors Learning Linear Detectors...2

More information

AdaBoost. Lecturer: Authors: Center for Machine Perception Czech Technical University, Prague

AdaBoost. Lecturer: Authors: Center for Machine Perception Czech Technical University, Prague AdaBoost Lecturer: Jan Šochman Authors: Jan Šochman, Jiří Matas Center for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz Motivation Presentation 2/17 AdaBoost with trees

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Graphical Object Models for Detection and Tracking

Graphical Object Models for Detection and Tracking Graphical Object Models for Detection and Tracking (ls@cs.brown.edu) Department of Computer Science Brown University Joined work with: -Ying Zhu, Siemens Corporate Research, Princeton, NJ -DorinComaniciu,

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Decision Trees Tobias Scheffer Decision Trees One of many applications: credit risk Employed longer than 3 months Positive credit

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

Representing Images Detecting faces in images

Representing Images Detecting faces in images 11-755 Machine Learning for Signal Processing Representing Images Detecting faces in images Class 5. 15 Sep 2009 Instructor: Bhiksha Raj Last Class: Representing Audio n Basic DFT n Computing a Spectrogram

More information

ABC random forest for parameter estimation. Jean-Michel Marin

ABC random forest for parameter estimation. Jean-Michel Marin ABC random forest for parameter estimation Jean-Michel Marin Université de Montpellier Institut Montpelliérain Alexander Grothendieck (IMAG) Institut de Biologie Computationnelle (IBC) Labex Numev! joint

More information

Models, Data, Learning Problems

Models, Data, Learning Problems Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Models, Data, Learning Problems Tobias Scheffer Overview Types of learning problems: Supervised Learning (Classification, Regression,

More information

Algorithm-Independent Learning Issues

Algorithm-Independent Learning Issues Algorithm-Independent Learning Issues Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007, Selim Aksoy Introduction We have seen many learning

More information

10-701/ Machine Learning - Midterm Exam, Fall 2010

10-701/ Machine Learning - Midterm Exam, Fall 2010 10-701/15-781 Machine Learning - Midterm Exam, Fall 2010 Aarti Singh Carnegie Mellon University 1. Personal info: Name: Andrew account: E-mail address: 2. There should be 15 numbered pages in this exam

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

The state of the art and beyond

The state of the art and beyond Feature Detectors and Descriptors The state of the art and beyond Local covariant detectors and descriptors have been successful in many applications Registration Stereo vision Motion estimation Matching

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Fast Human Detection from Videos Using Covariance Features

Fast Human Detection from Videos Using Covariance Features THIS PAPER APPEARED IN THE ECCV VISUAL SURVEILLANCE WORKSHOP (ECCV-VS), MARSEILLE, OCTOBER 2008 Fast Human Detection from Videos Using Covariance Features Jian Yao Jean-Marc Odobez IDIAP Research Institute

More information

Intelligent Systems Discriminative Learning, Neural Networks

Intelligent Systems Discriminative Learning, Neural Networks Intelligent Systems Discriminative Learning, Neural Networks Carsten Rother, Dmitrij Schlesinger WS2014/2015, Outline 1. Discriminative learning 2. Neurons and linear classifiers: 1) Perceptron-Algorithm

More information

Boosting. Acknowledgment Slides are based on tutorials from Robert Schapire and Gunnar Raetsch

Boosting. Acknowledgment Slides are based on tutorials from Robert Schapire and Gunnar Raetsch . Machine Learning Boosting Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Machine Learning Basics

Machine Learning Basics Security and Fairness of Deep Learning Machine Learning Basics Anupam Datta CMU Spring 2019 Image Classification Image Classification Image classification pipeline Input: A training set of N images, each

More information

Biometrics: Introduction and Examples. Raymond Veldhuis

Biometrics: Introduction and Examples. Raymond Veldhuis Biometrics: Introduction and Examples Raymond Veldhuis 1 Overview Biometric recognition Face recognition Challenges Transparent face recognition Large-scale identification Watch list Anonymous biometrics

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Machine Learning for Signal Processing Detecting faces in images

Machine Learning for Signal Processing Detecting faces in images Machine Learning for Signal Processing Detecting faces in images Class 7. 19 Sep 2013 Instructor: Bhiksha Raj 19 Sep 2013 11755/18979 1 Administrivia Project teams? Project proposals? 19 Sep 2013 11755/18979

More information

Bagging and Other Ensemble Methods

Bagging and Other Ensemble Methods Bagging and Other Ensemble Methods Sargur N. Srihari srihari@buffalo.edu 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties as Constrained Optimization 3. Regularization and Underconstrained

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Diagnostics. Gad Kimmel

Diagnostics. Gad Kimmel Diagnostics Gad Kimmel Outline Introduction. Bootstrap method. Cross validation. ROC plot. Introduction Motivation Estimating properties of an estimator. Given data samples say the average. x 1, x 2,...,

More information

Introduction to Supervised Learning. Performance Evaluation

Introduction to Supervised Learning. Performance Evaluation Introduction to Supervised Learning Performance Evaluation Marcelo S. Lauretto Escola de Artes, Ciências e Humanidades, Universidade de São Paulo marcelolauretto@usp.br Lima - Peru Performance Evaluation

More information

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE March 28, 2012 The exam is closed book. You are allowed a double sided one page cheat sheet. Answer the questions in the spaces provided on

More information

CIKM 18, October 22-26, 2018, Torino, Italy

CIKM 18, October 22-26, 2018, Torino, Italy 903 Session 6B: Knowledge Modelling 1.1 Entity Typing by Structured Features Existing systems [16, 19, 27] cast entity typing as a single-instance multi-label classification problem. For each entity e,

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Beyond Spatial Pyramids

Beyond Spatial Pyramids Beyond Spatial Pyramids Receptive Field Learning for Pooled Image Features Yangqing Jia 1 Chang Huang 2 Trevor Darrell 1 1 UC Berkeley EECS 2 NEC Labs America Goal coding pooling Bear Analysis of the pooling

More information

Classifier Performance. Assessment and Improvement

Classifier Performance. Assessment and Improvement Classifier Performance Assessment and Improvement Error Rates Define the Error Rate function Q( ω ˆ,ω) = δ( ω ˆ ω) = 1 if ω ˆ ω = 0 0 otherwise When training a classifier, the Apparent error rate (or Test

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative Assignment 1 is released: http://cs231n.github.io/assignments2017/assignment1/ Due Thursday April 20, 11:59pm on Canvas (Extending

More information

CS446: Machine Learning Spring Problem Set 4

CS446: Machine Learning Spring Problem Set 4 CS446: Machine Learning Spring 2017 Problem Set 4 Handed Out: February 27 th, 2017 Due: March 11 th, 2017 Feel free to talk to other members of the class in doing the homework. I am more concerned that

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Recognition Performance from SAR Imagery Subject to System Resource Constraints

Recognition Performance from SAR Imagery Subject to System Resource Constraints Recognition Performance from SAR Imagery Subject to System Resource Constraints Michael D. DeVore Advisor: Joseph A. O SullivanO Washington University in St. Louis Electronic Systems and Signals Research

More information

Global Scene Representations. Tilke Judd

Global Scene Representations. Tilke Judd Global Scene Representations Tilke Judd Papers Oliva and Torralba [2001] Fei Fei and Perona [2005] Labzebnik, Schmid and Ponce [2006] Commonalities Goal: Recognize natural scene categories Extract features

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Multilayer Neural Networks Discriminant function flexibility NON-Linear But with sets of linear parameters at each layer Provably general function approximators for sufficient

More information

Not so naive Bayesian classification

Not so naive Bayesian classification Not so naive Bayesian classification Geoff Webb Monash University, Melbourne, Australia http://www.csse.monash.edu.au/ webb Not so naive Bayesian classification p. 1/2 Overview Probability estimation provides

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bregman divergence and density integration Noboru Murata and Yu Fujimoto

Bregman divergence and density integration Noboru Murata and Yu Fujimoto Journal of Math-for-industry, Vol.1(2009B-3), pp.97 104 Bregman divergence and density integration Noboru Murata and Yu Fujimoto Received on August 29, 2009 / Revised on October 4, 2009 Abstract. In this

More information

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications Edge Detection Roadmap Introduction to image analysis (computer vision) Its connection with psychology and neuroscience Why is image analysis difficult? Theory of edge detection Gradient operator Advanced

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 24

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 24 Big Data Analytics Special Topics for Computer Science CSE 4095-001 CSE 5095-005 Feb 24 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Prediction III Goal

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology COST Doctoral School, Troina 2008 Outline 1. Bayesian classification

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Deformable Template As Active Basis

Deformable Template As Active Basis Deformable Template As Active Basis Ying Nian Wu, Zhangzhang Si, Chuck Fleming, and Song-Chun Zhu UCLA Department of Statistics http://www.stat.ucla.edu/ ywu/activebasis.html Abstract This article proposes

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Linear Classifiers as Pattern Detectors

Linear Classifiers as Pattern Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2014/2015 Lesson 16 8 April 2015 Contents Linear Classifiers as Pattern Detectors Notation...2 Linear

More information

PDEEC Machine Learning 2016/17

PDEEC Machine Learning 2016/17 PDEEC Machine Learning 2016/17 Lecture - Model assessment, selection and Ensemble Jaime S. Cardoso jaime.cardoso@inesctec.pt INESC TEC and Faculdade Engenharia, Universidade do Porto Nov. 07, 2017 1 /

More information

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes Week 10 Based in part on slides from textbook, slides of Susan Holmes Part I Linear regression & December 5, 2012 1 / 1 2 / 1 We ve talked mostly about classification, where the outcome categorical. If

More information

DynamicBoost: Boosting Time Series Generated by Dynamical Systems

DynamicBoost: Boosting Time Series Generated by Dynamical Systems DynamicBoost: Boosting Time Series Generated by Dynamical Systems René Vidal Center for Imaging Science, Dept. of BME, Johns Hopkins University, Baltimore MD, USA rvidal@cis.jhu.edu http://www.vision.jhu.edu

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

Machine Learning (CS 567) Lecture 3

Machine Learning (CS 567) Lecture 3 Machine Learning (CS 567) Lecture 3 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi Boosting CAP5610: Machine Learning Instructor: Guo-Jun Qi Weak classifiers Weak classifiers Decision stump one layer decision tree Naive Bayes A classifier without feature correlations Linear classifier

More information

Region Covariance: A Fast Descriptor for Detection and Classification

Region Covariance: A Fast Descriptor for Detection and Classification MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Region Covariance: A Fast Descriptor for Detection and Classification Oncel Tuzel, Fatih Porikli, Peter Meer TR2005-111 May 2006 Abstract We

More information

Advanced statistical methods for data analysis Lecture 2

Advanced statistical methods for data analysis Lecture 2 Advanced statistical methods for data analysis Lecture 2 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Estimating Parameters

Estimating Parameters Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 13, 2012 Today: Bayes Classifiers Naïve Bayes Gaussian Naïve Bayes Readings: Mitchell: Naïve Bayes

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 1 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Information Theory in Computer Vision and Pattern Recognition

Information Theory in Computer Vision and Pattern Recognition Francisco Escolano Pablo Suau Boyan Bonev Information Theory in Computer Vision and Pattern Recognition Foreword by Alan Yuille ~ Springer Contents 1 Introduction...............................................

More information