Statistics and Quantum Computing

Size: px
Start display at page:

Download "Statistics and Quantum Computing"

Transcription

1 Statistics and Quantum Computing Yazhen Wang Department of Statistics University of Wisconsin-Madison yzwang Workshop on Quantum Computing and Its Application George Washington University, March 16, 2017 Yazhen (at UW-Madison) 1 / 31

2 Outline Quantum computation Quantum physics and quantum probability Quantum annealing and Monte Carlo methods Statistical analysis of quantum computing data Yazhen (at UW-Madison) 2 / 31

3 Quantum Yazhen (at UW-Madison) information 4 / 31 Computing Paradigm Classical (today s) computers based on electronic devices Obey laws of classical physics Computer chip technology Size limitation: Quantum effects at atomic scale New computing paradigm Quantum computing uses quantum devices for computing: Quantum Information Quantum Computation Moore s Law is Dead

4 Complexity Classic vs quantum Classical physical system with b components: Dimension d b Quantum system with b components: Dimension d = 2 b Classical computer simulation 2 b bits of memory to simulate quantum system of size b Quantum computing Quantum device: Handle exponential complexity of data Quantum information: Atoms and molecules for information Yazhen (at UW-Madison) 5 / 31

5 Quantum Computing Quantum Bits A quantum computer taps directly into the fundamental fabric of reality the strange and counter-intuitive world of quantum mechanics to speed computation. Rather than store information as 0s or 1s as conventional computers do, a quantum computer uses qubits which can be 1 or 0 or both at the same time. This quantum superposition enables quantum computers to consider and manipulate all combinations of bits simultaneously, making Classic bit vs quantum bit quantum computation powerful and fast. Classic bit: 0 1 D-Wave systems use quantum annealing to solve problems. Quantum Quantum annealing tunes qubits bit from (qubit): their superposition 0 state to and a classical 1 state to return a set of answers scored to show the best solution. The D-Wave Two System Qubit superposition In order for the quantum effects to take place, a quantum processor must operate in an extreme environment - temperatures close to absolute zero, shielded from magnetism, and isolated from vibration and external signals of A superposition of qubits 0 & 1 any form. The environmental enclosure shields the processor to 50,000 less than the Earth s magnetic field. ψ = α 0 0 +α 1 1, α α 1 2 = 1 Inside the box the closed cycle dilution refrigerator lowers the temperature at each level until it reaches almost absolute zero (0.02 Kelvin), 150x colder than interstellar space. Qubit measurement The quantum processor contains a lattice of tiny superconducting circuits (qubits) made from the metal niobium, which exhibits quantum behaviors at low temperatures. Qubits are the basic elements that the system uses to solve optimization problems. Measure ψ : Obtain either result 0 with probability α 0 2 or The quantum processor is surrounded by electronics used to program the processor and read out the results. Quantum processor Qubits in red result 1 with probability α 1 2. Qubits can exist in a state of 1 or 0 simultaneously ψ : both 0 & 1 Dilution refrigerator 0 = 1, 1 = 0, ψ = α Bloch sphere α 1 Yazhen (at UW-Madison) 6 / 31

6 Quantum System Quantum state Quantum system may be in a pure state ψ ( which is a unit vector ) Quantum evolution Time evolution of quantum system: the Schrödinger equation ψ(t) 1 = H ψ(t) ψ(t) = e 1H ψ(0) t H: Hamiltonian Yazhen (at UW-Madison) 9 / 31

7 Quantum + Statistical Learning Quantum State Tomography Recover a quantum state (a density matrix) Statistical Learning Handle sparse or low rank matrices Quantum Tomography via Statistical Learning Adopt statistical learning methods and algorithms to quantum state tomography Key Insight Quantum tomography E(N k ) = tr(ρm k ) Matrix completion tr(x k ρ) Gross et al. (2010, Phys. Rev. Lett.), Wang (2013, Ann. Statist.) Optimal density matrix estimation as n, p Minimax theory: Binomial distribution vs normal distribution under spectral norm (Cai, Kim, Wang, Yuan & Zhou, Ann Statist. 2016) Yazhen (at UW-Madison) 13 / 31

8 Annealing 7000 year old technology to slowly cool metal and glass for property improvement Ising Model lattice sites: Hamiltonian (or energy) H Ising (s) = J ij s i s j i j j J ij : coupling, h j : local field Optimization Problem h j s j s = {s j = ±1, 1 j N} ARTICLES a c Ferrimagnet (FR) b d Antiferromagnet (AF) Given an instance {J ij & h j }, among total 2 N configurations find N phase θ defined by Φ = Φ e iπ/2 and m we call AF, illustra forms first when th The pattern of using the η-expans state has the lowest to the state found f Putting togethe h > 0, h < 0 and phase diagram con Fig. 3a. On general either be direct and of coexistence cor Isosceles triangl Now we adapt a complicated case w Neel 1 (N1) Neel 2 (N2) distortion of the t s = {sj, j = 1, 2,, N} to minimize energy H Ising(s). in the real materi Yazhen (at UW-Madison) Figure 2 Magnetic ordering patterns of FR, AF, N1 and N2 phases. The arrows represent the projection of the spin on the local easy axis When h < 0, associated 17 / with 31 the

9 Simulated Annealing (SA) Rugged Energy Landscape NP-Hard Many interesting hard problems (e.g. traveling salesman problem, protein folding, portfolio optimization, integer factoring) can be mapped onto the optimization problem. Simulated Annealing (Kirkpatrick et. al 1983, Science) 30 year old technique to slowly cool a model in Monte Carlo simulations for solving an optimization problem. Yazhen (at UW-Madison) 18 / 31

10 Markov Chain Monte Carlo (MCMC) Metropolis-Hastings algorithm Sample from Boltzmann distribution P(s) = exp[ H Ising(s)/T ], Z T = Z T s Thermal Fluctuation [ exp H ] Ising(s), T =temperature T Slowly lower the temperature to reduce the escape probability of trapping in local minima, Annealing schedule : T i 1 i + 1 or 1 log(i + 1) Many Tries for Solution The minimum energy of one run can be the global minimum with some probability. Try many runs to explore the search space, and find the minimum energy of each run to search for the solution of the minimization problem. Yazhen (at UW-Madison) 19 / 31

11 Quantum Annealing (QA): Basic Idea Classical optimization: Min{H Ising (s) : s { 1, 1} N } Find a target quantum system with Hamiltonian H(1) whose energies match H Ising (s): H(1) = diag{h Ising (s 1, ), H Ising (s 2 N )}. Create an initial quantum system with Hamiltonian H(0) whose lowest energy state is known and easy to prepare. QA: Engineer H(0) in its lowest energy state and gradually move H(0) H(1) Energy State H(0) Ground State H(1) Yazhen (at UW-Madison) 21 /

12 Quantum Model Quantum Ising Hamiltonian H Ising = i j D-Wave Qubits J ij σ z i σz j j h j σ z j R x x cjj Initial Hamiltonian H X = j σx j : a transverse magnetic field Ground state of H X : spins all in x direction= H X H Ising via weight shifting Qubit M eff H(t) = xa(t)h X + B(t)H Ising { Quantum annealing Coupler schedule A(t): transverse magnetic M co,i field M H X Φx q-qfp B(t): Ising spin qfp glass H Ising x QFP Φ co latch Quantum dc SQUID Model: Spin glass in a transverse magnetic field Φx ro i ro Φ q x x Φ LT M qfp-ro H X : induce quantum fluctuations & turn classical H Ising to quantum Harris et al., Experimental demonstration of a robust and scalable flux qubit, Yazhen (at UW-Madison) 24 / 31

13 Classical Thermal vs Quantum Annealing flips and thermal escape rule quantum tunneling out of local minima Thermal Jump Energy Energy Quantum Tunneling Configuration Configuration Yazhen (at UW-Madison) 25 / 31

14 Experiments on D-Wave One machine (128 qubits) Random Instance: Assign ±1 to couplings J ij at random Solve the problem of min H Ising on (i) D-Wave machine and by (ii) simulated classical annealing & (iii) simulated quantum annealing Run each annealing algorithm 1000 times and compute success probability = frequency of finding the lowest energy over 1000 repetitions Repeat the whole procedure 1000 times to obtain success probabilities for 1000 randomly selected instances Supplementary material for Quantum a Minimize H Ising = J ij σ z i σz j Yazhen (at UW-Madison) 51 /

15 Histogram of Ground State Success Probability Data DW: Work SA (a) DW (b) SA Number of Instance Number of Instance Success Probability Success Probability Yazhen (at UW-Madison) 52 / 31

16 Simulated Quantum Annealing (SQA) Spin glass in transverse field H = A(t)H X + B(t)H Ising, two parts non-commuting Path integral representation via Suzuki-Trotter expansion H H 2+1 = classical (2+1)-dimensional anisotropic Ising system (2 + 1)-dimensional system Two directions: along the original 2-dimensional direction spins have Chimera graph couplings, and along the extra (imaginary-time) direction spins have uniform couplings Quantum Monte Carlo H 2+1 : a collection of 2-dimensional classical Ising systems, that can be simulated by MCMC with moves in both directions A B C Yazhen (at UW-Madison) 53 / 31

17 Histogram of Ground State Success Probability Data DW: Work SA (a) DW (b) SA Number of Instance Number of Instance Success Probability Success Probability SQA (c) SQA Number of Instance Success Probability Yazhen (at UW-Madison) 55 / 31

18 What to do? Multiple hypothesis tests: Instance by instance check for ground state probabilities among annealing methods Goodness-of-fit test: Check ground state successful probabilities among annealing methods over 1000 instances Test for distribution shapes of ground state successful probabilities among annealing methods (Wang et al. 2016, Statistical Science) Investigae factors lead to the distribution shapes Study sampling properties of quantum annealing & D-Wave machines Find types of problems (machine learning, classification, portfolio allocation, protein folding, statistical computing, etc) that are good for D-Wave quantum computer to solve Yazhen (at UW-Madison) 59 / 31

19 Concluding Remarks Monte Carlo methods are important for quantum computing Statistics has an important role to play in quantum science High-dimensional statistics and compressed sensing quantum for tomography and quantum information. Statistical inference & Monte Carlo methods for quantum computing. Current & Future Research How to characterize D-Wave s sampling performance? Not sample from Boltzmann distribution, more on ground and high energy states. What kinds of computing problems can be benefited from D-Wave sampling and are good for D-Wave quantum computer? Machine learning? Statistical computing? Computational finance?... Yazhen (at UW-Madison) 60 / 31

20 References Wang, Y., Wu, S. and Zou, J. (2016). Quantum annealing with MCMC and D-Wave quantum computers. Statistical Science 31, Cai, Kim, Wang, Yuan & Zhou (2016). Optimal large-scale quantum state tomography with Pauli measurements. Ann. Statist. 44, Wang, Y. and Xu, C. (2015). Density matrix estimation in quantum homodyne tomography. Statistica Sinica 25, Wang, Y. (2013). Asymptotic equivalence of quantum state tomography and noisy matrix completion. Ann. Statist. 41, Wang, Y. (2012). Quantum computation and quantum information. Statistical Science 27, Wang, Y. (2011). Quantum Monte Carlo simulation. Ann. Appl. Statist. 5, Nielsen, M. and Chuang, I. (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. Yazhen (at UW-Madison) 61 / 31

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft)

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Quantum annealing (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Troels Rønnow (ETH) Sergei Isakov (ETH Google) Lei Wang (ETH) Sergio Boixo (USC Google) Daniel Lidar (USC) Zhihui Wang (USC)

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018 System Roadmap Qubits 2018 D-Wave Users Conference Knoxville Jed Whittaker D-Wave Systems Inc. September 25, 2018 Overview Where are we today? annealing options reverse annealing quantum materials simulation

More information

Complexity of the quantum adiabatic algorithm

Complexity of the quantum adiabatic algorithm Complexity of the quantum adiabatic algorithm Peter Young e-mail:peter@physics.ucsc.edu Collaborators: S. Knysh and V. N. Smelyanskiy Colloquium at Princeton, September 24, 2009 p.1 Introduction What is

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits Observation of topological phenomena in a programmable lattice of 18 superconducting qubits Andrew D. King Qubits North America 218 Nature 56 456 46, 218 Interdisciplinary teamwork Theory Simulation QA

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

The D-Wave 2X Quantum Computer Technology Overview

The D-Wave 2X Quantum Computer Technology Overview The D-Wave 2X Quantum Computer Technology Overview D-Wave Systems Inc. www.dwavesys.com Quantum Computing for the Real World Founded in 1999, D-Wave Systems is the world s first quantum computing company.

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

Simulated Quantum Annealing For General Ising Models

Simulated Quantum Annealing For General Ising Models Simulated Quantum Annealing For General Ising Models Thomas Neuhaus Jülich Supercomputing Centre, JSC Forschungszentrum Jülich Jülich, Germany e-mail : t.neuhaus@fz-juelich.de November 23 On the Talk Quantum

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Modenizing Quantum Annealing using Local Search

Modenizing Quantum Annealing using Local Search Modenizing Quantum Annealing using Local Search EMiT 2017 Manchester Based on: NJP 19, 2, 023024 (2017) and arχiv:1609.05875 Nicholas Chancellor Dec. 13, 2017 Outline 1. Energy Computing and the Ising

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Experiments with and Applications of the D-Wave Machine

Experiments with and Applications of the D-Wave Machine Experiments with and Applications of the D-Wave Machine Paul Warburton, University College London p.warburton@ucl.ac.uk 1. Brief introduction to the D-Wave machine 2. Black box experiments to test quantumness

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

Developing a commercial superconducting quantum annealing processor

Developing a commercial superconducting quantum annealing processor Developing a commercial superconducting quantum annealing processor 30th nternational Symposium on Superconductivity SS 2017 Mark W Johnson D-Wave Systems nc. December 14, 2017 ED4-1 Overview ntroduction

More information

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

D-Wave: real quantum computer?

D-Wave: real quantum computer? D-Wave: real quantum computer? M. Johnson et al., "Quantum annealing with manufactured spins", Nature 473, 194-198 (2011) S. Boixo et al., "Evidence for quantum annealing wiht more than one hundred qubits",

More information

arxiv: v1 [cond-mat.stat-mech] 25 Aug 2014

arxiv: v1 [cond-mat.stat-mech] 25 Aug 2014 EPJ manuscript No. (will be inserted by the editor) Quantum Annealing - Foundations and Frontiers arxiv:1408.5784v1 [cond-mat.stat-mech] 25 Aug 2014 Eliahu Cohen 1,a and Boaz Tamir 2 1 School of Physics

More information

Introduction to Adiabatic Quantum Computation

Introduction to Adiabatic Quantum Computation Introduction to Adiabatic Quantum Computation Vicky Choi Department of Computer Science Virginia Tech April 6, 2 Outline Motivation: Maximum Independent Set(MIS) Problem vs Ising Problem 2 Basics: Quantum

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Optimization in random field Ising models by quantum annealing

Optimization in random field Ising models by quantum annealing Optimization in random field Ising models by quantum annealing Matti Sarjala, 1 Viljo Petäjä, 1 and Mikko Alava 1 1 Helsinki University of Techn., Lab. of Physics, P.O.Box 1100, 02015 HUT, Finland We investigate

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Quantum annealing by ferromagnetic interaction with the mean-field scheme

Quantum annealing by ferromagnetic interaction with the mean-field scheme Quantum annealing by ferromagnetic interaction with the mean-field scheme Sei Suzuki and Hidetoshi Nishimori Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Unitary Dynamics and Quantum Circuits

Unitary Dynamics and Quantum Circuits qitd323 Unitary Dynamics and Quantum Circuits Robert B. Griffiths Version of 20 January 2014 Contents 1 Unitary Dynamics 1 1.1 Time development operator T.................................... 1 1.2 Particular

More information

How can ideas from quantum computing improve or speed up neuromorphic models of computation?

How can ideas from quantum computing improve or speed up neuromorphic models of computation? Neuromorphic Computation: Architectures, Models, Applications Associative Memory Models with Adiabatic Quantum Optimization Kathleen Hamilton, Alexander McCaskey, Jonathan Schrock, Neena Imam and Travis

More information

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016 Quantum Effect or HPC without FLOPS Lugano March 23, 2016 Electronics April 19, 1965 2016 D-Wave Systems Inc. All Rights Reserved 2 Moore s Law 2016 D-Wave Systems Inc. All Rights Reserved 3 www.economist.com/technology-quarterly/2016-03-12/aftermoores-law

More information

CMOS Ising Computer to Help Optimize Social Infrastructure Systems

CMOS Ising Computer to Help Optimize Social Infrastructure Systems FEATURED ARTICLES Taking on Future Social Issues through Open Innovation Information Science for Greater Industrial Efficiency CMOS Ising Computer to Help Optimize Social Infrastructure Systems As the

More information

Janus: FPGA Based System for Scientific Computing Filippo Mantovani

Janus: FPGA Based System for Scientific Computing Filippo Mantovani Janus: FPGA Based System for Scientific Computing Filippo Mantovani Physics Department Università degli Studi di Ferrara Ferrara, 28/09/2009 Overview: 1. The physical problem: - Ising model and Spin Glass

More information

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 24 Jan 2006

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 24 Jan 2006 Optimization in random field Ising models by quantum annealing Matti Sarjala, 1 Viljo Petäjä, 1 and Mikko Alava 1 1 Helsinki University of Techn., Lab. of Physics, P.O.Box 10, 02015 HUT, Finland arxiv:cond-mat/0511515v3

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Turbulence Simulations

Turbulence Simulations Innovatives Supercomputing in Deutschland Innovative HPC in Germany Vol. 14 No. 2 Autumn 2016 Turbulence Simulations The world s largest terrestrial & astrophysical applications Vice World Champion HLRS

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017

Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017 Canary Foundation at Stanford D-Wave Systems Murray Thom February 27 th, 2017 Introduction to Quantum Computing Copyright D-Wave Systems Inc. 3 Richard Feynman 1960 1970 1980 1990 2000 2010 2020 Copyright

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at Saarbrücken University, November 5, 2012 Collaborators: I. Hen, E.

More information

Guiding Monte Carlo Simulations with Machine Learning

Guiding Monte Carlo Simulations with Machine Learning Guiding Monte Carlo Simulations with Machine Learning Yang Qi Department of Physics, Massachusetts Institute of Technology Joining Fudan University in 2017 KITS, June 29 2017. 1/ 33 References Works led

More information

Information quantique, calcul quantique :

Information quantique, calcul quantique : Séminaire LARIS, 8 juillet 2014. Information quantique, calcul quantique : des rudiments à la recherche (en 45min!). François Chapeau-Blondeau LARIS, Université d Angers, France. 1/25 Motivations pour

More information

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field J. Phys. A: Math. Gen. 30 (1997) L41 L47. Printed in the UK PII: S0305-4470(97)79383-1 LETTER TO THE EDITOR Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part I Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 12, 2011 Overview Outline What is quantum computing? Background Caveats Fundamental differences

More information

Building Quantum Computers: Is the end near for the silicon chip?

Building Quantum Computers: Is the end near for the silicon chip? Building Quantum Computers: Is the end near for the silicon chip? Presented by Dr. Suzanne Gildert University of Birmingham 09/02/2010 What is inside your mobile phone? What is inside your mobile phone?

More information

The Deutsch-Josza Algorithm in NMR

The Deutsch-Josza Algorithm in NMR December 20, 2010 Matteo Biondi, Thomas Hasler Introduction Algorithm presented in 1992 by Deutsch and Josza First implementation in 1998 on NMR system: - Jones, JA; Mosca M; et al. of a quantum algorithm

More information

Expectations, Markov chains, and the Metropolis algorithm

Expectations, Markov chains, and the Metropolis algorithm Expectations, Markov chains, and the Metropolis algorithm Peter Hoff Departments of Statistics and Biostatistics and the Center for Statistics and the Social Sciences University of Washington 7-27-05 1

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Quantum Annealing and the Schrödinger-Langevin-Kostin equation

Quantum Annealing and the Schrödinger-Langevin-Kostin equation Quantum Annealing and the Schrödinger-Langevin-Kostin equation Diego de Falco Dario Tamascelli Dipartimento di Scienze dell Informazione Università degli Studi di Milano IQIS Camerino, October 28th 2008

More information

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Real Annealing and Simulated Annealing Metropolis Algorithm Template of SA A Simple Example References

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

The Quantum Supremacy Experiment

The Quantum Supremacy Experiment The Quantum Supremacy Experiment John Martinis, Google & UCSB New tests of QM: Does QM work for 10 15 Hilbert space? Does digitized error model also work? Demonstrate exponential computing power: Check

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Spin glasses and Adiabatic Quantum Computing

Spin glasses and Adiabatic Quantum Computing Spin glasses and Adiabatic Quantum Computing A.P. Young alk at the Workshop on heory and Practice of Adiabatic Quantum Computers and Quantum Simulation, ICP, rieste, August 22-26, 2016 Spin Glasses he

More information

Spin Glas Dynamics and Stochastic Optimization Schemes. Karl Heinz Hoffmann TU Chemnitz

Spin Glas Dynamics and Stochastic Optimization Schemes. Karl Heinz Hoffmann TU Chemnitz Spin Glas Dynamics and Stochastic Optimization Schemes Karl Heinz Hoffmann TU Chemnitz 1 Spin Glasses spin glass e.g. AuFe AuMn CuMn nobel metal (no spin) transition metal (spin) 0.1-10 at% ferromagnetic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Superconducting qubit oscillator circuit beyond the ultrastrong-coupling regime S1. FLUX BIAS DEPENDENCE OF THE COUPLER S CRITICAL CURRENT The circuit diagram of the coupler in circuit I is shown as the

More information

Realization of Single Qubit Operations Using. Coherence Vector Formalism in. Quantum Cellular Automata

Realization of Single Qubit Operations Using. Coherence Vector Formalism in. Quantum Cellular Automata Adv. Studies Theor. Phys., Vol. 6, 01, no. 14, 697-70 Realization of Single Qubit Operations Using Coherence Vector Formalism in Quantum Cellular Automata G. Pavan 1, N. Chandrasekar and Narra Sunil Kumar

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at AQC 2013, March 8, 2013 Collaborators:

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Branislav K. Nikolić

Branislav K. Nikolić Interdisciplinary Topics in Complex Systems: Cellular Automata, Self-Organized Criticality, Neural Networks and Spin Glasses Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware,

More information

TEPZZ Z84A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06N 99/00 ( )

TEPZZ Z84A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06N 99/00 ( ) (19) TEPZZ Z84A_T (11) EP 3 113 084 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 04.01.17 Bulletin 17/01 (1) Int Cl.: G06N 99/00 (.01) (21) Application number: 1174362.2 (22) Date of filing:

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

Quantum Computers: A Review Work

Quantum Computers: A Review Work Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 5 (2017) pp. 1471-1478 Research India Publications http://www.ripublication.com Quantum Computers: A Review Work Siddhartha

More information

J ij S i S j B i S i (1)

J ij S i S j B i S i (1) LECTURE 18 The Ising Model (References: Kerson Huang, Statistical Mechanics, Wiley and Sons (1963) and Colin Thompson, Mathematical Statistical Mechanics, Princeton Univ. Press (1972)). One of the simplest

More information

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Giant Enhancement of Quantum Decoherence by Frustrated Environments ISSN 0021-3640, JETP Letters, 2006, Vol. 84, No. 2, pp. 99 103. Pleiades Publishing, Inc., 2006.. Giant Enhancement of Quantum Decoherence by Frustrated Environments S. Yuan a, M. I. Katsnelson b, and

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

Featured Articles Advanced Research into AI Ising Computer

Featured Articles Advanced Research into AI Ising Computer 156 Hitachi Review Vol. 65 (2016), No. 6 Featured Articles Advanced Research into AI Ising Computer Masanao Yamaoka, Ph.D. Chihiro Yoshimura Masato Hayashi Takuya Okuyama Hidetaka Aoki Hiroyuki Mizuno,

More information

7.1 Basis for Boltzmann machine. 7. Boltzmann machines

7.1 Basis for Boltzmann machine. 7. Boltzmann machines 7. Boltzmann machines this section we will become acquainted with classical Boltzmann machines which can be seen obsolete being rarely applied in neurocomputing. It is interesting, after all, because is

More information

Gates for Adiabatic Quantum Computing

Gates for Adiabatic Quantum Computing Gates for Adiabatic Quantum Computing Richard H. Warren Abstract. The goal of this paper is to introduce building blocks for adiabatic quantum algorithms. Adiabatic quantum computing uses the principle

More information

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets Neural Networks for Machine Learning Lecture 11a Hopfield Nets Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Hopfield Nets A Hopfield net is composed of binary threshold

More information

The D-Wave 2000Q Quantum Computer Technology Overview

The D-Wave 2000Q Quantum Computer Technology Overview The D-Wave 2000Q Quantum Computer Technology Overview D-Wave Systems Inc. www.dwavesys.com Quantum Computing for the Real World Today Despite the incredible power of today s supercomputers, many complex

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Typical quantum states at finite temperature

Typical quantum states at finite temperature Typical quantum states at finite temperature How should one think about typical quantum states at finite temperature? Density Matrices versus pure states Why eigenstates are not typical Measuring the heat

More information

Quantum Computers Is the Future Here?

Quantum Computers Is the Future Here? Quantum Computers Is the Future Here? Tal Mor CS.Technion ISCQI Feb. 2016 128?? [ 2011 ; sold to LM ] D-Wave Two :512?? [ 2013 ; sold to NASA + Google ] D-Wave Three: 1024?? [ 2015 ; also installed at

More information

Quantum computing and mathematical research. Chi-Kwong Li The College of William and Mary

Quantum computing and mathematical research. Chi-Kwong Li The College of William and Mary and mathematical research The College of William and Mary Classical computing Classical computing Hardware - Beads and bars. Classical computing Hardware - Beads and bars. Input - Using finger skill to

More information

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018 The Future of Advanced (Secure) Computing Quantum Computing This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering and the Office of the Director

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

Quantum annealing for problems with ground-state degeneracy

Quantum annealing for problems with ground-state degeneracy Proceedings of the International Workshop on Statistical-Mechanical Informatics September 14 17, 2008, Sendai, Japan Quantum annealing for problems with ground-state degeneracy Yoshiki Matsuda 1, Hidetoshi

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

Secrets of Quantum Information Science

Secrets of Quantum Information Science Secrets of Quantum Information Science Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose

More information

Markov Chain Monte Carlo Method

Markov Chain Monte Carlo Method Markov Chain Monte Carlo Method Macoto Kikuchi Cybermedia Center, Osaka University 6th July 2017 Thermal Simulations 1 Why temperature 2 Statistical mechanics in a nutshell 3 Temperature in computers 4

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at the London Centre for Nanotechnology, October 17, 2012 Collaborators:

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

The 1+1-dimensional Ising model

The 1+1-dimensional Ising model Chapter 4 The 1+1-dimensional Ising model The 1+1-dimensional Ising model is one of the most important models in statistical mechanics. It is an interacting system, and behaves accordingly. Yet for a variety

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Overview of adiabatic quantum computation. Andrew Childs

Overview of adiabatic quantum computation. Andrew Childs Overview of adiabatic quantum computation Andrew Childs Adiabatic optimization Quantum adiabatic optimization is a class of procedures for solving optimization problems using a quantum computer. Basic

More information

Exploring Quantum Control with Quantum Information Processors

Exploring Quantum Control with Quantum Information Processors Exploring Quantum Control with Quantum Information Processors David Poulin Institute for Quantum Computing Perimeter Institute for Theoretical Physics IBM, March 2004 p.1 Two aspects of quantum information

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Numerical Statistics and Quantum Algorithms. Valerii Fedorov ICON

Numerical Statistics and Quantum Algorithms. Valerii Fedorov ICON Numerical Statistics and Quantum Algorithms Valerii Fedorov ICON 1 Quantum Computing and Healthcare Statistics In partnership with ICON, Lockheed Martin is exploring computational challenges in healthcare

More information

Critical Dynamics of Two-Replica Cluster Algorithms

Critical Dynamics of Two-Replica Cluster Algorithms University of Massachusetts Amherst From the SelectedWorks of Jonathan Machta 2001 Critical Dynamics of Two-Replica Cluster Algorithms X. N. Li Jonathan Machta, University of Massachusetts Amherst Available

More information

arxiv: v2 [quant-ph] 18 Apr 2012

arxiv: v2 [quant-ph] 18 Apr 2012 A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration Vadim N. Smelyanskiy, Eleanor G. Rieffel, and Sergey I. Knysh NASA Ames Research Center, Mail Stop 269-3, Moffett

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information