Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017

Size: px
Start display at page:

Download "Canary Foundation at Stanford. D-Wave Systems Murray Thom February 27 th, 2017"

Transcription

1 Canary Foundation at Stanford D-Wave Systems Murray Thom February 27 th, 2017

2 Introduction to Quantum Computing

3 Copyright D-Wave Systems Inc. 3

4 Richard Feynman Copyright D-Wave Systems Inc. 4

5 Quantum Turing Machine Copyright D-Wave Systems Inc. 5

6 Quantum Annealing Outlined by Tokyo Tech PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998 Quantum annealing in the transverse Isingmodel Tadashi Kadowaki and Hidetoshi Nishimori Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo , Japan (Received 30 April 1998) We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising model, in which the transverse field is a function of time similar to the temperature in the conventional method. The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as possible. We have solved the timedependent Schrödinger equation numerically for small size systems with various exchange interactions. Comparison with the results of the corresponding classical (thermal) method reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if we use the same annealing schedule. [S X~98! ] Copyright D-Wave Systems Inc. 6

7 D-Wave Announces 16 Qubit QC D-Wave Progression By 2004 it had become apparent that creating good ideas about quantum computing and looking externally for a research team to use this knowledge to build such a machine wouldn't work. So we decided to do it ourselves. We built our own fabrication facility -a superconducting electronics foundry -to produce the processors required to use quantum effects to compute. We assembled a team of scientists to design, fabricate, and test the processors in our own in-house labs. In 2010 we released our first commercial system, the D-Wave One quantum computer. We have doubled the number of qubits each 18 months, and in 2013 we shipped our 512-qubit D-Wave Two system. In 2015 we announced general availability of the qubit D-Wave 2X system Copyright D-Wave Systems Inc. 7

8 QC Models

9 Quantum Information Science Quantum key distribution Quantum information processing One-way/ cluster state Topological Quantum Sensor Emerging Quantum Cryptography Quantum Communication Quantum Computing Annealing Gate Model Emerging Copyright D-Wave Systems Inc. 9

10 What is a Quantum Computer? Exploits quantum mechanical effects Built with qubits rather than bits Operates in an extreme environment Enables quantum algorithms to solve very hard problems Quantum Processor Copyright D-Wave Systems Inc. 10

11 Gate Model Quantum Computing Copyright D-Wave Systems Inc. 11

12 Quantum Annealing (T=0, N=0) H S (t) = (1 s)h I + sh P, s = t/t f Initial state energy levels 0 s 1 Solution Copyright D-Wave Systems Inc. 12

13 Quantum Annealing (+ Thermal Noise) H ( t) = H ( t) + H + S B H SB System Bath Interaction k B T energy levels 0 s 1 Dynamical freeze-out Copyright D-Wave Systems Inc. 13 P 0

14 Topological Quantum Computing Microsoft Research TU Delft And others Anyons Non-Abelian Anyons /520540fce4b00fb5186e572f/ /SteveSimon_800_320.jpg Copyright D-Wave Systems Inc. 14

15 Photonic/Optical University of Bristol And others Copyright D-Wave Systems Inc. 15

16 Trapped Ions Oxford UofSussex UofMD Innsbruck And others Copyright D-Wave Systems Inc. 16

17 Silicon-based devices Intel University of New South Wales TU Delft And others Copyright D-Wave Systems Inc. 17

18 Superconducting Qubits D-Wave Systems Google MIT-LL/IARPA IBM Copyright D-Wave Systems Inc. 18

19 D-Wave qubit count has grown exponentially 10,000 1,000 D-Wave Two 512 D-Wave 2000Q 2000 Next Gen D-Wave 2X 1000 Qubits (log scale) 100 D-Wave One Gate Model Copyright D-Wave Systems Inc. 19

20 Quantum Annealing

21 Energy Landscape Space of solutions defines an energy landscape & best solution is lowest valley Classical algorithms must walk overthis landscape Quantum annealing uses quantum effects to go through the mountains Copyright D-Wave Systems Inc. 22

22 Quantum Effects on D-Wave Systems Superposition Entanglement QuantumTunneling Copyright D-Wave Systems Inc. 23

23 Quantum Turing Machine Copyright D-Wave Systems Inc. 24

24 Quantum Annealing Outlined by Tokyo Tech PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998 Quantum annealing in the transverse Isingmodel Tadashi Kadowaki and Hidetoshi Nishimori Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo , Japan (Received 30 April 1998) We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising model, in which the transverse field is a function of time similar to the temperature in the conventional method. The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as possible. We have solved the time-dependent Schrödinger equation numerically for small size systems with various exchange interactions. Comparison with the results of the corresponding classical (thermal) method reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if we use the same annealing schedule. [S X~98! ] Copyright D-Wave Systems Inc. 25

25 Making Use of Quantum States Gate Model 1 0 By Peppergrower-Own work, CC BY-SA 3.0, Copyright D-Wave Systems Inc. 26

26 Making Use of Quantum States Quantum Annealing 1 0 Copyright D-Wave Systems Inc. 27

27 Quantum Enhanced Optimization Quantum Hamiltonian is an operator on Hilbert space: H =E + +Δ Corresponding classical optimization problem: Obj(, ; )= + Copyright D-Wave Systems Inc. 28

28 D-Wave 2X Quantum Processor Qubits within red boxes Copyright D-Wave Systems Inc. 29

29 Overview of D-Wave

30 First and only commercial quantum computer Customers include Google, NASA, Lockheed, University of Southern California, Los Alamos National Laboratory, Temporal Defense Systems 150 U.S. patents 160 employees, 45 with Ph.D. HQ in Vancouver, B.C. Founded in 1999 Copyright D-Wave Systems Inc. 31

31 Mission To help solve the most challenging problems in the multiverse: Optimization Machine Learning Monte Carlo/Sampling Copyright D-Wave Systems Inc. 32

32 Better Answers for Hard Problems Optimization/ Decision Support Constraint Satisfaction Sampling Deep Learning Quantum Research Scheduling Logistics Graph Coloring Factoring Monte Carlo Financial Modeling Structured Prediction Boltzmann Machines Scaling Error Treatment Planning V&V Filtering Topology Copyright D-Wave Systems Inc. 33

33 (2013) Google Optimization Benchmarks(2013) Timing Benchmark Smaller is Better Median time to best solution (s) Series1 Series2 Series3 D-WAVE Series4 II 11,000x x Problem size (number of qubits) Copyright D-Wave Systems Inc. 34

34 Machine Learning: Binary Classification Traditional algorithm recognized car about 84% of the time Google/D-Wave Qboost algorithm implemented to recognize a car (cars have big shadows!) Quantum Classifier was more accurate (94%) and more efficient Ported quantum classifier back to traditional computer, more accurate and fewer CPU cycles (less power)! Copyright D-Wave Systems Inc. 35

35 Google Blog December 8, 2015 When can Quantum Annealing win? Tuesday, December 08, 2015 Posted by Hartmut Neven, Director of Engineering - During the last two years, the Google Quantum AI team has made progress in understanding the physics governing quantum annealers. We recently applied these new insights to construct proof-of-principle optimization problems and programmed these into the D-Wave 2X quantum annealer that Google operates jointly with NASA. The problems were designed to demonstrate that quantum annealing can offer runtime advantages for hard optimization problems characterized by rugged energy landscapes We found that for problem instances involving nearly 1000 binary variables, quantum annealing significantly outperforms its classical counterpart, simulated annealing. It is more than 10 8 times faster than simulated annealing running on a single core ,000,000x Copyright D-Wave Systems Inc. 36

36 Quantum Computing System

37 D-Wave Container - SCIF SCIF-like - No RF Interference Copyright D-Wave Systems Inc. 42

38 System Shielding 16 Layers between the quantum chip and the outside world Shielding preserves the quantum calculation Copyright D-Wave Systems Inc. 43

39 Processor Environment Cooled to Kelvin, 175x colder than interstellar space Shielded to 50,000 less than Earth s magnetic field In a high vacuum: pressure is 10 billion times lower than atmospheric pressure On low vibration floor <25 kw total power consumption for the next few generations 15mK Copyright D-Wave Systems Inc. 44

40 D-Wave 2000Q Quantum Processor Copyright D-Wave Systems Inc. 45

41 Processing Using D-Wave A lattice of superconducting loops (qubits) Chilled near absolute zero to quiet noise User maps a problem into search for lowest point in a vast landscape which corresponds to the best possible outcome Processor considers all possibilities simultaneously to satisfy the network of relationships with the lowest energy The final state of the qubitsyields the answer Copyright D-Wave Systems Inc. 46

42 The Qubit Qubit as superconducting loop The Energy Potential Copyright D-Wave Systems Inc. 47

43 The Coupling Copyright D-Wave Systems Inc. 48

44 Qubist Copyright D-Wave Systems Inc. 50

45 Colors encoded in unit cells Copyright D-Wave Systems Inc. 51

46 D-Wave Software Environment APPLICATIONS Environment/ Libraries QUORTRAN Q++ COMPILERS 1Qbit SDK Optimization Constraint Satisfaction Sampling SAT, ML JADE/QuellE QSAGE ToQ? TRANSLATORS Virtual QUBO LANL Assembler QUBO qbsolv INTERMEDIATE REPRESENTATION C, C++, MATLAB Python DW HOST LIBRARY AND COMMAND LINE INTERFACE SAPI SYSTEM INTERFACE AND CONTROL QMI QUANTUM MACHINE INSTRUCTION TARGET SYSTEM PRODUCT PROTOTYPE CONCEPT Copyright D-Wave Systems Inc. 52

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016 Quantum Effect or HPC without FLOPS Lugano March 23, 2016 Electronics April 19, 1965 2016 D-Wave Systems Inc. All Rights Reserved 2 Moore s Law 2016 D-Wave Systems Inc. All Rights Reserved 3 www.economist.com/technology-quarterly/2016-03-12/aftermoores-law

More information

The D-Wave 2X Quantum Computer Technology Overview

The D-Wave 2X Quantum Computer Technology Overview The D-Wave 2X Quantum Computer Technology Overview D-Wave Systems Inc. www.dwavesys.com Quantum Computing for the Real World Founded in 1999, D-Wave Systems is the world s first quantum computing company.

More information

The International Quantum Race

The International Quantum Race The International Quantum Race René Copeland President D-Wave Government Inc. October 17, 2017 D-Wave Background Company Background Founded in 1999; Vancouver, BC World s first quantum computing company

More information

Introduction to Quantum Computing D-Wave Background D-Wave System Programming Environment Potential Applications

Introduction to Quantum Computing D-Wave Background D-Wave System Programming Environment Potential Applications Topics Introduction to Quantum omputing D-Wave Background D-Wave System Programming Environment Potential Applications opyright D-Wave Systems Inc. 1 D-Wave Software Environment APPLIATIONS Environment/

More information

Qubits qop Tools Directions

Qubits qop Tools Directions Qubits qop Tools Directions Steve Reinhardt Director of Software Tools D-Wave Systems The qop goals are to establish key abstractions that are valuable for applications and higherlevel tools and effectively

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

Developing a commercial superconducting quantum annealing processor

Developing a commercial superconducting quantum annealing processor Developing a commercial superconducting quantum annealing processor 30th nternational Symposium on Superconductivity SS 2017 Mark W Johnson D-Wave Systems nc. December 14, 2017 ED4-1 Overview ntroduction

More information

Intel s approach to Quantum Computing

Intel s approach to Quantum Computing Intel s approach to Quantum Computing Dr. Astrid Elbe, Managing Director Intel Lab Europe Quantum Computing: Key Concepts Superposition Classical Physics Quantum Physics v Heads or Tails Heads and Tails

More information

Summary of Hyperion Research's First QC Expert Panel Survey Questions/Answers. Bob Sorensen, Earl Joseph, Steve Conway, and Alex Norton

Summary of Hyperion Research's First QC Expert Panel Survey Questions/Answers. Bob Sorensen, Earl Joseph, Steve Conway, and Alex Norton Summary of Hyperion Research's First QC Expert Panel Survey Questions/Answers Bob Sorensen, Earl Joseph, Steve Conway, and Alex Norton Hyperion s Quantum Computing Program Global Coverage of R&D Efforts

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

The D-Wave 2000Q Quantum Computer Technology Overview

The D-Wave 2000Q Quantum Computer Technology Overview The D-Wave 2000Q Quantum Computer Technology Overview D-Wave Systems Inc. www.dwavesys.com Quantum Computing for the Real World Today Despite the incredible power of today s supercomputers, many complex

More information

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018 System Roadmap Qubits 2018 D-Wave Users Conference Knoxville Jed Whittaker D-Wave Systems Inc. September 25, 2018 Overview Where are we today? annealing options reverse annealing quantum materials simulation

More information

Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs. HPC User Forum April 18, 2018

Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs. HPC User Forum April 18, 2018 Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs HPC User Forum April 18, 2018 Quantum Computing: Key Concepts Superposition Classical Physics Quantum Physics v Entanglement

More information

Quantum Computing An Overview

Quantum Computing An Overview Quantum Computing An Overview NAS Division NASA Ames Research Center TR Govindan Program Manager, QIS U.S. Army Research Office Outline Motivation Essentials of the Quantum Computing (QC) model Challenges

More information

Topological Quantum Computation. George Toh 11/6/2017

Topological Quantum Computation. George Toh 11/6/2017 Topological Quantum Computation George Toh 11/6/2017 Contents Quantum Computing Comparison of QC vs TQC Topological Quantum Computation How to implement TQC? Examples, progress Industry investment Future

More information

Statistics and Quantum Computing

Statistics and Quantum Computing Statistics and Quantum Computing Yazhen Wang Department of Statistics University of Wisconsin-Madison http://www.stat.wisc.edu/ yzwang Workshop on Quantum Computing and Its Application George Washington

More information

The Reality of Quantum Computing

The Reality of Quantum Computing The Reality of Quantum Computing Now and in the Future @qant Christoph Lameter Jump Trading LLC Great Expectations But the current state: Wild West Funding: Governments see a chance to win

More information

Gates for Adiabatic Quantum Computing

Gates for Adiabatic Quantum Computing Gates for Adiabatic Quantum Computing Richard H. Warren Abstract. The goal of this paper is to introduce building blocks for adiabatic quantum algorithms. Adiabatic quantum computing uses the principle

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

Post Von Neumann Computing

Post Von Neumann Computing Post Von Neumann Computing Matthias Kaiserswerth Hasler Stiftung (formerly IBM Research) 1 2014 IBM Corporation Foundation Purpose Support information and communication technologies (ICT) to advance Switzerland

More information

Quantum annealing by ferromagnetic interaction with the mean-field scheme

Quantum annealing by ferromagnetic interaction with the mean-field scheme Quantum annealing by ferromagnetic interaction with the mean-field scheme Sei Suzuki and Hidetoshi Nishimori Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan

More information

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018 The Future of Advanced (Secure) Computing Quantum Computing This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering and the Office of the Director

More information

A Reconfigurable Quantum Computer

A Reconfigurable Quantum Computer A Reconfigurable Quantum Computer David Moehring CEO, IonQ, Inc. College Park, MD Quantum Computing for Business 4-6 December 2017, Mountain View, CA IonQ Highlights Full Stack Quantum Computing Company

More information

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

1500 AMD Opteron processor (2.2 GHz with 2 GB RAM)

1500 AMD Opteron processor (2.2 GHz with 2 GB RAM) NICT 2019 2019 2 7 1 RSA RSA 2 3 (1) exp $ 64/9 + *(1) (ln 0) 1/2 (ln ln 0) 3/2 (2) 2009 12 768 (232 ) 1500 AMD Opteron processor (2.2 GHz with 2 GB RAM) 4 (3) 18 2 (1) (2) (3) 5 CRYPTREC 1. 2. 3. 1024,

More information

Building Quantum Computers: Is the end near for the silicon chip?

Building Quantum Computers: Is the end near for the silicon chip? Building Quantum Computers: Is the end near for the silicon chip? Presented by Dr. Suzanne Gildert University of Birmingham 09/02/2010 What is inside your mobile phone? What is inside your mobile phone?

More information

A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems

A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems Achieving Quality and Cost Control in the Development of Enormous Systems Safe and Secure Systems and Software

More information

Naveed Anwar, AIT Solutions

Naveed Anwar, AIT Solutions 1 Current Trends in Technologies How computing hardware and Software will impact the future Naveed Anwar, Ph.D. Executive Director, AIT Solutions 2 Computing and Technologies Software Hardware Programming

More information

Quantum Computing Approach to V&V of Complex Systems Overview

Quantum Computing Approach to V&V of Complex Systems Overview Quantum Computing Approach to V&V of Complex Systems Overview Summary of Quantum Enabled V&V Technology June, 04 Todd Belote Chris Elliott Flight Controls / VMS Integration Discussion Layout I. Quantum

More information

The Quantum Landscape

The Quantum Landscape The Quantum Landscape Computational drug discovery employing machine learning and quantum computing Contact us! lucas@proteinqure.com Or visit our blog to learn more @ www.proteinqure.com 2 Applications

More information

Complexity of the quantum adiabatic algorithm

Complexity of the quantum adiabatic algorithm Complexity of the quantum adiabatic algorithm Peter Young e-mail:peter@physics.ucsc.edu Collaborators: S. Knysh and V. N. Smelyanskiy Colloquium at Princeton, September 24, 2009 p.1 Introduction What is

More information

LOCKHEED MARTIN SITE UPDATE

LOCKHEED MARTIN SITE UPDATE LOCKHEED MARTIN SITE UPDATE 25 SEPTEMBER 2018 Julia Kwok Software Engineer Quantum Applications THE USC-LM QUANTUM COMPUTING CENTER Dr. Edward H. Ned Allen Chief Scientist and LM Senior Fellow Lockheed

More information

Numerical Statistics and Quantum Algorithms. Valerii Fedorov ICON

Numerical Statistics and Quantum Algorithms. Valerii Fedorov ICON Numerical Statistics and Quantum Algorithms Valerii Fedorov ICON 1 Quantum Computing and Healthcare Statistics In partnership with ICON, Lockheed Martin is exploring computational challenges in healthcare

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 16: Adiabatic Quantum Optimization Intro http://www.scottaaronson.com/blog/?p=1400 Testing a quantum

More information

The Impact of Quantum Computing

The Impact of Quantum Computing Fujitsu Laboratories Advanced Technology Symposium 2017 The Impact of Quantum Computing Daniel Lidar University of Southern California Quantum Computing - Origins Credit goes to Feynman: Quantum Physics:

More information

WorldQuant. Perspectives. Is Quantum Computing Ready to Take a Quantum Leap? By Mike White and Igor Tulchinsky

WorldQuant. Perspectives. Is Quantum Computing Ready to Take a Quantum Leap? By Mike White and Igor Tulchinsky WorldQuant Is Quantum Computing Ready to Take a Quantum Leap? By Mike White and Igor Tulchinsky Recent advances in quantum computing have caught the attention of investors and scientists alike, but a detailed

More information

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Quantum Computing Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Physics and Computation A key question: what is computation....fundamentally? What makes it

More information

Solving the Travelling Salesman Problem Using Quantum Computing

Solving the Travelling Salesman Problem Using Quantum Computing Solving the Travelling Salesman Problem Using Quantum Computing Sebastian Feld, Christoph Roch, Thomas Gabor Ludwig-Maximilians-Universität München OpenMunich 01.12.2017, Munich Agenda I. Quantum Computing

More information

Quantum Computing: From Circuit To Architecture

Quantum Computing: From Circuit To Architecture POLITECNICO DI MILANO Dipartimento di Elettronica, Informazione e Bioingegneria Quantum Computing: From Circuit To Architecture Nicholas Mainardi Email: nicholas.mainardi@polimi.it home.deib.polimi.it/nmainardi

More information

Quantum Computing. Hans De Raedt Zernike Institute for Advanced Materials University of Groningen, NL

Quantum Computing. Hans De Raedt Zernike Institute for Advanced Materials University of Groningen, NL Quantum Computing Hans De Raedt Zernike Institute for Advanced Materials University of Groningen, NL http://www.compphys.org *80. Geburtsdag Prof.Dr. F. Hossfeld und 30 Jarhe HLRZ/NIC This talk Content

More information

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft)

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Quantum annealing (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Troels Rønnow (ETH) Sergei Isakov (ETH Google) Lei Wang (ETH) Sergio Boixo (USC Google) Daniel Lidar (USC) Zhihui Wang (USC)

More information

Simulated Quantum Annealing For General Ising Models

Simulated Quantum Annealing For General Ising Models Simulated Quantum Annealing For General Ising Models Thomas Neuhaus Jülich Supercomputing Centre, JSC Forschungszentrum Jülich Jülich, Germany e-mail : t.neuhaus@fz-juelich.de November 23 On the Talk Quantum

More information

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley Challenges in Quantum Information Science Umesh V. Vazirani U. C. Berkeley 1 st quantum revolution - Understanding physical world: periodic table, chemical reactions electronic wavefunctions underlying

More information

David Roberts. Career and Research Interests. Technology Inspired by Mathematics and Physics

David Roberts. Career and Research Interests. Technology Inspired by Mathematics and Physics David Roberts Career and Research Interests Technology Inspired by Mathematics and Physics Proven success in research and driving innovative application of mathematics in advanced technology Fellowship

More information

Secrets of Quantum Information Science

Secrets of Quantum Information Science Secrets of Quantum Information Science Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose

More information

Quantum vs Classical Optimization: A status update on the arms race. Helmut G. Katzgraber

Quantum vs Classical Optimization: A status update on the arms race. Helmut G. Katzgraber Quantum vs Classical Optimization: A status update on the arms race Helmut G. Katzgraber https://intractable.lol Quantum vs Classical Optimization: A status update on the arms race Helmut G. Katzgraber

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

EU investment in Quantum Technologies

EU investment in Quantum Technologies EU investment in Quantum Technologies ENISA Summer School, 26. September2018 Dr. Gustav Kalbe High Performance Computing and Quantum Technologies DG CNECT, European Commission 2 nd Quantumrevolution: manipulating/exploiting

More information

Practical Quantum Computing: A Patent Landscape Report The Highlights

Practical Quantum Computing: A Patent Landscape Report The Highlights Practical Quantum Computing: A Patent Landscape Report The Highlights All All rights rights reserved. reserved. Not Not for for reproduction, reproduction, distribution distribution or or sale. sale. Headlines

More information

- Why aren t there more quantum algorithms? - Quantum Programming Languages. By : Amanda Cieslak and Ahmana Tarin

- Why aren t there more quantum algorithms? - Quantum Programming Languages. By : Amanda Cieslak and Ahmana Tarin - Why aren t there more quantum algorithms? - Quantum Programming Languages By : Amanda Cieslak and Ahmana Tarin Why aren t there more quantum algorithms? there are only a few problems for which quantum

More information

Finding Maximum Cliques on a Quantum Annealer

Finding Maximum Cliques on a Quantum Annealer Finding Maximum Cliques on a Quantum Annealer Guillaume Chapuis Los Alamos National Laboratory Georg Hahn Imperial College, London, UK Hristo Djidjev (PI) Los Alamos National Laboratory Guillaume Rizk

More information

Verification of quantum computation

Verification of quantum computation Verification of quantum computation THOMAS VIDICK, CALIFORNIA INSTITUTE OF TECHNOLOGY Presentation based on the paper: Classical verification of quantum computation by U. Mahadev (IEEE symp. on Foundations

More information

Practical Quantum Computing: A Patent Landscape Report

Practical Quantum Computing: A Patent Landscape Report Practical Quantum Computing: A Patent Landscape Report All All rights rights reserved. reserved. Not Not for for reproduction, reproduction, distribution distribution or or sale. sale. Headlines Patenting

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Overview of adiabatic quantum computation. Andrew Childs

Overview of adiabatic quantum computation. Andrew Childs Overview of adiabatic quantum computation Andrew Childs Adiabatic optimization Quantum adiabatic optimization is a class of procedures for solving optimization problems using a quantum computer. Basic

More information

Quantum Annealing and the Satisfiability Problem

Quantum Annealing and the Satisfiability Problem arxiv:1612.7258v1 [quant-ph] 21 Dec 216 Quantum Annealing and the Satisfiability Problem 1. Introduction Kristen L PUDENZ 1, Gregory S TALLANT, Todd R BELOTE, and Steven H ADACHI Lockheed Martin, United

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

Turbulence Simulations

Turbulence Simulations Innovatives Supercomputing in Deutschland Innovative HPC in Germany Vol. 14 No. 2 Autumn 2016 Turbulence Simulations The world s largest terrestrial & astrophysical applications Vice World Champion HLRS

More information

Quantum High Performance Computing. Matthias Troyer Station Q QuArC, Microsoft

Quantum High Performance Computing. Matthias Troyer Station Q QuArC, Microsoft Quantum High Performance Computing Station Q QuArC, Microsoft 2000 2006 Station Q A worldwide consortium Universi ty Partner s ETH Zurich University of Copenhagen TU Delft University of Sydney QuArC Station

More information

LOCKHEED MARTIN SITE UPDATE 11 APRIL 2018 MUNICH, GERMANY Kristen Pudenz Senior Quantum Applications Engineer

LOCKHEED MARTIN SITE UPDATE 11 APRIL 2018 MUNICH, GERMANY Kristen Pudenz Senior Quantum Applications Engineer LOCKHEED MARTIN SITE UPDATE 11 APRIL 2018 MUNICH, GERMANY Kristen Pudenz Senior Quantum Applications Engineer THE USC-LM QUANTUM COMPUTING CENTER Dr. Edward H. Ned Allen Chief Scientist and LM Senior Fellow

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

D-Wave: real quantum computer?

D-Wave: real quantum computer? D-Wave: real quantum computer? M. Johnson et al., "Quantum annealing with manufactured spins", Nature 473, 194-198 (2011) S. Boixo et al., "Evidence for quantum annealing wiht more than one hundred qubits",

More information

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich IBM Research - Zurich Established in 1956 Focus: science & technology, systems research, computer

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Stephen Casey NASA Slide template creator Krysta Svore Bloch Sphere Hadamard basis θ φ Quantum Hardware Technologies Quantum dots Superconductors Ion traps Nitrogen

More information

arxiv: v2 [quant-ph] 18 Apr 2012

arxiv: v2 [quant-ph] 18 Apr 2012 A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration Vadim N. Smelyanskiy, Eleanor G. Rieffel, and Sergey I. Knysh NASA Ames Research Center, Mail Stop 269-3, Moffett

More information

Cryptography in a quantum world

Cryptography in a quantum world T School of Informatics, University of Edinburgh 25th October 2016 E H U N I V E R S I T Y O H F R G E D I N B U Outline What is quantum computation Why should we care if quantum computers are constructed?

More information

Quantum Key Distribution and the Future of Encryption

Quantum Key Distribution and the Future of Encryption Quantum Key Distribution and the Future of Encryption Konstantinos Karagiannis Global Technical Lead, Ethical Hacking BT Security Amsterdam, October 16 th, 2014 Understanding QM? I think I can safely say

More information

LEADING THE EVOLUTION OF COMPUTE MARK KACHMAREK HPC STRATEGIC PLANNING MANAGER APRIL 17, 2018

LEADING THE EVOLUTION OF COMPUTE MARK KACHMAREK HPC STRATEGIC PLANNING MANAGER APRIL 17, 2018 LEADING THE EVOLUTION OF COMPUTE MARK KACHMAREK HPC STRATEGIC PLANNING MANAGER APRIL 17, 2018 INTEL S RESEARCH EFFORTS COMPONENTS RESEARCH INTEL LABS ENABLING MOORE S LAW DEVELOPING NOVEL INTEGRATION ENABLING

More information

Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach. Bay Area Quantum Computing Meetup - YCombinator February 1, 2018

Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach. Bay Area Quantum Computing Meetup - YCombinator February 1, 2018 Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach Bay Area Quantum Computing Meetup - YCombinator February 1, 2018 Full Stack Quantum Computing Quantum Processor Hardware Cloud

More information

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA Quantum Artificial Intelligence and Machine : The Path to Enterprise Deployments Randall Correll randall.correll@qcware.com +1 (703) 867-2395 Palo Alto, CA 1 Bundled software and services Professional

More information

Assessment of the IBM-Q quantum computer and its software environment

Assessment of the IBM-Q quantum computer and its software environment Assessment of the IBM-Q quantum computer and its software environment Zuzanna Chrząstek 1,2, Marian Bubak 1, Tomasz Stopa 2 and Katarzyna Rycerz 1 1 Department of Computer Science, AGH Krakow, Poland 2

More information

News from NBIA. Condensed Matter Physics: from new materials to quantum technology. time. Mark Rudner

News from NBIA. Condensed Matter Physics: from new materials to quantum technology. time. Mark Rudner News from NBIA Condensed Matter Physics: from new materials to quantum technology Mark Rudner time ~100 years after Bohr, the basic laws and players are established 1913 2013 Image from www.periodni.com

More information

Machine Learning Applications in Astronomy

Machine Learning Applications in Astronomy Machine Learning Applications in Astronomy Umaa Rebbapragada, Ph.D. Machine Learning and Instrument Autonomy Group Big Data Task Force November 1, 2017 Research described in this presentation was carried

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Experiments with and Applications of the D-Wave Machine

Experiments with and Applications of the D-Wave Machine Experiments with and Applications of the D-Wave Machine Paul Warburton, University College London p.warburton@ucl.ac.uk 1. Brief introduction to the D-Wave machine 2. Black box experiments to test quantumness

More information

von Neumann Architecture

von Neumann Architecture Computing with DNA & Review and Study Suggestions 1 Wednesday, April 29, 2009 von Neumann Architecture Refers to the existing computer architectures consisting of a processing unit a single separate storage

More information

Quantum Information Processing with Liquid-State NMR

Quantum Information Processing with Liquid-State NMR Quantum Information Processing with Liquid-State NMR Pranjal Vachaspati, Sabrina Pasterski MIT Department of Physics (Dated: May 8, 23) We demonstrate the use of a Bruker Avance 2 NMR Spectrometer for

More information

Quantum Technology 101: Overview of Quantum Computing and Quantum Cybersecurity

Quantum Technology 101: Overview of Quantum Computing and Quantum Cybersecurity Quantum Technology 0: Overview of Quantum Computing and Quantum Cybersecurity Warner A. Miller* Department of Physics & Center for Cryptography and Information Security Florida Atlantic University NSF

More information

Quantum Computers DR.RUPNATHJI( DR.RUPAK NATH )

Quantum Computers DR.RUPNATHJI( DR.RUPAK NATH ) Quantum Computers Index Introduction...3 Motivation...3 Quantum Physics...3 The multiverse...3 Superposition...4 Decoherence...5 Zeno effect...5 Entanglement...5 Bits vs. Qubits...5 Quantum Gates...6 Calculating

More information

Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers

Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers Alejandro Perdomo-Ortiz Senior Research Scientist, Quantum AI Lab. at NASA Ames Research Center and at the

More information

Featured Articles Advanced Research into AI Ising Computer

Featured Articles Advanced Research into AI Ising Computer 156 Hitachi Review Vol. 65 (2016), No. 6 Featured Articles Advanced Research into AI Ising Computer Masanao Yamaoka, Ph.D. Chihiro Yoshimura Masato Hayashi Takuya Okuyama Hidetaka Aoki Hiroyuki Mizuno,

More information

Quantum Information Processing

Quantum Information Processing Quantum Information Processing Jonathan Jones http://nmr.physics.ox.ac.uk/teaching The Information Age Communication Shannon Computation Turing Current approaches are essentially classical which is wrong

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

Why Quantum Technologies?

Why Quantum Technologies? Why Quantum Technologies? Serge Haroche Quantum Europe 2017 Malta, February 17 th 2017 Quantum theory has opened to us the microscopic world of particles, atoms and photons.and has given us the keys of

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part I Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 12, 2011 Overview Outline What is quantum computing? Background Caveats Fundamental differences

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

Quantum annealing for problems with ground-state degeneracy

Quantum annealing for problems with ground-state degeneracy Proceedings of the International Workshop on Statistical-Mechanical Informatics September 14 17, 2008, Sendai, Japan Quantum annealing for problems with ground-state degeneracy Yoshiki Matsuda 1, Hidetoshi

More information

SIMULATION ON / OF VARIOUS TYPES OF QUANTUM COMPUTERS ORAP FORUM MARCH 29, 2018 I KRISTEL MICHIELSEN

SIMULATION ON / OF VARIOUS TYPES OF QUANTUM COMPUTERS ORAP FORUM MARCH 29, 2018 I KRISTEL MICHIELSEN SIMULATION ON / OF VARIOUS TYPES OF QUANTUM COMPUTERS ORAP FORUM MARCH 29, 2018 I KRISTEL MICHIELSEN INTEREST IN QUANTUM COMPUTING from the perspective of a supercomputer centre is to go beyond classical

More information

A brief survey on quantum computing

A brief survey on quantum computing A brief survey on quantum computing Edward Poon University of Ottawa Edward Poon (Ottawa) A brief survey on quantum computing March 19, 2018 1 / 7 Outline Goal: Provide a high-level overview of what quantum

More information

We all live in a yellow submarine

We all live in a yellow submarine THE ART OF QUANTUM We all live in We all live in a yellow submarine We all live in quantum Universe Classicality is an emergent phenomenon everything is rooted in the realm of quantum (Classical) Reality

More information

Quantum Computers: A Review Work

Quantum Computers: A Review Work Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 5 (2017) pp. 1471-1478 Research India Publications http://www.ripublication.com Quantum Computers: A Review Work Siddhartha

More information

Parallelization of the QC-lib Quantum Computer Simulator Library

Parallelization of the QC-lib Quantum Computer Simulator Library Parallelization of the QC-lib Quantum Computer Simulator Library Ian Glendinning and Bernhard Ömer September 9, 23 PPAM 23 1 Ian Glendinning / September 9, 23 Outline Introduction Quantum Bits, Registers

More information

Janus: FPGA Based System for Scientific Computing Filippo Mantovani

Janus: FPGA Based System for Scientific Computing Filippo Mantovani Janus: FPGA Based System for Scientific Computing Filippo Mantovani Physics Department Università degli Studi di Ferrara Ferrara, 28/09/2009 Overview: 1. The physical problem: - Ising model and Spin Glass

More information

THE MULTIPLE-VALUED LOGIC.

THE MULTIPLE-VALUED LOGIC. By Marek Perkowski THE MULTIPLE-VALUED LOGIC. What is it? WHY WE BELIEVE IT HAS A BRIGHT FUTURE. Research topics (not circuit-design oriented) New research areas The need of unification Is this whole a

More information

Future of Quantum Science and Technology

Future of Quantum Science and Technology Future of Quantum Science and Technology Serge Haroche S.H &D.Wineland, 2012 Nobel in Physics Quantum theory has opened to us the microscopic world of particles, atoms and photons.and has given us the

More information