Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism

Size: px
Start display at page:

Download "Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism"

Transcription

1 Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism A.P. Young Work supported by Talk at AQC 2013, March 8, 2013 Collaborators: I. Hen, E. Farhi, P. Shor, D. Gosset, A. Sandvik, V. Smelyanskiy, S. Knysh, M. Guidetti.

2

3

4

5 Plan Quantum Monte Carlo (the method used to study large sizes) Results for SAT-type problems Results for a spin-glass problem A first look at graph isomorphism

6 Quantum Adiabatic Algorithm Proposed by Farhi et. al (2001) to solve hard optimization problems on a quantum computer. Want to find the ground state of a problem Hamiltonian H P involving Ising spins, z, or equivalently, bits i = ±1 b i =0or 1 Make quantum by adding a non-commuting driver Hamiltonian. Simplest is a transverse field: H D = Total Hamiltonian: H(t) = [1 with s(0) = 0, s(τ) = 1. h NX i=1 x i 1 s(t)]h D + s(t)h P H D (g.s.) adiabatic? H P (g.s.?) s 0 1 System starts in ground state of driver Hamiltonian. If process is adiabatic (and T 0), it ends in g.s. of problem Hamiltonian, T

7 Quantum Adiabatic Algorithm Proposed by Farhi et. al (2001) to solve hard optimization problems on a quantum computer. Want to find the ground state of a problem Hamiltonian H P involving Ising spins, z, or equivalently, bits i = ±1 b i =0or 1 Make quantum by adding a non-commuting driver Hamiltonian. Simplest is a transverse field: H D = Total Hamiltonian: H(t) = [1 with s(0) = 0, s(τ) = 1. h NX i=1 x i 1 s(t)]h D + s(t)h P H D (g.s.) adiabatic? H P (g.s.?) s 0 1 System starts in ground state of driver Hamiltonian. If process is adiabatic (and T 0), it ends in g.s. of problem Hamiltonian, T

8 Quantum Monte Carlo Early numerics, Farhi et al. for very small sizes N 20, on a particular problem found the time varied only as N 2, i.e. polynomial! But possible crossover to exponential at larger sizes? Want to estimate how the running time varies with size for large sizes. We therefore have to do a Quantum Monte Carlo Sampling of the 2 N states. QMC can efficiently study only equilibrium properties of a quantum system by simulating a classical model with an extra dimension, imaginary time, τ, where 0 <1/T. Used a version called the stochastic series expansion (SSE), pioneered by Sandvik. Not perfect, (statistical errors, need to ensure equilibration) but the only numerical method available for large N.

9 Quantum Phase Transition H D H P 0 QPT 1 s Bottleneck is likely to be a quantum phase transition (QPT) where the gap to the first excited state is very small E E 1 E 0 E min Landau Zener Theory: To stay in the ground state the time needed is proportional to E 2 min s

10 Quantum Phase Transition H D H P 0 QPT 1 s Bottleneck is likely to be a quantum phase transition (QPT) where the gap to the first excited state is very small E E 1 E 0 E min Landau Zener Theory: To stay in the ground state the time needed is proportional to E 2 min s

11 Quantum Phase Transition H D H P 0 QPT 1 s Bottleneck is likely to be a quantum phase transition (QPT) where the gap to the first excited state is very small E E 1 E 0 E min Landau Zener Theory: To stay in the ground state the time needed is proportional to E 2 min Used QMC to compute s E for different s: ΔEmin

12 Examples of results with the SSE code Time dependent correlation functions decay with τ as a sum of exponentials <H p ()H p (0)> - <H p > 2 A( )A(0) A 2 = n=0 0 A n 2 exp[ (E n E 0 ) ] For large τ only first excited state contributes, pure exponential decay Text 3-reg MAX-2-XORSAT, N=24 diag. QMC = 64, symmetric levels Small size, N= 24, excellent agreement with diagonalization. C() Text 3-reg MAX-2-XORSAT, N = 128 QMC fit, E = Large size, N = 128, good quality data, slope of straight line gap.

13 Dependence of gap on s Text Text Results for the dependence of the gap to the first excited state, ΔE, with s, for one instance Text of 1-in-3 SAT with N = 64. The gap has a minimum for s about 0.66 which is the bottleneck for the QAA. s

14 Dependence of gap on s Text Text Results for the dependence of the gap to the first excited state, ΔE, with s, for one instance Text of 1-in-3 SAT with N = 64. The gap has a minimum for s about 0.66 which is the bottleneck for the QAA. s Mind THIS gap

15 Dependence of gap on s Text s Mind THIS gap Text Results for the dependence of the gap to the first excited state, ΔE, with s, for one instance Text of 1-in-3 SAT with N = 64. The gap has a minimum for s about 0.66 which is the bottleneck for the QAA. We compute the minimum gap for many (50) instances for each size N and look how the median minimum gap varies with size.

16 K-SAT (like) with K > 2 Results for several K-SAT(like) problems for K > 2: Locked 1-in-3 SAT: The clause is formed from 3 bits picked at random. The clause is satisfied (has energy 0) if one is 1 and the other two are 0. Locked 2-in-4 SAT 3-regular 3-XORSAT (3-spin model) 3-regular means that each bit is in exactly three clauses. 3-XORSAT means that the clause is satisfied if the sum of the bits (mod 2) is a value specified (0 or 1) for each clause. In terms of spins σ z (= ±1) we require that the product of the three σ z s in a clause is specified (+1 or -1). Found minimum gap varies exponentially with N. The bottleneck appears to be a very small gap at the quantum phase transition. Show this in the next two slides.

17 median E min Locked 1-in-3 Plots of the median minimum gap (average over 50 instances) 2 / ndf = 1.35 Q = 0.26 median E min / ndf = Q = 3.82e exp( N) N Exponential fit 5.6 N N Power law fit Clearly the behavior of the minimum gap is exponential

18 Curious that the hardest problem for these heuristic algorithms is the one with a polynomial time algorithm (complexity class P). Comparison with a classical algorithm, WalkSAT: QAA WalkSAT median E min 0.01 median flips in-3, 0.16 exp( N) 2-in-4, 0.32 exp( N) 3-XORSAT, 0.22 exp( N) N XORSAT, 158 exp(0.120 N) Exponential behavior for both QAA and WalkSAT 2-in-4, 96 exp(0.086 N) 1-in-3, 496 exp(0.050 N) The trend is the same in both QAA and WalkSAT. 3-XORSAT (a 3-spin Hamiltonian) is the hardest, and locked 1-in-3 SAT the easiest. N

19 Spin glass problem (2-spin clauses ) Found minimum gap at the quantum phase transition, s = s*, varies polynomially with N. However, the gap in the spin glass phase, s > s*, appears to vary exponentially with N. The bottleneck is therefore in the spin glass phase, not at the quantum critical point. Will show this in the next few slides.

20 Spin glass on a random graph: 3-Reg Max-Cut: Max means we are in the UNSAT phase, and want to find the bit string with the least number of unsatisfied clauses. In Max-Cut, each clause has two bits and we want to maximize the number of clauses in which the bits are different. In physics jargon this is an anti-ferromagnet. Replica theory indicates that these 2-SAT-like problems are different from K-SAT problems for K > 2. (Hence we study it here.) 3-Regular means that it bit is in three clauses, i.e. has 3 neighbors connected to it. The connected pairs are chosen at random. 1 3 i Note: there are large loops 2

21 3-Reg MAX-Cut: II The problem Hamiltonian is H P = 1 2 i,j 1+ z i z j Note the symmetry under z i Cannot form an up-down antiferromagnet because of loops of odd length. In fact, it is a spin glass. Adding the driver Hamiltonian there is a quantum phase transition at s = s * above which the symmetry is spontaneously broken. Cavity calculations (Gosset, Zamponi) find s * 0.36 Investigated the problem near s * (s 0.5). Also just considered instances with a unique satisfying assignment (apart from the degenerate state related by flipping all the spins). (These are exponentially rare.) z i, i

22 3-Reg MAX-Cut: IV (Gap) E s For larger sizes, a fraction of instances have two minima, one fairly close to s * ( 0.36) and other at larger s in the spin glass phase. Figure shows an example for N = 128. Hence did 2 analyses (i) Global minimum in range (up to s=0.5) (ii) If two minima, just take the local minimum near s *. E min N N exp( N) N E min Global [exponential (main figure) preferred over E min power-law (inset)] Local [power-law best (inset)] N N minimum gap near s= exp( N) N E min

23 Graph Isomorphism I Are two graphs the same upon permuting the indices? Hypothesis: All non-isomorphic graphs can be distinguished by putting a suitable Hamiltonian on the edges of a graph, running the QAA, and computing appropriate average quantities, not necessarily at the end of the algorithm, by repeated measurements. So far: have tested for some small graphs N 29 (works). Could be tested experimentally on D-Wave One (128 nodes). We tried an antiferromagnet H P (G) = X hi,ji2g Main results for Strongly Regular Graphs. Families of similar but non-isomorphic graphs are known. We considered sizes from N = 15 to 29 vertices. Computed, e.g. M x 1 N X h i x i, i Q 2 z i 1 z j N(N 1) X i6=j h z i z j i 2

24 adiabatic parameter s spinglass order parameter Q2 Instance 2 Instance adiabatic parameter s spinglass order parameter Q2 Instance 2 Instance 1 FIG. 1: Spin-glass order parameter Q 2 in the ground state for the two non-isomorphic strongly-regular graphs (SRGs) on N =16vertices. Asthefigureindicates,thetwographs show different Q 2 values starting from s 0.4. matrix has only three distinct values [35]: λ 0 = k, which is non-degenerate, and λ 1,2 = 1 2 ( λ µ ± N ), which are both highly degenerate. Both the value and degeneracy of these eigenvalues depend only on the family parameters, so within a particular SRG family, all graphs are cospectral [35]. These highly degenerate spectra are one reason why distinguishing non-isomorphic SRGs is difficult M x Q M x Q2 FIG. 2: Scatterplot in the M x Q 2 plane of the 15 strongly regular graphs with N =25verticesinthelimits 1. The horizontal axis is the magnetization along the x-direction and the vertical axis is the spin-glass order parameter Q 2. The circled data point corresponds to the only two graphs which are not distinguished by values of Q 2 and M x in the s 1limit. Thesetwoinstancesare,nonetheless,distinguished by measurements at s<1 (see text). The inset shows the M x Q 2 values of two of the graphs that lie outside of the region shown in the main panel. perturbation theory suffices to distinguish between all but two of the graphs (the latter two share the same Q 2 Graph Isomorphism II The spin glass order parameter Q2 against s for two Strongly Regular Graphs with N = 16 vertices. They are clearly distinguished. Scatter plot of Q2 against Mx in the s 1 limit for the 15 SRG s with N=25. All but two are distinguished, and these two turn out to be distinguished at intermediate values of s. On D-Wave One would need to consider different, but related quantities. Could also look at energy distribution as a function of runtime (M. Amin). Also look at distributions (Farhi), e.g. rather than Hen and Young, Phys. Rev. A 86, (2012) P ( c M x ) Diagonalization & degenerate pert. theory M x h c M x i

25 Graph Isomorphism III (other graphs) Q s E adiabatic parameter s Other graphs, FIG. 5: The e.g. difference two N in = Q14 2 values, graphs Qof 2 (main Emms panel) et al, andchosen to be particularly energies had (inset), to distinguish. for the two graphs QAA Gworks, 1 and G 2 at with least N =14 in principle, differences that certain non-zero, quantum but walkers small, cannot in the distinguish vicinity [27, of 28]. minimum gap. Longer term, need to investigate size-dependence of minimum gap. B. Other pairs of graphs

26 Conclusions

27 Conclusions Simple application of QAA seems to fail:

28 Conclusions Simple application of QAA seems to fail: At the (first order transition) for SAT problems

29 Conclusions Simple application of QAA seems to fail: At the (first order transition) for SAT problems In the spin glass phase, beyond the transition, in the spin glass model

30 Conclusions Simple application of QAA seems to fail: At the (first order transition) for SAT problems In the spin glass phase, beyond the transition, in the spin glass model What about other models?

31 Conclusions Simple application of QAA seems to fail: At the (first order transition) for SAT problems In the spin glass phase, beyond the transition, in the spin glass model What about other models? Perhaps the QAA could be useful to get an approximate ground state. (For some problems, even this is difficult).

32 Conclusions Simple application of QAA seems to fail: At the (first order transition) for SAT problems In the spin glass phase, beyond the transition, in the spin glass model What about other models? Perhaps the QAA could be useful to get an approximate ground state. (For some problems, even this is difficult). I have just described the simplest implementation of the QAA. Perhaps if one could find clever paths in Hamiltonian space one could do better. A subject for future research.

33 Conclusions Simple application of QAA seems to fail: At the (first order transition) for SAT problems In the spin glass phase, beyond the transition, in the spin glass model What about other models? Perhaps the QAA could be useful to get an approximate ground state. (For some problems, even this is difficult). I have just described the simplest implementation of the QAA. Perhaps if one could find clever paths in Hamiltonian space one could do better. A subject for future research. Could the QAA be useful for the graph isomorphism problem? Presented some preliminary results.

34 Conclusions Simple application of QAA seems to fail: At the (first order transition) for SAT problems In the spin glass phase, beyond the transition, in the spin glass model What about other models? Perhaps the QAA could be useful to get an approximate ground state. (For some problems, even this is difficult). I have just described the simplest implementation of the QAA. Perhaps if one could find clever paths in Hamiltonian space one could do better. A subject for future research. Could the QAA be useful for the graph isomorphism problem? Presented some preliminary results. Thank you

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by NASA future technologies conference, January 17-212, 2012 Collaborators: Itay

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at the London Centre for Nanotechnology, October 17, 2012 Collaborators:

More information

The Quantum Adiabatic Algorithm

The Quantum Adiabatic Algorithm The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at SMQS-IP2011, Jülich, October 18, 2011 The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at Saarbrücken University, November 5, 2012 Collaborators: I. Hen, E.

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

Complexity of the quantum adiabatic algorithm

Complexity of the quantum adiabatic algorithm Complexity of the quantum adiabatic algorithm Peter Young e-mail:peter@physics.ucsc.edu Collaborators: S. Knysh and V. N. Smelyanskiy Colloquium at Princeton, September 24, 2009 p.1 Introduction What is

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Adiabatic Quantum Computation An alternative approach to a quantum computer

Adiabatic Quantum Computation An alternative approach to a quantum computer An alternative approach to a quantum computer ETH Zürich May 2. 2014 Table of Contents 1 Introduction 2 3 4 Literature: Introduction E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda

More information

Quantum annealing for problems with ground-state degeneracy

Quantum annealing for problems with ground-state degeneracy Proceedings of the International Workshop on Statistical-Mechanical Informatics September 14 17, 2008, Sendai, Japan Quantum annealing for problems with ground-state degeneracy Yoshiki Matsuda 1, Hidetoshi

More information

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Itay Hen Information Sciences Institute, USC Workshop on Theory and Practice of AQC and Quantum Simulation Trieste, Italy August

More information

Spin glasses and Adiabatic Quantum Computing

Spin glasses and Adiabatic Quantum Computing Spin glasses and Adiabatic Quantum Computing A.P. Young alk at the Workshop on heory and Practice of Adiabatic Quantum Computers and Quantum Simulation, ICP, rieste, August 22-26, 2016 Spin Glasses he

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

Power of Adiabatic Quantum Computation

Power of Adiabatic Quantum Computation Power of Adiabatic Quantum Computation Itay Hen Information Sciences Institute, USC Physics Colloquium, USC February 10, 2014 arxiv preprints: 1207.1712, 1301.4956, 1307.6538, 1401.5172 Motivation in what

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

arxiv: v1 [quant-ph] 28 Jan 2014

arxiv: v1 [quant-ph] 28 Jan 2014 Different Strategies for Optimization Using the Quantum Adiabatic Algorithm Elizabeth Crosson,, 2 Edward Farhi, Cedric Yen-Yu Lin, Han-Hsuan Lin, and Peter Shor, 3 Center for Theoretical Physics, Massachusetts

More information

Introduction to Adiabatic Quantum Computation

Introduction to Adiabatic Quantum Computation Introduction to Adiabatic Quantum Computation Vicky Choi Department of Computer Science Virginia Tech April 6, 2 Outline Motivation: Maximum Independent Set(MIS) Problem vs Ising Problem 2 Basics: Quantum

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 11: From random walk to quantum walk We now turn to a second major topic in quantum algorithms, the concept

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Overview of adiabatic quantum computation. Andrew Childs

Overview of adiabatic quantum computation. Andrew Childs Overview of adiabatic quantum computation Andrew Childs Adiabatic optimization Quantum adiabatic optimization is a class of procedures for solving optimization problems using a quantum computer. Basic

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information

arxiv: v1 [quant-ph] 13 Apr 2010

arxiv: v1 [quant-ph] 13 Apr 2010 Adiabatic Quantum Algorithms for the NP-Complete Maximum-Weight Independent Set, Exact Cover and 3SAT Problems arxiv:4.2226v [quant-ph] 3 Apr 2 Vicky Choi vchoi@cs.vt.edu Department of Computer Science

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

7 Monte Carlo Simulations of Quantum Spin Models

7 Monte Carlo Simulations of Quantum Spin Models 7 Monte Carlo Simulations of Quantum Spin Models Stefan Wessel Institute for Theoretical Solid State Physics RWTH Aachen University Contents 1 Introduction 2 2 World lines and local updates 2 2.1 Suzuki-Trotter

More information

Quantum annealing by ferromagnetic interaction with the mean-field scheme

Quantum annealing by ferromagnetic interaction with the mean-field scheme Quantum annealing by ferromagnetic interaction with the mean-field scheme Sei Suzuki and Hidetoshi Nishimori Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

arxiv: v1 [quant-ph] 3 Dec 2009

arxiv: v1 [quant-ph] 3 Dec 2009 Anderson localization casts clouds over adiabatic quantum optimization Boris Altshuler, 1, 2, Hari Krovi, 2, and Jeremie Roland 2, 1 Columbia University 2 NEC Laboratories America Inc. arxiv:0912.0746v1

More information

Generating Hard but Solvable SAT Formulas

Generating Hard but Solvable SAT Formulas Generating Hard but Solvable SAT Formulas T-79.7003 Research Course in Theoretical Computer Science André Schumacher October 18, 2007 1 Introduction The 3-SAT problem is one of the well-known NP-hard problems

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information

The ultrametric tree of states and computation of correlation functions in spin glasses. Andrea Lucarelli

The ultrametric tree of states and computation of correlation functions in spin glasses. Andrea Lucarelli Università degli studi di Roma La Sapienza Facoltà di Scienze Matematiche, Fisiche e Naturali Scuola di Dottorato Vito Volterra Prof. Giorgio Parisi The ultrametric tree of states and computation of correlation

More information

Kitaev honeycomb lattice model: from A to B and beyond

Kitaev honeycomb lattice model: from A to B and beyond Kitaev honeycomb lattice model: from A to B and beyond Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Postdoc: PhD students: Collaborators: Graham Kells Ahmet Bolukbasi

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook Martin Wehrle Universität Basel April 29, 2016 Propositional Logic: Overview Chapter overview: propositional logic

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Methods of Fermion Monte Carlo

Methods of Fermion Monte Carlo Methods of Fermion Monte Carlo Malvin H. Kalos kalos@llnl.gov Institute for Nuclear Theory University of Washington Seattle, USA July, 2013 LLNL-PRES-XXXXXX This work was performed under the auspices of

More information

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini New Frontiers in Theoretical Physics XXXIV Convegno Nazionale di Fisica Teorica - Cortona Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini Collaborators:

More information

Phase transition phenomena of statistical mechanical models of the integer factorization problem (submitted to JPSJ, now in review process)

Phase transition phenomena of statistical mechanical models of the integer factorization problem (submitted to JPSJ, now in review process) Phase transition phenomena of statistical mechanical models of the integer factorization problem (submitted to JPSJ, now in review process) Chihiro Nakajima WPI-AIMR, Tohoku University Masayuki Ohzeki

More information

Value-Ordering and Discrepancies. Ciaran McCreesh and Patrick Prosser

Value-Ordering and Discrepancies. Ciaran McCreesh and Patrick Prosser Value-Ordering and Discrepancies Maintaining Arc Consistency (MAC) Achieve (generalised) arc consistency (AC3, etc). If we have a domain wipeout, backtrack. If all domains have one value, we re done. Pick

More information

Polynomial-time classical simulation of quantum ferromagnets

Polynomial-time classical simulation of quantum ferromagnets Polynomial-time classical simulation of quantum ferromagnets Sergey Bravyi David Gosset IBM PRL 119, 100503 (2017) arxiv:1612.05602 Quantum Monte Carlo: a powerful suite of probabilistic classical simulation

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

Quantum Phase Transition

Quantum Phase Transition Quantum Phase Transition Guojun Zhu Department of Physics, University of Illinois at Urbana-Champaign, Urbana IL 61801, U.S.A. (Dated: May 5, 2002) A quantum system can undergo a continuous phase transition

More information

Two-level systems coupled to oscillators

Two-level systems coupled to oscillators Two-level systems coupled to oscillators RLE Group Energy Production and Conversion Group Project Staff Peter L. Hagelstein and Irfan Chaudhary Introduction Basic physical mechanisms that are complicated

More information

arxiv: v4 [quant-ph] 7 Dec 2016

arxiv: v4 [quant-ph] 7 Dec 2016 1 Notes on Adiabatic Quantum Computers arxiv:1512.07617v4 [quant-ph] 7 Dec 2016 Boaz Tamir 1, Eliahu Cohen 2 1 Faculty of Interdisciplinary Studies, Bar-Ilan University, Ramat-Gan, Israel 2 H.H. Wills

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

Geometric phases and spin-orbit effects

Geometric phases and spin-orbit effects Geometric phases and spin-orbit effects Lecture 1 Alexander Shnirman (KIT, Karlsruhe) Outline Geometric phases (Abelian and non-abelian) Spin manipulation through non-abelian phases a) Toy model; b) Moving

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

Module 4: Equations and Inequalities in One Variable

Module 4: Equations and Inequalities in One Variable Module 1: Relationships between quantities Precision- The level of detail of a measurement, determined by the unit of measure. Dimensional Analysis- A process that uses rates to convert measurements from

More information

Physics 115/242 Monte Carlo simulations in Statistical Physics

Physics 115/242 Monte Carlo simulations in Statistical Physics Physics 115/242 Monte Carlo simulations in Statistical Physics Peter Young (Dated: May 12, 2007) For additional information on the statistical Physics part of this handout, the first two sections, I strongly

More information

Simulated Quantum Annealing For General Ising Models

Simulated Quantum Annealing For General Ising Models Simulated Quantum Annealing For General Ising Models Thomas Neuhaus Jülich Supercomputing Centre, JSC Forschungszentrum Jülich Jülich, Germany e-mail : t.neuhaus@fz-juelich.de November 23 On the Talk Quantum

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

quasi-particle pictures from continuous unitary transformations

quasi-particle pictures from continuous unitary transformations quasi-particle pictures from continuous unitary transformations Kai Phillip Schmidt 24.02.2016 quasi-particle pictures from continuous unitary transformations overview Entanglement in Strongly Correlated

More information

(De)-localization in mean-field quantum glasses

(De)-localization in mean-field quantum glasses QMATH13, Georgia Tech, Atlanta October 10, 2016 (De)-localization in mean-field quantum glasses Chris R. Laumann (Boston U) Chris Baldwin (UW/BU) Arijeet Pal (Oxford) Antonello Scardicchio (ICTP) CRL,

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

A brief introduction to the inverse Ising problem and some algorithms to solve it

A brief introduction to the inverse Ising problem and some algorithms to solve it A brief introduction to the inverse Ising problem and some algorithms to solve it Federico Ricci-Tersenghi Physics Department Sapienza University, Roma original results in collaboration with Jack Raymond

More information

Second Lecture: Quantum Monte Carlo Techniques

Second Lecture: Quantum Monte Carlo Techniques Second Lecture: Quantum Monte Carlo Techniques Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml aml@pks.mpg.de Lecture Notes at http:www.pks.mpg.de/~aml/leshouches

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Quantum search by local adiabatic evolution

Quantum search by local adiabatic evolution PHYSICAL REVIEW A, VOLUME 65, 042308 Quantum search by local adiabatic evolution Jérémie Roland 1 and Nicolas J. Cerf 1,2 1 Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Brussels, Belgium

More information

Optimization in random field Ising models by quantum annealing

Optimization in random field Ising models by quantum annealing Optimization in random field Ising models by quantum annealing Matti Sarjala, 1 Viljo Petäjä, 1 and Mikko Alava 1 1 Helsinki University of Techn., Lab. of Physics, P.O.Box 1100, 02015 HUT, Finland We investigate

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Quantum Phase Transitions in Low Dimensional Magnets

Quantum Phase Transitions in Low Dimensional Magnets 2006.08.03 Computational Approaches to Quantum Critical Phenomena @ ISSP Quantum Phase Transitions in Low Dimensional Magnets Synge Todo ( ) Department of Applied Physics, University of Tokyo

More information

Minor-Embedding in Adiabatic Quantum Optimization

Minor-Embedding in Adiabatic Quantum Optimization Minor-Embedding in Adiabatic Quantum Optimization Vicky Choi Department of Computer Science Virginia Tech Nov, 009 Outline Adiabatic Quantum Algorithm -SAT QUBO Minor-embedding Parameter Setting Problem

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN in collaboration with Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France : ground state of the total system Reduced

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #3 Recap of Last lass Time Dependent Perturbation Theory Linear Response Function and Spectral Decomposition

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

Information, Physics, and Computation

Information, Physics, and Computation Information, Physics, and Computation Marc Mezard Laboratoire de Physique Thdorique et Moales Statistiques, CNRS, and Universit y Paris Sud Andrea Montanari Department of Electrical Engineering and Department

More information

Graphical Representations and Cluster Algorithms

Graphical Representations and Cluster Algorithms Graphical Representations and Cluster Algorithms Jon Machta University of Massachusetts Amherst Newton Institute, March 27, 2008 Outline Introduction to graphical representations and cluster algorithms

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

S j H o = gµ o H o. j=1

S j H o = gµ o H o. j=1 LECTURE 17 Ferromagnetism (Refs.: Sections 10.6-10.7 of Reif; Book by J. S. Smart, Effective Field Theories of Magnetism) Consider a solid consisting of N identical atoms arranged in a regular lattice.

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 16: Adiabatic Quantum Optimization Intro http://www.scottaaronson.com/blog/?p=1400 Testing a quantum

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 24 Jan 2000

arxiv:cond-mat/ v1 [cond-mat.str-el] 24 Jan 2000 The sign problem in Monte Carlo simulations of frustrated quantum spin systems Patrik Henelius and Anders W. Sandvik 2 National High Magnetic Field Laboratory, 800 East Paul Dirac Dr., Tallahassee, Florida

More information

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Giant Enhancement of Quantum Decoherence by Frustrated Environments ISSN 0021-3640, JETP Letters, 2006, Vol. 84, No. 2, pp. 99 103. Pleiades Publishing, Inc., 2006.. Giant Enhancement of Quantum Decoherence by Frustrated Environments S. Yuan a, M. I. Katsnelson b, and

More information

Intro. Each particle has energy that we assume to be an integer E i. Any single-particle energy is equally probable for exchange, except zero, assume

Intro. Each particle has energy that we assume to be an integer E i. Any single-particle energy is equally probable for exchange, except zero, assume Intro Take N particles 5 5 5 5 5 5 Each particle has energy that we assume to be an integer E i (above, all have 5) Particle pairs can exchange energy E i! E i +1andE j! E j 1 5 4 5 6 5 5 Total number

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

arxiv: v3 [quant-ph] 23 Jun 2011

arxiv: v3 [quant-ph] 23 Jun 2011 Feasibility of self-correcting quantum memory and thermal stability of topological order Beni Yoshida Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,

More information

Phase Transitions and Critical Behavior:

Phase Transitions and Critical Behavior: II Phase Transitions and Critical Behavior: A. Phenomenology (ibid., Chapter 10) B. mean field theory (ibid., Chapter 11) C. Failure of MFT D. Phenomenology Again (ibid., Chapter 12) // Windsor Lectures

More information

Renormalization group maps for Ising models in lattice gas variables

Renormalization group maps for Ising models in lattice gas variables Renormalization group maps for Ising models in lattice gas variables Department of Mathematics, University of Arizona Supported by NSF grant DMS-0758649 http://www.math.arizona.edu/ e tgk RG in lattice

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 14: Quantum Complexity Theory Limits of quantum computers Quantum speedups for NP-Complete Problems?

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

Accelerating QMC on quantum computers. Matthias Troyer

Accelerating QMC on quantum computers. Matthias Troyer Accelerating QMC on quantum computers Matthias Troyer International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California

More information

Efficiency of Parallel Tempering for Ising Systems

Efficiency of Parallel Tempering for Ising Systems University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Efficiency of Parallel Tempering for Ising Systems Stephan Burkhardt University of Massachusetts

More information

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon Department of Physics, Princeton University Graduate Preliminary Examination Part II Friday, May 10, 2013 9:00 am - 12:00 noon Answer TWO out of the THREE questions in Section A (Quantum Mechanics) and

More information