Is Analysis Necessary?

Size: px
Start display at page:

Download "Is Analysis Necessary?"

Transcription

1 Is Analysis Necessary? Ira M. Gessel Brandeis University Waltham, MA Special Session on Algebraic and Analytic Combinatorics AMS Fall Eastern Meeting University of Connecticut, Storrs CT October 29, 2006

2 An example from Bak and Newman s Complex Analysis Prove that n k=0 ( ) 2 n = k ( ) 2n. n n k=0 ( ) 2 ( n = constant term in (1+z) n 1+ 1 ) n k z = 1 2πi = 1 2πi C C ( (1+z) n 1+ 1 ) n dz z z (1+z) 2n z n+1 dz = coefficient of z n in (1+z) 2n ( ) 2n =. n

3 A more interesting example The Bernoulli numbers of the second kind are defined by n=0 b n x n n! = x log(1+x) x 2 = 1+ x 2! 1 6 2! x 5 4 5! Prove that they alternate in sign. x 3 3! x 6 6! x 4 4! x 7 7! +

4 Since 1 0 (1+x) t dt = 1 0 exp ( tlog(1+x) ) dt = x log(1+x), and we have b n = n! 1 0 (1+x) t = ( ) t dt = n 1 0 n=0 ( ) t x n, n t(t 1) (t n+1)dt. Making the change of variables t = 1 u, we have for n 1 1 b n = ( 1) n 1 (1 u)u(u+1) (u+n 2)du. 0 Since the integrand is positive, ( 1) n 1 b n > 0. Can we do this without analysis?

5 Expanding u(u + 1) (u + n 2) in terms of unsigned Stirling numbers of the first kind as n 1 i=0 and using the integral c(n 1,i)u i 1 0 (1 u)u i du = 1 (i+1)(i+2), we find the explicit formula ( 1) n 1 b n = n 1 i=0 1 (i+1)(i+2) c(n 1,i). We could eliminate the analysis by defining a linear functional L on polynomials by L(t n ) = 1/n, and proving various properties of this linear functional. Alternatively, the explicit formula gives us a hint to finding a simple direct proof.

6 We have ( 1) n 1 x n b n n! = x log(1 x), n=0 so ( 1) n x n b n+1 n=0 n! = d dx x log(1 x) = ep P 1 P 2, where P = log(1 x) = n=1 xn /n has positive coefficients. So ( 1) n x n b n+1 n! = n=0 j=2 P j 2 j! and the right side clearly has positive coefficients.

7 Residues A useful tool in some computations is a change of variables for residues: By Cauchy s theorem, the coefficient of x 1 in a Laurent series A(x) = i a ix i 1 is 2πi C A(x)dx. Using the change of variables for integrals, we get a change of variables formula for the coefficient of x 1 in a Laurent series. 1 2πi C A(x)dx = 1 2πi C A(f(x))f (x)dx so the coefficient of x 1 in A(x) is the same as that of A(f(x))f (x) This change of variables can be done using only formal power series: We define the residue of a formal Laurent series i a ix i to be the coefficient of x 1.

8 Theorem (Jacobi) If f(x) = f 1 x+f 2 x 2 +, where f 1 0, then for any formal Laurent series A(x), resa(x) = resa(f(x))f (x). Proof. By linearity we may assume that A(x) = x k. If k 1 then f k f = (f k+1 ) /(k +1) so resf k f = resx k = 0 since a derivative has residue 0. For k = 1 we have res f f = res f 1+2f 2 x+ f 1 x+f 2 x 2 + = res 1 x + = 1. A similar change of variables theorem holds for residues for Laurent series in several variables. An easy consequence is the Lagrange inversion formula, which expresses the coefficients of powers of the compositional inverse f 1 in terms of the coefficients of powers of f: if g = f 1 then [x n ]g k = k n [xn k ] ( ) n x f

9 A different application of residues was given by D. Zagier in proving a reciprocity theorem for higherorder Dedekind sums: Define d(p;a,b) = λ p =1 λ 1 λ a +1λ b +1 λ a 1λ b 1 (and similarly for d(p;a,b,c,...)) By applying the fact that the sum of the residues of a rational function is 0 to the rational function 1 (x a +1)(x b +1)(x c +1) 2x(x a 1)(x b 1)(x c 1), where a, b, and c are pairwise relatively prime, Zagier obtained the following reciprocity theorem for these Dedekind sums: 1 a p(a;b,c)+1 b p(b;a,c)+1 c p(c;b,a) = +b 2 +c 2 1 a2 3abc

10 This result can be proved by partial fraction expansion instead of residues. More generally, any result that can be proved by applying contour integration to rational functions (in one or more variables) can be proved by partial fractions. Examples include Stanley s monster reciprocity theorem and the approach of Andrews et al. to MacMahon s partition analysis, as shown by Guoce Xin.

11 D-finite series and P-recursive sequences A power series f(x) is D-finite if it satisfies a differential equation of the form m i=0 p i (x) di f dx i = 0, where the p i (x) are polynomials. A sequencea 0,a 1,a 2,... isp-recursiveif itsatisfies a recurrence of the form n q j (n)a n+j = 0, j=0 for all n 0, where the q j (n) are polynomials. It is well known that a sequence a 0,a 1,... is P-recursive if and only if its generating function i=0 a ix i is D-finite.

12 Theorem. tanx is not D-finite. Analytic Proof. A solution of the differential equation m i=0 p i(x) di f dx i = 0 can have singularities only at the zeroes of p 0 (x). In particular, it can have only finitely many singularities. But tan x has infinitely many singularities. Formal Power Series Proof. (Carlitz) Since d dx tanx = 1 + tan2 x, it follows easily by induction that for each j, dj tanx is a polynomial in tanx. So dx j if tanx is D-finite, it is algebraic, and thus e ix, and therefore e x, is algebraic. But it is easy to prove that e x is not algebraic. Note: A formal power series g(x) is algebraic if there exist polynomials r 0 (x),r 1 (x),...,r m (x), not all 0, such that m r j (x)g(x) j = 0. j=0

13 Non-algebraicity Theorem. F(x) = n=0 (3n)! n! 3 xn is not algebraic. Analytic proof #1. (Stanley) By a theorem of Jungen, if n a nx n is algebraic and a n cn r α n, as n, where c C {0}, r R, r < 0, and α C {0}, then r is 1 2 plus an integer. But by Stirling s formula, (3n)! n! 3 3 2π n 1 27 n, so F(x) cannot be algebraic. Analytic proof #2 (sketch): F(x) satisfies a differential equation (a special case of the hypergeometric differential equation) that allows us to determine the behavior of F at its branch points and thereby to show its monodromy group is infinite. Thus F has infinitely many branches, and is therefore not algebraic.

14 A Bernoulli Number Identity Let B(x) = k=2 B k k(k 1) xk 1, where B k is the kth Bernoulli number, let u(x) = 2x 2log(1+x) = x 1 3 x x3 + and let v(x) = n=0 v nx n /n! be the compositional inverse of u(x); i.e., u(v(x)) = x. Thus v 1 = 1,v 2 = 2/3,v 3 = 1/6,v 4 = 4/45, and so on. Theorem. (de Bruijn) 2 k x k v 2k+1 k=0 k! = eb(x). Note that this is an identity for formal power series only, as the series have radius of convergence 0.

15 Analytic Proof: We show that both sides are asymptotic expansions of (e/n) n 2πn n!, where n = 1/x, as n. By the Euler-Maclaurin summation formula we have logn! = n logi i=1 n(logn 1)+ 1 2 log2πn+ k=2 B k k(k 1) n (k 1). For the second formula, we start with n! = 0 e u u n du ( = e n n n+1 e x (1+x) ) n dx, 1 where we have made the substitution u = n(1+x).

16 Note that e x (1+x) = exp ( x+log(1+x) ) = exp ( x2 2 +x3 3 + ). We want to apply a change of variables that makes this e z2 /2, so want x+log(1+x) = z 2 /2. This gives z = u(x), so x = v(z). So n! e n n n+1 K K e n n n+1 j=0 e n n n+1 k=0 e 1 2 z2n v (z)dz v j+1 j! e 1 2 z2n z j dz v 2k+1 (2k)! πn k 1 2 (2k)! 2 k k!.

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Hankel determinants, continued fractions, orthgonal polynomials, and hypergeometric series

Hankel determinants, continued fractions, orthgonal polynomials, and hypergeometric series Hankel determinants, continued fractions, orthgonal polynomials, and hypergeometric series Ira M. Gessel with Jiang Zeng and Guoce Xin LaBRI June 8, 2007 Continued fractions and Hankel determinants There

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

7 Asymptotics for Meromorphic Functions

7 Asymptotics for Meromorphic Functions Lecture G jacques@ucsd.edu 7 Asymptotics for Meromorphic Functions Hadamard s Theorem gives a broad description of the exponential growth of coefficients in power series, but the notion of exponential

More information

Bernoulli Polynomials

Bernoulli Polynomials Chapter 4 Bernoulli Polynomials 4. Bernoulli Numbers The generating function for the Bernoulli numbers is x e x = n= B n n! xn. (4.) That is, we are to expand the left-hand side of this equation in powers

More information

MA 412 Complex Analysis Final Exam

MA 412 Complex Analysis Final Exam MA 4 Complex Analysis Final Exam Summer II Session, August 9, 00.. Find all the values of ( 8i) /3. Sketch the solutions. Answer: We start by writing 8i in polar form and then we ll compute the cubic root:

More information

A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)!

A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)! 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3 A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)! Ira M. Gessel 1 and Guoce Xin Department of Mathematics Brandeis

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

Generating Functions

Generating Functions Semester 1, 2004 Generating functions Another means of organising enumeration. Two examples we have seen already. Example 1. Binomial coefficients. Let X = {1, 2,..., n} c k = # k-element subsets of X

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

n=0 xn /n!. That is almost what we have here; the difference is that the denominator is (n + 1)! in stead of n!. So we have x n+1 n=0

n=0 xn /n!. That is almost what we have here; the difference is that the denominator is (n + 1)! in stead of n!. So we have x n+1 n=0 DISCRETE MATHEMATICS HOMEWORK 8 SOL Undergraduate Course Chukechen Honors College Zhejiang University Fall-Winter 204 HOMEWORK 8 P496 6. Find a closed form for the generating function for the sequence

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

On the number of ways of writing t as a product of factorials

On the number of ways of writing t as a product of factorials On the number of ways of writing t as a product of factorials Daniel M. Kane December 3, 005 Abstract Let N 0 denote the set of non-negative integers. In this paper we prove that lim sup n, m N 0 : n!m!

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015 Department of Mathematics, University of California, Berkeley YOUR OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 205. Please write your - or 2-digit exam number on this

More information

Math 141: Lecture 11

Math 141: Lecture 11 Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods Bob Hough October 12, 2016 Bob Hough Math 141: Lecture 11 October 12, 2016 1 / 36 First Fundamental Theorem of Calculus

More information

UNIT 3 INTEGRATION 3.0 INTRODUCTION 3.1 OBJECTIVES. Structure

UNIT 3 INTEGRATION 3.0 INTRODUCTION 3.1 OBJECTIVES. Structure Calculus UNIT 3 INTEGRATION Structure 3.0 Introduction 3.1 Objectives 3.2 Basic Integration Rules 3.3 Integration by Substitution 3.4 Integration of Rational Functions 3.5 Integration by Parts 3.6 Answers

More information

Complex Homework Summer 2014

Complex Homework Summer 2014 omplex Homework Summer 24 Based on Brown hurchill 7th Edition June 2, 24 ontents hw, omplex Arithmetic, onjugates, Polar Form 2 2 hw2 nth roots, Domains, Functions 2 3 hw3 Images, Transformations 3 4 hw4

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

and the compositional inverse when it exists is A.

and the compositional inverse when it exists is A. Lecture B jacques@ucsd.edu Notation: R denotes a ring, N denotes the set of sequences of natural numbers with finite support, is a generic element of N, is the infinite zero sequence, n 0 R[[ X]] denotes

More information

The polynomial part of a restricted partition function related to the Frobenius problem

The polynomial part of a restricted partition function related to the Frobenius problem The polynomial part of a restricted partition function related to the Frobenius problem Matthias Beck Department of Mathematical Sciences State University of New York Binghamton, NY 3902 6000, USA matthias@math.binghamton.edu

More information

Integer-Valued Polynomials

Integer-Valued Polynomials Integer-Valued Polynomials LA Math Circle High School II Dillon Zhi October 11, 2015 1 Introduction Some polynomials take integer values p(x) for all integers x. The obvious examples are the ones where

More information

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Steven J. Miller (MC 96) http://www.williams.edu/mathematics/sjmiller/public_html Yale University, April 14, 2014 Introduction Goals of the

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS

FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS HUNDUMA LEGESSE GELETA, ABDULKADIR HASSEN Both authors would like to dedicate this in fond memory of Marvin Knopp. Knop was the most humble and exemplary teacher

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao Outline Chapter 6: Residue Theory Li, Yongzhao State Key Laboratory of Integrated Services Networks, Xidian University June 7, 2009 Introduction The Residue Theorem In the previous chapters, we have seen

More information

Math Camp II. Calculus. Yiqing Xu. August 27, 2014 MIT

Math Camp II. Calculus. Yiqing Xu. August 27, 2014 MIT Math Camp II Calculus Yiqing Xu MIT August 27, 2014 1 Sequence and Limit 2 Derivatives 3 OLS Asymptotics 4 Integrals Sequence Definition A sequence {y n } = {y 1, y 2, y 3,..., y n } is an ordered set

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Evaluation of integrals

Evaluation of integrals Evaluation of certain contour integrals: Type I Type I: Integrals of the form 2π F (cos θ, sin θ) dθ If we take z = e iθ, then cos θ = 1 (z + 1 ), sin θ = 1 (z 1 dz ) and dθ = 2 z 2i z iz. Substituting

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS ABDUL HASSEN AND HIEU D. NGUYEN Abstract. This paper investigates a generalization the classical Hurwitz zeta function. It is shown that many of the properties

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

1 + z 1 x (2x y)e x2 xy. xe x2 xy. x x3 e x, lim x log(x). (3 + i) 2 17i + 1. = 1 2e + e 2 = cosh(1) 1 + i, 2 + 3i, 13 exp i arctan

1 + z 1 x (2x y)e x2 xy. xe x2 xy. x x3 e x, lim x log(x). (3 + i) 2 17i + 1. = 1 2e + e 2 = cosh(1) 1 + i, 2 + 3i, 13 exp i arctan Complex Analysis I MT333P Problems/Homework Recommended Reading: Bak Newman: Complex Analysis Springer Conway: Functions of One Complex Variable Springer Ahlfors: Complex Analysis McGraw-Hill Jaenich:

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

Some Applications of the Euler-Maclaurin Summation Formula

Some Applications of the Euler-Maclaurin Summation Formula International Mathematical Forum, Vol. 8, 203, no., 9-4 Some Applications of the Euler-Maclaurin Summation Formula Rafael Jakimczuk División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina

More information

Topic 7 Notes Jeremy Orloff

Topic 7 Notes Jeremy Orloff Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7. Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove

More information

Math 115 HW #5 Solutions

Math 115 HW #5 Solutions Math 5 HW #5 Solutions From 29 4 Find the power series representation for the function and determine the interval of convergence Answer: Using the geometric series formula, f(x) = 3 x 4 3 x 4 = 3(x 4 )

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

1 Arithmetic calculations (calculator is not allowed)

1 Arithmetic calculations (calculator is not allowed) 1 ARITHMETIC CALCULATIONS (CALCULATOR IS NOT ALLOWED) 1 Arithmetic calculations (calculator is not allowed) 1.1 Check the result Problem 1.1. Problem 1.2. Problem 1.3. Problem 1.4. 78 5 6 + 24 3 4 99 1

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

Methods of Integration

Methods of Integration Methods of Integration Professor D. Olles January 8, 04 Substitution The derivative of a composition of functions can be found using the chain rule form d dx [f (g(x))] f (g(x)) g (x) Rewriting the derivative

More information

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y () Consider A = { q Q : q 2 2} as a subset of the metric space (Q, d), where d(x, y) = x y. Then A is A) closed but not open in Q B) open but not closed in Q C) neither open nor closed in Q D) both open

More information

Introduction and Review of Power Series

Introduction and Review of Power Series Introduction and Review of Power Series Definition: A power series in powers of x a is an infinite series of the form c n (x a) n = c 0 + c 1 (x a) + c 2 (x a) 2 +...+c n (x a) n +... If a = 0, this is

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

Calculus II Study Guide Fall 2015 Instructor: Barry McQuarrie Page 1 of 8

Calculus II Study Guide Fall 2015 Instructor: Barry McQuarrie Page 1 of 8 Calculus II Study Guide Fall 205 Instructor: Barry McQuarrie Page of 8 You should be expanding this study guide as you see fit with details and worked examples. With this extra layer of detail you will

More information

MATH 118, LECTURES 27 & 28: TAYLOR SERIES

MATH 118, LECTURES 27 & 28: TAYLOR SERIES MATH 8, LECTURES 7 & 8: TAYLOR SERIES Taylor Series Suppose we know that the power series a n (x c) n converges on some interval c R < x < c + R to the function f(x). That is to say, we have f(x) = a 0

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Review session Midterm 1

Review session Midterm 1 AS.110.109: Calculus II (Eng) Review session Midterm 1 Yi Wang, Johns Hopkins University Fall 2018 7.1: Integration by parts Basic integration method: u-sub, integration table Integration By Parts formula

More information

From Fibonacci Numbers to Central Limit Type Theorems

From Fibonacci Numbers to Central Limit Type Theorems From Fibonacci Numbers to Central Limit Type Theorems Murat Koloğlu, Gene Kopp, Steven J. Miller and Yinghui Wang Williams College, October 1st, 010 Introduction Previous Results Fibonacci Numbers: F n+1

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

Series Solutions. 8.1 Taylor Polynomials

Series Solutions. 8.1 Taylor Polynomials 8 Series Solutions 8.1 Taylor Polynomials Polynomial functions, as we have seen, are well behaved. They are continuous everywhere, and have continuous derivatives of all orders everywhere. It also turns

More information

HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES

HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES ABDUL HASSEN AND HIEU D. NGUYEN Abstract. There are two analytic approaches to Bernoulli polynomials B n(x): either by way of the generating function

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u =

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u = Homework -5 Solutions Problems (a) z = + 0i, (b) z = 7 + 24i 2 f(z) = u(x, y) + iv(x, y) with u(x, y) = e 2y cos(2x) and v(x, y) = e 2y sin(2x) u (a) To show f(z) is analytic, explicitly evaluate partials,,

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

MA 114 Worksheet # 1: Improper Integrals

MA 114 Worksheet # 1: Improper Integrals MA 4 Worksheet # : Improper Integrals. For each of the following, determine if the integral is proper or improper. If it is improper, explain why. Do not evaluate any of the integrals. (c) 2 0 2 2 x x

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

CALCULUS PROBLEMS Courtesy of Prof. Julia Yeomans. Michaelmas Term

CALCULUS PROBLEMS Courtesy of Prof. Julia Yeomans. Michaelmas Term CALCULUS PROBLEMS Courtesy of Prof. Julia Yeomans Michaelmas Term The problems are in 5 sections. The first 4, A Differentiation, B Integration, C Series and limits, and D Partial differentiation follow

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS425 SEMESTER: Autumn 25/6 MODULE TITLE: Applied Analysis DURATION OF EXAMINATION:

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

Why does pi keep popping up? Undergraduate Colloquium, October 2007 I. Definitions and Archimedes. II. Digits and some silliness (and Ramanujan)

Why does pi keep popping up? Undergraduate Colloquium, October 2007 I. Definitions and Archimedes. II. Digits and some silliness (and Ramanujan) Why does pi keep popping up? Undergraduate Colloquium, October 7 I. Definitions and Archimedes II. Digits and some silliness (and Ramanujan III. Antidote: pi is irrational. IV. Pi popping up in factorials.

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Partitions with Parts in a Finite Set and with PartsOutsideaFiniteSet

Partitions with Parts in a Finite Set and with PartsOutsideaFiniteSet Partitions with Parts in a Finite Set with PartsOutsideaFiniteSet Gert lmkvist CONTENTS Introduction Partitions into Parts in a Finite Set 3 Partitions with Parts Outside a Finite Set References Exact

More information

Constructing Taylor Series

Constructing Taylor Series Constructing Taylor Series 8-8-200 The Taylor series for fx at x = c is fc + f cx c + f c 2! x c 2 + f c x c 3 + = 3! f n c x c n. By convention, f 0 = f. When c = 0, the series is called a Maclaurin series.

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Generating Functions (Revised Edition)

Generating Functions (Revised Edition) Math 700 Fall 06 Notes Generating Functions (Revised Edition What is a generating function? An ordinary generating function for a sequence (a n n 0 is the power series A(x = a nx n. The exponential generating

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016 INSTRUCTIONS: The test has a total of 32 pages including this title page and 9 questions which are marked out of 10 points; ensure that you do not omit a page by mistake. Please write your name and AK-Nummer

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Lecture 4. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 4 E- and G-functions 1 / 27

Lecture 4. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 4 E- and G-functions 1 / 27 Lecture 4 Frits Beukers Arithmetic of values of E- and G-function Lecture 4 E- and G-functions 1 / 27 Two theorems Theorem, G.Chudnovsky 1984 The minimal differential equation of a G-function is Fuchsian.

More information

SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS

SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS J MC LAUGHLIN Abstract Let fx Z[x] Set f 0x = x and for n 1 define f nx = ff n 1x We describe several infinite

More information

MATH COMPLEX ANALYSIS. Contents

MATH COMPLEX ANALYSIS. Contents MATH 3964 - OMPLEX ANALYSIS ANDREW TULLOH AND GILES GARDAM ontents 1. ontour Integration and auchy s Theorem 2 1.1. Analytic functions 2 1.2. ontour integration 3 1.3. auchy s theorem and extensions 3

More information

Math 259: Introduction to Analytic Number Theory More about the Gamma function

Math 259: Introduction to Analytic Number Theory More about the Gamma function Math 59: Introduction to Analytic Number Theory More about the Gamma function We collect some more facts about Γs as a function of a complex variable that will figure in our treatment of ζs and Ls, χ.

More information

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Murat Koloğlu, Gene Kopp, Steven J. Miller and Yinghui Wang http://www.williams.edu/mathematics/sjmiller/public html Smith College, January

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that Let fz be the principal branch of z 4i. a Find fi. Solution. fi = exp4i Logi = exp4iπ/2 = e 2π. b Show that fz fz 2 fz z 2 fz fz 2 = λfz z 2 for all z, z 2 0, where λ =, e 8π or e 8π. Proof. We have =

More information

n=1 ( 2 3 )n (a n ) converges by direct comparison to

n=1 ( 2 3 )n (a n ) converges by direct comparison to . (a) n = a n converges, so we know that a n =. Therefore, for n large enough we know that a n

More information