Kinematics of Particles

Size: px
Start display at page:

Download "Kinematics of Particles"

Transcription

1 nnouncements Recitation time is set to 8am eery Monday. Participation i credit will be gien to students t who uploads a good question or good answer to the Q& bulletin board. Suggestions? T s and I will be uploading questions/answers if necessary. During class, please try to ask in English. Upload your pictures. Download working model D, play around with it. 11-1

2 Introduction What are the two parts of Dynamics? - Kinematics: study of the geometry of motion. Kinematics is used to relate displacement, elocity, acceleration, and time without reference to the cause of motion. - Kinetics: study of the relations eisting between the forces acting on a body, the mass of the body, and the motion of the body. Kinetics is used to predict the motion caused by gien forces or to determine the forces required to produce a gien motion. Rectilinear motion: position, elocity, and acceleration of a particle as it moes along a straight line. Curilinear motion: position, elocity, and acceleration of a particle as it moes along a cured line in two or three dimensions. 11 -

3 Tools and Mechanisms Wheel, Leer, Pulley, Hammer etc. nd moies

4 Why do we need dynamics? Why do we want to know kinematics? What are we really interested in? Let s understand what we are analyzing before we analyze! It soles problems. What kind of problems? Limited motion, limited force characteristics. Translate one motion to another. Translate one force to another. There is always a Desired motion, Desired force s motion and force that we can generate. Mechanisms enable us to generated the desired motion, force!!! Need to understand these mechanism s kinematics and kinetics! 11-4

5 Rectilinear Motion: Position, Velocity & cceleration Particle moing along a straight line is said to be in rectilinear motion. Position coordinate of a particle is defined by positie or negatie distance of particle from a fied origin on the line. The motion of a particle is known if the position coordinate for particle is known for eery alue of time t. Motion of the particle may be epressed in the form of a function, e.g., 3 = 6t t or in the form of a graph s. t. 11-5

6 Rectilinear Motion: Position, Velocity & cceleration Consider particle with motion gien by = 6t t = 3 d = 1t 3t dt a d d = = = 1 t dt dt 6 at t =, =, =, a = 1 m/s at t = s, = 16 m, = ma = 1 m/s, a = at t = 4 s, = ma = 3 m, =, a = -1 m/s at t = 6s, =, =-36 m/s, a = 4 m/s 11-6

7 Determination of the Motion of a Particle Recall, motion of a particle is known if position is known for all time t. Typically, conditions of motion are specified by the type of acceleration eperienced by the particle. Determination of elocity and position requires two successie integrations. i Three classes of motion may be defined for: - acceleration gien as a function of time, a = f(t) - acceleration gien as a function of position, a = f() - acceleration gien as a function of elocity, a = f() 11-7

8 Determination of the Motion of a Particle cceleration gien as a function of time, a = f(t): cceleration gien as a function of position,, a = f(): ) 11-8

9 Determination of the Motion of a Particle cceleration gien as a function of elocity, a = f(): 11-9

10 Sample Problem 11. SOLUTION: all tossed with 1 m/s ertical elocity from window m aboe ground. Determine: elocity and eleation aboe ground at time t, highest eleation reached by ball and corresponding time, and time when ball will hit the ground and corresponding elocity. 11-1

11 Sample Problem 11.3 SOLUTION: a = k rake mechanism used to reduce gun recoil consists of piston attached to barrel moing in fied cylinder filled with oil. s barrel recoils with initial elocity, piston moes and oil is forced through orifices in piston, causing piston and cylinder to decelerate at rate proportional to their elocity. Determine (t), (t), and ()

12 Uniform Rectilinear Motion For particle in uniform rectilinear motion, the acceleration is zero and the elocity is constant. d dt = = constant t d = dt = = t + t 11-1

13 Uniformly ccelerated Rectilinear Motion For particle in uniformly accelerated rectilinear motion, the acceleration of the particle is constant. d dt = a = constant d = a dt = + at t = at d dt = + at 1 = + t + at t ( ) 1 d = + at dt = t + at d d = a = constant d = a d = ( ) + a 1 ( ) = a( ) 11-13

14 Motion of Seeral Particles: Relatie Motion For particles moing along the same line, time should ldbe recorded dfrom the same starting instant and displacements should be measured from the same origin in the same direction. = + = = relatie position of with respect to = = + = relatie elocity of with respect to a = a a a = a + a = relatie acceleration of with respect to 11-14

15 Sample Problem 11.4 all thrown ertically from 1 m leel in eleator shaft with initial elocity of 18 m/s. t same instant, open-platform eleator passes 5 m leel moing upward at m/s. Determine (a) when and where ball hits eleator and (b) relatie elocity of ball and eleator at contact

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER 27 The McGraw-Hill Companies, Inc. All rights resered. Eighth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Kinematics of Particles Lecture Notes: J.

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

DYNAMICS. Kinematics of Particles VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER

DYNAMICS. Kinematics of Particles VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER Tenth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California Polytechnic State Uniersity Kinematics

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

Chapter 2 Motion Along a Straight Line

Chapter 2 Motion Along a Straight Line Chapter Motion Along a Straight Line In this chapter we will study how objects moe along a straight line The following parameters will be defined: (1) Displacement () Aerage elocity (3) Aerage speed (4)

More information

Displacement, Time, Velocity

Displacement, Time, Velocity Lecture. Chapter : Motion along a Straight Line Displacement, Time, Velocity 3/6/05 One-Dimensional Motion The area of physics that we focus on is called mechanics: the study of the relationships between

More information

Linear Momentum and Collisions Conservation of linear momentum

Linear Momentum and Collisions Conservation of linear momentum Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line Lesson : Kinematics (Sections.-.5) Chapter Motion Along a Line In order to specify a position, it is necessary to choose an origin. We talk about the football field is 00 yards from goal line to goal line,

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 00 Lecture #6 Monday, Feb. 4, 008 Examples for 1-Dim kinematic equations Free Fall Motion in Two Dimensions Maximum ranges and heights Today s homework is homework #3, due 9pm, Monday,

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Chapter 2: 1D Kinematics Tuesday January 13th

Chapter 2: 1D Kinematics Tuesday January 13th Chapter : D Kinematics Tuesday January 3th Motion in a straight line (D Kinematics) Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Short summary Constant acceleration a special

More information

III. Relative Velocity

III. Relative Velocity Adanced Kinematics I. Vector addition/subtraction II. Components III. Relatie Velocity IV. Projectile Motion V. Use of Calculus (nonuniform acceleration) VI. Parametric Equations The student will be able

More information

Work and Kinetic Energy

Work and Kinetic Energy Work Work an Kinetic Energy Work (W) the prouct of the force eerte on an object an the istance the object moes in the irection of the force (constant force only). W = " = cos" (N " m = J)! is the angle

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35. Rutgers Uniersit Department of Phsics & Astronom 01:750:271 Honors Phsics I Fall 2015 Lecture 4 Page 1 of 35 4. Motion in two and three dimensions Goals: To stud position, elocit, and acceleration ectors

More information

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014 PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 014 One Dimensional Motion Motion under constant acceleration One dimensional Kinematic Equations How do we sole kinematic problems? Falling motions

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Math 130 www.timetodare.com Section 3.1 Quadratic Functions and Models Quadratic Function: ( ) f x = ax + bx+ c ( a 0) The graph of a quadratic function is called a parabola. Graphing Parabolas: Special

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 113 Engineering Mechanic TOPIC 8 KINEMATIC OF PARTICLES Lecturer: Roli Anang Dr. Mohd Yunu Ihak Dr. Tan Cher Siang Outline Introduction Rectilinear Motion Curilinear Motion Problem Introduction General

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfgjklzxcbnmqwerty uiopasdfgjklzxcbnmqwertyuiopasd fgjklzxcbnmqwertyuiopasdfgjklzx cbnmqwertyuiopasdfgjklzxcbnmq Projectile Motion Quick concepts regarding Projectile Motion wertyuiopasdfgjklzxcbnmqwertyui

More information

Your Thoughts. What is the difference between elastic collision and inelastic collision?

Your Thoughts. What is the difference between elastic collision and inelastic collision? Your Thoughts This seemed pretty easy...before we got the checkpoint questions What is the difference between elastic collision and inelastic collision? The most confusing part of the pre lecture was the

More information

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION Today s Objectives : Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

MOTION OF FALLING OBJECTS WITH RESISTANCE

MOTION OF FALLING OBJECTS WITH RESISTANCE DOING PHYSICS WIH MALAB MECHANICS MOION OF FALLING OBJECS WIH RESISANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECORY FOR MALAB SCRIPS mec_fr_mg_b.m Computation

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

KINEMATICS OF PARTICLES PROBLEMS ON RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES PROBLEMS ON RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMATICS OF PARTICLES PROBLEMS ON RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES 1. The car A has a forward speed of 18 km/h and is accelerating at 3 m/s2. Determine the elocity and acceleration of

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Kinematics Pae: 1 fo/u fopkjr Hkh# tu] uha kjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k fla ladyi dj] lrs foifr usd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks

More information

1-D Kinematics Problems

1-D Kinematics Problems x (m) Name: AP Physics -D Kinemics Problems 5. Answer the following based on the elocity s. time graph. 6 8 4-4 -8 - straight cured 4 6 8 a. Gie a written description of the motion. t (s) Object moes in

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //15 11:1 M Chpter 11 Kinemtics of Prticles 1 //15 11:1 M Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion of bodies under the ction of forces It is

More information

Chapter (3) Motion. in One. Dimension

Chapter (3) Motion. in One. Dimension Chapter (3) Motion in One Dimension Pro. Mohammad Abu Abdeen Dr. Galal Ramzy Chapter (3) Motion in one Dimension We begin our study o mechanics by studying the motion o an object (which is assumed to be

More information

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. 1/31/18 1:33 PM Chpter 11 Kinemtics of Prticles 1 1/31/18 1:33 PM First Em Sturdy 1//18 3 1/31/18 1:33 PM Introduction Mechnics Mechnics = science which describes nd predicts conditions of rest or motion

More information

Brake applications and the remaining velocity Hans Humenberger University of Vienna, Faculty of mathematics

Brake applications and the remaining velocity Hans Humenberger University of Vienna, Faculty of mathematics Hans Humenberger: rake applications and the remaining elocity 67 rake applications and the remaining elocity Hans Humenberger Uniersity of Vienna, Faculty of mathematics Abstract It is ery common when

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down)

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down) . LINEAR MOTION www.mathspoints.ie. Linear Motion Table of Contents. Linear Motion: Velocity Time Graphs (Multi Stage). Linear Motion: Velocity Time Graphs (Up and Down).3 Linear Motion: Common Initial

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle Angular elocity 1 (a) Define the radian. [1] (b) Explain what is meant by the term angular elocity. [1] (c) Gie the angular elocity

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //16 1:36 AM Chpter 11 Kinemtics of Prticles 1 //16 1:36 AM First Em Wednesdy 4//16 3 //16 1:36 AM Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion

More information

Note on Posted Slides. Chapter 3 Pre-Class Reading Question. Chapter 3 Reading Question : The Fine Print. Suggested End of Chapter Items

Note on Posted Slides. Chapter 3 Pre-Class Reading Question. Chapter 3 Reading Question : The Fine Print. Suggested End of Chapter Items Note on Posted Slides These are the slides that I intended to show in class on Wed. Jan. 9, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S.

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S. PHYS 100: Lecture 3 VECTORS A C B r r r C = A + B j i A i C B i B y j A y j C = A + B C = A + B y y y RELATIVE MOTION in 2- W S W W S SG uuur uur uur = + SG S W Physics 100 Lecture 3, Slide 1 Who is the

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics 0 Saskatchewan High School Physics Scholarship Competition May 8, 0 Time: 90 minutes This competition is based on the Saskatchewan

More information

Feb 6, 2013 PHYSICS I Lecture 5

Feb 6, 2013 PHYSICS I Lecture 5 95.141 Feb 6, 213 PHYSICS I Lecture 5 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING213 Lecture Capture h"p://echo36.uml.edu/chowdhury213/physics1spring.html

More information

Problems. 66 km/h B km/h 30 A. v A. 1.5 ft

Problems. 66 km/h B km/h 30 A. v A. 1.5 ft Problems Problem 3.1 2700-lb automobile starts from rest and traels a quarter of a mile. ssume that the coefficient of static friction between the tires and the paement is 0.70, the automobile has frontwheel

More information

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year :

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year : Uniersity of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : nd First Semester Year : 16-17 VECTOR FUNCTIONS SECTION 13. Ideal Projectile Motion Ideal Projectile

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION PROLEM 15.10 The bent rod E rotates about a line joining Points and E with a constant angular elocity of 9 rad/s. Knowing that the rotation is clockwise as iewed from E, determine the elocity and acceleration

More information

Note on Posted Slides. Motion Is Relative

Note on Posted Slides. Motion Is Relative Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 9, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

AP Physics Chapter 9 QUIZ

AP Physics Chapter 9 QUIZ AP Physics Chapter 9 QUIZ Name:. The graph at the right shows the force on an object of mass M as a function of time. For the time interal 0 to 4 seconds, the total change in the momentum of the object

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3.

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3. PROLEM 15.1 The brake drum is attached to a larger flywheel that is not shown. The motion of the brake drum is defined by the relation θ = 36t 1.6 t, where θ is expressed in radians and t in seconds. Determine

More information

EXPERIMENT 8 BALLISTIC PENDULUM. Figure 1 Setup to determine the initial speed of the projectile using the Blackwood Pendulum

EXPERIMENT 8 BALLISTIC PENDULUM. Figure 1 Setup to determine the initial speed of the projectile using the Blackwood Pendulum EXPERIMENT 8 BALLISTIC PENDULUM I. Introduction. The objectie of this eperiment is to determine the initial elocity of a projectile fired from a gun by two methods. In the first the projectile undergoes

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099 ics Announcements day, ember 7, 2007 Ch 2: graphing - elocity s time graphs - acceleration s time graphs motion diagrams - acceleration Free Fall Kinematic Equations Structured Approach to Problem Soling

More information

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( )

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( ) Momentum and impulse Mixed exercise 1 1 a Using conseration of momentum: ( ) 6mu 4mu= 4m 1 u= After the collision the direction of Q is reersed and its speed is 1 u b Impulse = change in momentum I = (3m

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

AP Physics C: One Dimensional Kinematics

AP Physics C: One Dimensional Kinematics Slide 1 / 33 P Physics : One imensional Kinematics Multiple hoice Questions Slide 2 / 33 1 In the absence of air resistance, a ball dropped near the surface of the arth experiences a constant acceleration

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t Accelerated Motion Reiew acceleration is the rate o change o elocity (how quickly the elocity is changing) For motion in a line a i t t When an object is moing in a straight line, a positie acceleration

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics Table of Contents: Kinematics Algebra Based Physics Kinematics in One Dimension 06 03 www.njctl.org Motion in One Dimension Aerage Speed Position and Reference Frame Displacement Aerage Velocity Instantaneous

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

phy 3.1.notebook September 19, 2017 Everything Moves

phy 3.1.notebook September 19, 2017 Everything Moves Eerything Moes 1 2 \ Diagrams: Motion 1) Motion (picture) no reference! time lapsed photo Type Motion? 3 origin Diagrams: reference pt. Motion reference! 1) Motion (picture) diagram time lapsed photo by

More information

N12/4/PHYSI/SPM/ENG/TZ0/XX. Physics Standard level Paper 1. Tuesday 13 November 2012 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N12/4/PHYSI/SPM/ENG/TZ0/XX. Physics Standard level Paper 1. Tuesday 13 November 2012 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ0/XX 8816504 Physics Standard leel Paper 1 Tuesday 13 Noember 01 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

PLANAR RIGID BODY MOTION: TRANSLATION &

PLANAR RIGID BODY MOTION: TRANSLATION & PLANAR RIGID BODY MOTION: TRANSLATION & Today s Objectives : ROTATION Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to

More information

Questions (2.6) v x x t (2.13) and its position is given by (2.7) x f x i v x t (2.14) v x, avg v xi v xf 2 (2.15) x f x i 1 2 1v xi v xf 2t (2.

Questions (2.6) v x x t (2.13) and its position is given by (2.7) x f x i v x t (2.14) v x, avg v xi v xf 2 (2.15) x f x i 1 2 1v xi v xf 2t (2. Chapter Motion in One Dimension ANALYSIS MODELS FOR PROBLEM-SOLVING Particle Under Constant Velocity. If a particle moes in a straight line with a constant speed x, its constant elocity is gien by and

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

Motors and Generators

Motors and Generators Physics Motors and Generators New Reised Edition Brian Shadwick Contents Use the table of contents to record your progress through this book. As you complete each topic, write the date completed, then

More information

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Phsics I Photo: J. M. Schwarz Announcements Course Website: jmschwarztheorgroup.org/ph101/ HW on Chapter is due at the beginning of lecture on Wednesda. HW 3 on

More information

(b) A sketch is shown. The coordinate values are in meters.

(b) A sketch is shown. The coordinate values are in meters. Chapter 4. (a) The magnitude of r is r (5. m) ( 3. m) (. m) 6. m. (b) A sketch is shown. The coordinate alues are in meters.. (a) The position ector, according to Eq. 4-, is r = ( 5. m) ˆi + (8. m)j ˆ.

More information

Your Comments. I don't understand how to find current given the velocity and magnetic field. I only understand how to find external force

Your Comments. I don't understand how to find current given the velocity and magnetic field. I only understand how to find external force Your Comments CONFUSED! Especially with the direction of eerything The rotating loop checkpoint question is incredibly difficult to isualize. All of this is pretty confusing, but 'm especially confused

More information

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle CICULA MOTION EXECISE. d = rate of change of angle as they both complete angle in same time.. c m mg N r m N mg r Since r A r B N A N B. a Force is always perpendicular to displacement work done = 0 4.

More information

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan MECHANICS Mechanics: The branch of physics which deals with the objects which are in state of rest or in a state of motion is called

More information

Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar!

Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar! Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar! See me any time B4 school tomorrow and mention to me that you have reviewed your integration notes and you

More information

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram!

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram! Wor Problems Wor and Energy HW#. How much wor is done by the graitational force when a 280-g pile drier falls 2.80 m? W G = G d cos θ W = (mg)d cos θ W = (280)(9.8)(2.80) cos(0) W = 7683.2 W 7.7 0 3 Mr.

More information

Reversal in time order of interactive events: Collision of inclined rods

Reversal in time order of interactive events: Collision of inclined rods Reersal in time order of interactie eents: Collision of inclined rods Published in The European Journal of Physics Eur. J. Phys. 27 819-824 http://www.iop.org/ej/abstract/0143-0807/27/4/013 Chandru Iyer

More information

Work and Energy Problems

Work and Energy Problems 09//00 Multiple hoice orce o strength 0N acts on an object o ass 3kg as it oes a distance o 4. I is perpendicular to the 4 displaceent, the work done is equal to: Work and Energy Probles a) 0J b) 60J c)

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

Lesson 6: How to Calculate Kinetic Energy

Lesson 6: How to Calculate Kinetic Energy KREUTTER:WORK AND ENERGY 1 Lesson 6: How to Calculate Kinetic Energy 6.1 Hypothesize (Derive a Mathematical Model) In a car crash testing facility, engineers evaluate the reaction of a car to a front impact.

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

EXERCISES. Let us see an example of graphical methods for solving static analysis associated with numerical evaluation of the results. 2 1 E 3 P=?

EXERCISES. Let us see an example of graphical methods for solving static analysis associated with numerical evaluation of the results. 2 1 E 3 P=? Let us see an example of graphical methods for soling static analysis associated with numerical ealuation of the results.? ϑ D A ? ϑ D A R ( ) a ( ) R sin π ϑ R sinϑ a R R R? π ϑ R R ϑ R D R ( D) ( D)

More information