Waves & Oscillations

Size: px
Start display at page:

Download "Waves & Oscillations"

Transcription

1 Physics Waves & Oscillations Lecture 22 Review Spring 2013 Semester Matthew Jones

2 Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters 1-8

3 Review 1. Simple harmonic motion (one degree of freedom) mass/spring, pendulum, water in pipes, RLC circuits damped harmonic motion 2. Forced harmonic oscillators amplitude/phase of steady state oscillations transient phenomena 3. Coupled harmonic oscillators masses/springs, coupled pendula, RLC circuits forced oscillations 4. Uniformly distributed discrete systems masses on string fixed at both ends lots of masses/springs

4 Review 5. Continuously distributed systems (standing waves) string fixed at both ends sound waves in pipes (open end/closed end) transmission lines Fourier analysis 6. Progressive waves in continuous systems dispersion, phase velocity/group velocity reflection/transmission coefficients 7. Waves in two and three dimensions Laplacian operator Rotationally symmetric solutions in 2d and 3d

5 Coupled Discrete Systems The general method of calculating eigenvalues will always work, but for simple systems you should be able to decouple the equations by a change of variables. l l l + = 0 + l = = = 0 = /l, = / 3 4 = + = + = 0 + = 0

6 Forced Oscillations We mainly considered the qualitative aspects We did not analyze the behavior when damping forces were significant Main features: Resonance occurs at each normal mode frequency Phase difference is = 2at resonance Example: driven by the force = Calculate force term applied to normal coordinates = = cos Reduced to two one-dimensional forced oscillators: + = /cos + = /cos

7 Uniformly Distributed Discrete Systems Equations of motion for masses in the middle:! + 2!!" +!# = 0 = l $% + 2 $ % $ %# + $ %" = 0 = & l

8 Uniformly Distributed Discrete Masses Proposed solution: % = ' % cos ' %" + ' %# ' % = + 2 We solved this to determine ' % and ( : - ' %,( = *sin. + 1 ( = 2 sin General solution: 2 % = 01 ( sin ( cos ( (

9 Vibrations of Continuous Systems Amplitude of mass - for normal mode : - ' %,( = *sin. + 1 Frequency of normal mode : ( = 2 sin Solution for normal modes: % = ' %,( cos ( General solution: 2 % = 01 ( sin ( cos ( (

10 Masses on a String First normal mode Second normal mode

11 Lumped LC Circuit < < < ; ; ; ; 6 %" () 6 % () 6 %# () 4 56 % 5 1 * 7 6 % 6 %# 5 1 * 7 6 % 6 %" 5 = % % (6 %" + 6 %# ) = 0 This is the exact same problem as the previous two examples.

12 Forced Coupled Oscillators Qualitative features are the same: Motion can be decoupled into a set of. independent oscillator equations (normal modes) Amplitude of normal mode oscillations are large when driven with the frequency of the normal mode Phase difference approaches /2 at resonance You should be able to anticipate the qualitative behavior when coupled oscillators are driven by a periodic force.

13 Continuous Distributions Limit as. and = $ Boundary conditions specified at = 0 and = 4: Fixed ends: $ 0 = $ 4 = 0 Maximal motion at ends: $B 0 = $B 4 = 0 Mixed boundary conditions Normal modes will be of the form $ %, = ' % sin( % )cos( % % ) or $ %, = ' % cos( % )cos( % % )

14 Properties of the Solutions $ 4, ~sin % 4 = 0 % 4 = - E % = 24 - % = -A 4 F % = -A 24

15 Examples: Boundary Conditions String fixed at both ends: $ 0 = $ 4 = 0 Organ pipe open at one end: $B 0 = $B 4 = 0 Driving end has maximal pressure amplitude Organ pipe closed at one end: $B 0 = 0, $ 4 = 0 Transmission line open at one end: 6 4 = 0 Transmission line shorted at one end: A 4 H! I = 0 HJ

16 Fourier Analysis Normal modes satisfying $ 0 = $ 4 = 0: $ %, = ' % sin - cos 4 % % General solution: Initial conditions: L $, = 0 ' % sin - 4 L %3 $,0 = 0 ' % sin - 4 %3 L $B,0 = 0 ' % % sin - 4 %3 cos % sin % cos % % L = 0 M % sin - 4 %3 L = 0 * % sin - 4 %3

17 Fourier Analysis Fourier sine transform: L N = 0 M % sin - 4 %3 I M % = 2-7 N()sin 4 4 Fourier cosine transform: L A = 0 M % cos - 4 M % = 2 4 %3 I - 7 A()cos 4 5 5

18 Fourier Analysis M % = ' % cos % * % = ' % % sin % Solve for amplitudes: Solve for phase: ' % = M % + * % % tan % = * % M % %

19 Fourier Analysis Suggestion: don t simply rely on these formulas use your knowledge of the boundary conditions and initial conditions. Example: If you are given $B,0 = 0 and $ 0 = $ 4 = 0 then you know that solutions are of the form $, = 0' % sin - cos 4 % If you are given $B,0 = 0 and $B 0 = 0,$ 4 = 0 then solutions are of the form $, = 0 ' % cos - 4 QHH % cos %

20 Progressive Waves Far from the boundaries, other descriptions are more transparent: $, = F ± A The Fourier transform gives the frequency components: L ' = 1 7 ()cos 5 2 "L L M = 1 7 ()sin 5 2 L "L L 7 M sin( )5 "L () = 1 7 ' cos( ) "L 2 Narrow pulse in space wide range of frequencies Pulse spread out in space narrow range of frequencies

21 Properties of Progressive Waves Power carried by a wave: String with tension & and mass per unit length? S = 1 2? ' A = 1 2 T ' Impedance of the medium: T =?A = &/A Important properties: Impedance is a property of the medium, not the wave Energy and power are proportional to the square of the amplitude

22 Reflections Wave energy is reflected by discontinuities in the impedance of a system Reflection and transmission coefficients: The wave is incident and reflected in medium 1 The wave is transmitted into medium 2 U = V W V X V W + V X Wave amplitudes: Y = XV W V W + V X ' Z = ['! ' J = \'!

23 Reflected and Transmitted Power Power is proportional to the square of the amplitude. Reflected power: S Z = [ S! Transmitted power: S J = \ S! You should be able to demonstrate that energy is conserved: ie, show that ]^ = ] _ + ]`

24 Dispersion Wave speed is sometimes a function of frequency. Phase velocity: A = EF = a (constant) ( Group velocity: A b = Ha (function of frequency) H( Energy that is carried by a pulse propagates with the group velocity In optics, A = /-( ) and A b = A (evaluated at the average wavenumber of the pulse)

25 Waves in Two and Three Dimensions Wave equation: c d = 1 When the function only depends on the radius, 5e = 0) then this can be written: c d = f@d = Polar coordinates (2d) c d = fd = d Spherical coordinates (3d)

26 Waves in Two Dimensions Wave equation in polar coordinates: c d = f@f f@d = Bessel s d Let g = f where = A d + d(g) = 0 Solutions: h (g)~ i jkl m"i/n m and o (g)~ i lpq m"i/n m

27 Waves in Three Dimensions Wave equation in spherical coordinates: c d = fd = d When rs t = rj s ω d this is ω fd + A d = 0 Solutions are of the form: d f, = ' v!(z f cos

28 Boundary Conditions in Two and Three Dimensions When a boundary condition imposes the restriction that d w, = 0 then the function must have a node at f = w. Analogous to the 1-dimensional case: This imposes the requirement that w is a root of the equation F w = 0 which implies that % = a x y = g %/w where g % are roots of F g = 0.

29 That s all for now Study these topics make sure you understand the examples and assignment questions. Send if you would like specific examples discussed before the exam next Wednesday. Next topics: waves applied to optics.

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 21 Review Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters 1-8 Review

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 20 French, Chapter 8 Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Vibrations and Waves Physics Year 1. Handout 1: Course Details

Vibrations and Waves Physics Year 1. Handout 1: Course Details Vibrations and Waves Jan-Feb 2011 Handout 1: Course Details Office Hours Vibrations and Waves Physics Year 1 Handout 1: Course Details Dr Carl Paterson (Blackett 621, carl.paterson@imperial.ac.uk Office

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

Vibrations and waves: revision. Martin Dove Queen Mary University of London

Vibrations and waves: revision. Martin Dove Queen Mary University of London Vibrations and waves: revision Martin Dove Queen Mary University of London Form of the examination Part A = 50%, 10 short questions, no options Part B = 50%, Answer questions from a choice of 4 Total exam

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES Hilary Term 008. Prof. G.G.Ross Question Sheet : Normal Modes [Questions marked with an asterisk (*) cover topics also covered by the unstarred

More information

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ.

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ. Standing Waves I the same type o waves move through a common region and their requencies,, are the same then so are their wavelengths,. This ollows rom: v=. Since the waves move through a common region,

More information

Physics 106a/196a Problem Set 7 Due Dec 2, 2005

Physics 106a/196a Problem Set 7 Due Dec 2, 2005 Physics 06a/96a Problem Set 7 Due Dec, 005 Version 3, Nov 7, 005 In this set we finish up the SHO and study coupled oscillations/normal modes and waves. Problems,, and 3 are for 06a students only, 4, 5,

More information

Newton s laws. Chapter 1. Not: Quantum Mechanics / Relativistic Mechanics

Newton s laws. Chapter 1. Not: Quantum Mechanics / Relativistic Mechanics PHYB54 Revision Chapter 1 Newton s laws Not: Quantum Mechanics / Relativistic Mechanics Isaac Newton 1642-1727 Classical mechanics breaks down if: 1) high speed, v ~ c 2) microscopic/elementary particles

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Physics 7Em Midterm Exam 1

Physics 7Em Midterm Exam 1 Physics 7Em Midterm Exam 1 MULTIPLE CHOICE PROBLEMS. There are 10 multiple choice problems. Each is worth 2 points. There is no penalty for wrong answers. In each, choose the best answer; only one answer

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

Chapter 16: Oscillations

Chapter 16: Oscillations Chapter 16: Oscillations Brent Royuk Phys-111 Concordia University Periodic Motion Periodic Motion is any motion that repeats itself. The Period (T) is the time it takes for one complete cycle of motion.

More information

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Exam 3 results Class Average - 57 (Approximate grade

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 21 Chapter 30 sec. 1-4 Fall 2012 Semester Matthew Jones Question An LC circuit has =100 and =100. If it oscillates with an amplitude of 100 mv, what is the amplitude

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

Chapter 9. Electromagnetic Waves

Chapter 9. Electromagnetic Waves Chapter 9. Electromagnetic Waves 9.1 Waves in One Dimension 9.1.1 The Wave Equation What is a "wave?" Let's start with the simple case: fixed shape, constant speed: How would you represent such a string

More information

Final Exam Concept Map

Final Exam Concept Map Final Exam Concept Map Rule of thumb to study for any comprehensive final exam - start with what you know - look at the quiz problems. If you did not do well on the quizzes, you should certainly learn

More information

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total) Lecture 14 1/38 Phys 220 Final Exam Wednesday, August 6 th 10:30 am 12:30 pm Phys 114 20 multiple choice problems (15 points each 300 total) 75% will be from Chapters 10-16 25% from Chapters 1-9 Students

More information

PHY217: Vibrations and Waves

PHY217: Vibrations and Waves Assessed Problem set 1 Issued: 5 November 01 PHY17: Vibrations and Waves Deadline for submission: 5 pm Thursday 15th November, to the V&W pigeon hole in the Physics reception on the 1st floor of the GO

More information

Lab 1: Damped, Driven Harmonic Oscillator

Lab 1: Damped, Driven Harmonic Oscillator 1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion 11/17/10 Chapter 14. Oscillations This striking computergenerated image demonstrates an important type of motion: oscillatory motion. Examples of oscillatory motion include a car bouncing up and down,

More information

Lecture 9: Reflection, Transmission and Impedance

Lecture 9: Reflection, Transmission and Impedance Matthew Schwartz Lecture 9: Reflection, Transmission and Impedance Boundary conditions at a junction Suppose we take two taut strings, one thick and one thin and knot them together. What will happen to

More information

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004 You have 3 hours Do all eight problems You may use calculators Massachusetts Institute of Technology Physics 8.03 Fall 004 Final Exam Thursday, December 16, 004 This is a closed-book exam; no notes are

More information

Energy in a Simple Harmonic Oscillator. Class 30. Simple Harmonic Motion

Energy in a Simple Harmonic Oscillator. Class 30. Simple Harmonic Motion Simple Harmonic Motion Class 30 Here is a simulation of a mass hanging from a spring. This is a case of stable equilibrium in which there is a large extension in which the restoring force is linear in

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne PEER REVIEW 1... Your future in science will be largely controlled by anonymous letters from your peers. Matt peers Corinne 2 3 4 5 6 MULTIPLE DRIVNG FREQUENCIES LRC circuit L I = (1/Z)V ext Z must have

More information

Superposition and Standing Waves

Superposition and Standing Waves Physics 1051 Lecture 9 Superposition and Standing Waves Lecture 09 - Contents 14.5 Standing Waves in Air Columns 14.6 Beats: Interference in Time 14.7 Non-sinusoidal Waves Trivia Questions 1 How many wavelengths

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4. Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1 Outline. Course information: Homework set # 3 Exam # 1 Quiz. Continuation of the

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-1 SIMPLE HARMONIC MOTION Introductory Video: Simple Harmonic Motion IB Assessment Statements Topic 4.1, Kinematics of Simple Harmonic

More information

UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2005

UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2005 UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2005 COURSE NUMBER AMATH 250 COURSE TITLE Introduction to Differential Equations DATE OF EXAM Tuesday December 20, 2005 TIME PERIOD DURATION OF EXAM NUMBER

More information

BSc/MSci MidTerm Test

BSc/MSci MidTerm Test BSc/MSci MidTerm Test PHY-217 Vibrations and Waves Time Allowed: 40 minutes Date: 18 th Nov, 2011 Time: 9:10-9:50 Instructions: Answer ALL questions in section A. Answer ONLY ONE questions from section

More information

Lecture 9: Harmonic Loads (Con t)

Lecture 9: Harmonic Loads (Con t) Lecture 9: Harmonic Loads (Con t) Reading materials: Sections 3.4, 3.5, 3.6 and 3.7 1. Resonance The dynamic load magnification factor (DLF) The peak dynamic magnification occurs near r=1 for small damping

More information

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes Applications of Trigonometry to Waves 4.5 Introduction Waves and vibrations occur in many contexts. The water waves on the sea and the vibrations of a stringed musical instrument are just two everyday

More information

Mathematical Physics

Mathematical Physics Mathematical Physics MP205 Vibrations and Waves Lecturer: Office: Lecture 9-10 Dr. Jiří Vala Room 1.9, Mathema

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2023W1 SEMESTER 1 EXAMINATION 2016-2017 WAVE PHYSICS Duration: 120 MINS (2 hours) This paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

( PART : B DESCRIPTIVE )

( PART : B DESCRIPTIVE ) PHY/II/02 (PR) ( 2 ) 2 0 1 7 ( 2nd Semester ) PHYSICS SECOND PAPER ( Oscillations, Acoustics and Optics ) ( Pre-revised ) Full Marks : 55 Time : 2½ hours ( PART : B DESCRIPTIVE ) ( Marks : 35 ) The figures

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Chapter 16 Traveling Waves

Chapter 16 Traveling Waves Chapter 16 Traveling Waves GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms as it is used in physics,

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Sang-Wook Cheong Friday, February 16 th, 2017 Two Exam 1 Questions with errors Correct answer: L = r X p = (2000

More information

x(t) = R cos (ω 0 t + θ) + x s (t)

x(t) = R cos (ω 0 t + θ) + x s (t) Formula Sheet Final Exam Springs and masses: dt x(t + b d x(t + kx(t = F (t dt More general differential equation with harmonic driving force: m d Steady state solutions: where d dt x(t + Γ d dt x(t +

More information

Physics 117 Mock Midterm Sunday, February 10, 2019 * 2 pm Room 241 Arts Building *

Physics 117 Mock Midterm Sunday, February 10, 2019 * 2 pm Room 241 Arts Building * Physics 117 Mock Midterm Sunday, February 10, 2019 * 2 pm Room 241 Arts Building * Note: This mock test consists of questions covered in Physics 117. This test is not comprehensive. The problems on this

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature Physics 111 Lecture 31 (Walker: 14.7-8) Wave Superposition Wave Interference Physics of Musical Instruments Temperature Superposition and Interference Waves of small amplitude traveling through the same

More information

CHAPTER 15 Wave Motion. 1. The speed of the wave is

CHAPTER 15 Wave Motion. 1. The speed of the wave is CHAPTER 15 Wave Motion 1. The speed of the wave is v = fλ = λ/t = (9.0 m)/(4.0 s) = 2.3 m/s. 7. We find the tension from the speed of the wave: v = [F T /(m/l)] 1/2 ; (4.8 m)/(0.85 s) = {F T /[(0.40 kg)/(4.8

More information

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection Wave Phenomena Physics 15c Lecture 8 LC Transmission Line Wave Reflection Midterm Exam #1 Midterm #1 has been graded Class average = 80.4 Standard deviation = 14.6 Your exam will be returned in the section

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 74 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 4 TEST REVIEW 1. In which of the following regions of the electromagnetic spectrum is radiation

More information

Baccalieu Collegiate. Physics Course Outline

Baccalieu Collegiate. Physics Course Outline Baccalieu Collegiate Physics 2204 Course Outline Course Content: Unit 1: Kinematics Motion is a common theme in our everyday lives: birds fly, babies crawl, and we, ourselves, seem to be in a constant

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

Physics 101 Lecture 18 Vibrations, SHM, Waves (II)

Physics 101 Lecture 18 Vibrations, SHM, Waves (II) Physics 101 Lecture 18 Vibrations, SHM, Waves (II) Reminder: simple harmonic motion is the result if we have a restoring force that is linear with the displacement: F = -k x What would happen if you could

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00 BSc/MSci EXAMINATION PHY-217 Vibrations and Waves Time Allowed: 2 hours 30 minutes Date: 4 th May, 2011 Time: 14:30-17:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

Sound radiation and sound insulation

Sound radiation and sound insulation 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance

More information

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position.

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position. Chap 11. Vibration and Waves Sec. 11.1 - Simple Harmonic Motion The impressed force on an object is proportional to its displacement from it equilibrium position. F x This restoring force opposes the change

More information

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Tomi Johnson 1 Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Prepare full solutions to the problems with a self assessment of your progress on a cover

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

Physics 5B PRACTICE MIDTERM EXAM I-B Winter 2009

Physics 5B PRACTICE MIDTERM EXAM I-B Winter 2009 Physics 5B PRACTICE MIDTERM EXAM I-B Winter 2009 PART I: Multiple choice questions Only one of the choices given is the correct answer. No explanation for your choice is required. Each multiple choice

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

x(t+ δt) - x(t) = slope δt t+δt

x(t+ δt) - x(t) = slope δt t+δt Techniques of Physics Worksheet 2 Classical Vibrations and Waves Introduction You will have encountered many different examples of wave phenomena in your courses and should be familiar with most of the

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof.

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof. Physics 21900 General Physics II Electricity, Magnetism and Optics Lecture 20 Chapter 23.1-2 Wave Optics Fall 2015 Semester Prof. Matthew Jones Announcement Exam #2 will be on Thursday, November 5 th (tomorrow)

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

PreClass Notes: Chapter 13, Sections

PreClass Notes: Chapter 13, Sections PreClass Notes: Chapter 13, Sections 13.3-13.7 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by

More information

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1. Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.6 m between the crests. If a wave laps against the pier every

More information

University Physics 226N/231N Old Dominion University. Chapter 14: Oscillatory Motion

University Physics 226N/231N Old Dominion University. Chapter 14: Oscillatory Motion University Physics 226N/231N Old Dominion University Chapter 14: Oscillatory Motion Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-odu Monday, November 5, 2016

More information

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances)

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) A 1 General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) 1. Waves Propagating on a Transmission Line General A transmission line is a 1-dimensional medium which can

More information

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011 Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits Nov. 7 & 9, 2011 Material from Textbook by Alexander & Sadiku and Electrical Engineering: Principles & Applications,

More information

Physics 201, Lecture 28

Physics 201, Lecture 28 Physics 01, Lecture 8 Today s Topics n Oscillations (Ch 15) n n n More Simple Harmonic Oscillation n Review: Mathematical Representation n Eamples: Simple Pendulum, Physical pendulum Damped Oscillation

More information

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

single uniform density, but has a step change in density at x = 0, with the string essentially y(x, t) =A sin(!t k 1 x), (5.1)

single uniform density, but has a step change in density at x = 0, with the string essentially y(x, t) =A sin(!t k 1 x), (5.1) Chapter 5 Waves II 5.1 Reflection & Transmission of waves et us now consider what happens to a wave travelling along a string which no longer has a single uniform density, but has a step change in density

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

A second look at waves

A second look at waves A second loo at waves ravelling waves A first loo at Amplitude Modulation (AM) Stationary and reflected waves Lossy waves: dispersion & evanescence I thin this is the MOS IMPORAN of my eight lectures,

More information

x = B sin ( t ) HARMONIC MOTIONS SINE WAVES AND SIMPLE HARMONIC MOTION Here s a nice simple fraction: y = sin (x) Differentiate = cos (x)

x = B sin ( t ) HARMONIC MOTIONS SINE WAVES AND SIMPLE HARMONIC MOTION Here s a nice simple fraction: y = sin (x) Differentiate = cos (x) SINE WAVES AND SIMPLE HARMONIC MOTION Here s a nice simple fraction: y = sin (x) HARMONIC MOTIONS dy Differentiate = cos (x) dx So sin (x) has a stationary value whenever cos (x) = 0. 3 5 7 That s when

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phsics 15c Lecture 13 Multi-Dimensional Waves (H&L Chapter 7) Term Paper Topics! Have ou found a topic for the paper?! 2/3 of the class have, or have scheduled a meeting with me! If ou haven

More information