The two-dimensional heat equation

Size: px
Start display at page:

Download "The two-dimensional heat equation"

Transcription

1 The two-dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 5, 015

2 Physical motivation Goal: Model heat flow in a two-dimensional object (thin plate. Set up: Represent the plate by a region in the xy-plane and let { u(x,y,t = temperature of plate at position (x,y and time t. For a fixed t, the height of the surface z = u(x,y,t gives the temperature of the plate at time t and position (x,y. Under ideal assumptions (e.g. uniform density, uniform specific heat, perfect insulation along faces, no internal heat sources etc. one can show that u satisfies the two dimensional heat equation u t = c u = c (u xx +u yy

3 Rectangular plates and boundary conditions For now we assume: The plate is rectangular, represented by R = [0,a] [0,b]. y b a x The plate is imparted with some initial temperature: u(x,y,0 = f(x,y, (x,y R. The edges of the plate are held at zero degrees: u(0,y,t = u(a,y,t = 0, 0 y b, t > 0, u(x,0,t = u(x,b,t = 0, 0 x a, t > 0.

4 Separation of variables Assuming that u(x,y,t = X(xY(yT(t, and proceeding as we did with the -D wave equation, we find that X BX = 0, X(0 = X(a = 0, Y CY = 0, Y(0 = Y(b = 0, T c (B +CT = 0. We have already solved the first two of these problems: X = X m (x = sin(µ m x, µ m = mπ a, B = µ m Y = Y n (y = sin(ν n y, ν n = nπ b, C = ν n, for m,n N. It then follows that T = T mn (t = A mn e λ mnt, λ mn = c µ m +νn = cπ m a + n b.

5 Superposition Assembling these results, we find that for any pair m,n 1 we have the normal mode u mn (x,y,t = X m (xy n (yt mn (t = A mn sin(µ m x sin(ν n ye λ mn t. The principle of superposition gives the general solution u(x,y,t = A mn sin(µ m x sin(ν n ye λmnt. m=1 n=1 The initial condition requires that f(x,y = u(x,y,0 = n=1 m=1 ( mπ ( nπ A mn sin a x sin b y, which is just the double Fourier series for f(x,y.

6 Conclusion Theorem If f(x,y is a sufficiently nice function on [0,a] [0,b], then the solution to the heat equation with homogeneous Dirichlet boundary conditions and initial condition f(x,y is u(x,y,t = m=1 n=1 A mn sin(µ m x sin(ν n ye λ mn t, where µ m = mπ a, ν n = nπ b, λ mn = c µ m +νn, and A mn = 4 ab a b 0 0 f(x,ysin(µ m xsin(ν n ydy dx.

7 Example A square plate with c = 1/3 is heated in such a way that the temperature in the lower half is 50, while the temperature in the upper half is 0. After that, it is insulated laterally, and the temperature at its edges is held at 0. Find an expression that gives the temperature in the plate for t > 0. We must solve the heat problem above with a = b = and { 50 if y 1, f(x,y = 0 if y > 1. The coefficients in the solution are A mn = 4 ( mπ ( nπ f(x,ysin 0 0 x sin y dy dx ( mπ 1 ( nπ = 50 sin x dx sin y dy 0 0

8 ( (1+( 1 m+1 ( (1 cos nπ = 50 πm πn = 00 (1+( 1 m+1 (1 cos nπ π. mn Since λ mn = π m n 4 = π m 6 +n, the solution is u(x,y,t = 00 ( (1+( 1 m+1 (1 cos nπ π mn sin m=1 n=1 ( nπ y e π (m +n t/36. ( mπ sin x

9 Inhomogeneous boundary conditions Steady state solutions and Laplace s equation -D heat problems with inhomogeneous Dirichlet boundary conditions can be solved by the homogenizing procedure used in the 1-D case: 1. Find and subtract the steady state (u t 0;. Solve the resulting homogeneous problem; 3. Add the steady state to the result of Step. We will focus only on finding the steady state part of the solution. Setting u t = 0 in the -D heat equation gives u = u xx +u yy = 0 (Laplace s equation, solutions of which are called harmonic functions.

10 Dirichlet problems Definition: The Dirichlet problem on a region R R is the boundary value problem u = 0 inside R, u(x,y = f(x,y on R. Δu=0 u( x,y =f( x,y When the region is a rectangle R = [0,a] [0,b], the boundary conditions will given on each edge separately as: u(x,0 = f 1 (x, u(x,b = f (x, 0 < x < a, u(0,y = g 1 (y, u(a,y = g (y, 0 < y < b.

11 1 Solving the Dirichlet problem on a rectangle Homogenization and superposition Strategy: Reduce to four simpler problems and use superposition. u(0,y= g (y ( * u(x,b=f (x Δu= 0 u(x,0=f (x 1 u(a,y=g (y = u(0,y= 0 u(0,y=g (y 1 u(x,b=0 (A Δu= 0 u(x,0=f (x 1 u(x,b=0 (C Δu= 0 u(a,y=0 u(a,y=0 u(0,y=0 u(0,y= 0 u(x,b=f (x (B (D Δu= 0 u(x,0=0 u(x,b=0 Δu= 0 u(a,y=0 u(a,y=g (y u(x,0=0 u(x,0=0

12 Remarks: If u A, u B, u C and u D solve the Dirichlet problems (A, (B, (C and (D, then the general solution to ( is u = u A +u B +u C +u D. Note that the boundary conditions in (A - (D are all homogeneous, with the exception of a single edge. Problems with inhomogeneous Neumann or Robin boundary conditions (or combinations thereof can be reduced in a similar manner.

13 Solution of the Dirichlet problem on a rectangle Case B Goal: Solve the boundary value problem (B: u = 0, 0 < x < a, 0 < y < b, u(x,0 = 0, u(x,b = f (x, 0 < x < a, u(0,y = u(a,y = 0, 0 < y < b. Setting u(x,y = X(xY(y leads to X +kx = 0, Y ky = 0, X(0 = X(a = 0, Y(0 = 0. We know the nontrivial solutions for X are given by X(x = X n (x = sin(µ n x, µ n = nπ a, k = µ n (n N.

14 Interlude The hyperbolic trigonometric functions The hyperbolic cosine and sine functions are coshy = ey +e y, sinhy = ey e y. They satisfy the following identities: cosh y sinh y = 1, d dy coshy = sinhy, d sinhy = coshy. dy One can show that the general solution to the ODE Y µ Y = 0 can (also be written as Y = Acosh(µy+B sinh(µy.

15 Using µ = µ n and Y(0 = 0, we find Y(y = Y n (y = A n cosh(µ n y+b n sinh(µ n y 0 = Y n (0 = A n cosh0+b n sinh0 = A n. This yields the separated solutions u n (x,y = X n (xy n (y = B n sin(µ n xsinh(µ n y, and superposition gives the general solution u(x,y = B n sin(µ n xsinh(µ n y. n=1 Finally, the top edge boundary condition requires that f (x = u(x,b = B n sinh(µ n bsin(µ n x. n=1

16 Conclusion Appealing to the formulae for sine series coefficients, we can now summarize our findings. Theorem If f (x is piecewise smooth, the solution to the Dirichlet problem is u = 0, 0 < x < a, 0 < y < b, u(x,0 = 0, u(x,b = f (x, 0 < x < a, u(0,y = u(a,y = 0, 0 < y < b. u(x,y = where µ n = nπ a and B n = B n sin(µ n xsinh(µ n y, n=1 asinh(µ n b a 0 f (xsin(µ n xdx.

17 Remark: If we know the sine series expansion for f (x on [0,a], then we can use the relationship B n = 1 sinh(µ n b (nth sine coefficient of f. Example Solve the Dirichlet problem on the square [0,1] [0,1], subject to the boundary conditions u(x,0 = 0, u(x,1 = f (x, 0 < x < 1, u(0,y = u(1,y = 0, 0 < y < 1. where f (x = { 75x if 0 x 3, 150(1 x if 3 < x 1.

18 We have a = b = 1. The graph of f (x is: According to exercise.4.17 (with p = 1, a = /3 and h = 50, the sine series for f is: f (x = 450 sin ( nπ 3 π n sin(nπx. n=1

19 Homog. Dirichlet BCs Inhomog. Dirichlet BCs Homogenizing Thus, 450 sin nπ 3 π n 1 Bn = sinh(nπ and! 450 sin nπ 3, = π n sinh(nπ 450 X sin nπ 3 sin(nπx sinh(nπy. u(x, y = π n sinh(nπ n= Complete solution

20 Solution of the Dirichlet problem on a rectangle Cases A and C Separation of variables shows that the solution to (A is ( nπx ( nπ(b y u A (x,y = A n sin sinh, a a n=1 where a A n = asinh ( f nπb 1 (xsin a 0 Likewise, the solution to (C is ( nπ(a x u C (x,y = C n sinh b with n=1 C n = bsinh ( nπa b b 0 g 1 (ysin ( nπx dx. a sin ( nπy, b ( nπy dy. b

21 Solution of the Dirichlet problem on a rectangle Case D And the solution to (D is u D (x,y = D n sinh n=1 ( nπx sin b ( nπy, b where D n = bsinh ( nπa b b 0 g (ysin ( nπy dy. b Remark: The coefficients in each case are just multiples of the Fourier sine coefficients of the nonzero boundary condition, e.g. D n = 1 sinh ( nπa (nth sine coefficient of g on [0,b]. b

22 Example Solve the Dirichlet problem on [0,1] [0,] with the following boundary conditions. u=0 u=(-y / u = 0 u= We have a = 1, b = and f 1 (x =, f (x = 0, g 1 (y = ( y, g (y = y.

23 It follows that B n = 0 for all n, and the remaining coefficients we need are A n = 1 sinh ( nπ sin ( nπx dx = 4(1+( 1n+1 1 nπsinh(nπ, C n = D n = sinh ( nπ1 sinh ( nπ1 0 0 ( y ( nπy sin dy = 4(π n +( 1 n n 3 π 3 sinh ( nπ, ( ysin ( nπy dy = 4 nπsinh ( nπ.

24 The complete solution is thus u(x,y =u A (x,y+u C (x,y+u D (x,y 4(1+( 1 n+1 = sin(nπx sinh(nπ( y nπ sinh(nπ n=1 4(n π +( 1 n ( nπ(1 x + n 3 π 3 sinh ( nπ sinh n=1 4 ( nπx ( nπy + nπsinh ( nπ sinh sin. n=1 sin ( nπy

25 =

The General Dirichlet Problem on a Rectangle

The General Dirichlet Problem on a Rectangle The General Dirichlet Problem on a Rectangle Ryan C. Trinity University Partial Differential Equations March 7, 0 Goal: Solve the general (inhomogeneous) Dirichlet problem u = 0, 0 < x < a, 0 < y < b,

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

Solutions to Exercises 8.1

Solutions to Exercises 8.1 Section 8. Partial Differential Equations in Physics and Engineering 67 Solutions to Exercises 8.. u xx +u xy u is a second order, linear, and homogeneous partial differential equation. u x (,y) is linear

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

Midterm 2: Sample solutions Math 118A, Fall 2013

Midterm 2: Sample solutions Math 118A, Fall 2013 Midterm 2: Sample solutions Math 118A, Fall 213 1. Find all separated solutions u(r,t = F(rG(t of the radially symmetric heat equation u t = k ( r u. r r r Solve for G(t explicitly. Write down an ODE for

More information

The One-Dimensional Heat Equation

The One-Dimensional Heat Equation The One-Dimensional Heat Equation R. C. Trinity University Partial Differential Equations February 24, 2015 Introduction The heat equation Goal: Model heat (thermal energy) flow in a one-dimensional object

More information

Introduction and preliminaries

Introduction and preliminaries Chapter Introduction and preliminaries Partial differential equations What is a partial differential equation? ODEs Ordinary Differential Equations) have one variable x). PDEs Partial Differential Equations)

More information

Analysis III Solutions - Serie 12

Analysis III Solutions - Serie 12 .. Necessary condition Let us consider the following problem for < x, y < π, u =, for < x, y < π, u y (x, π) = x a, for < x < π, u y (x, ) = a x, for < x < π, u x (, y) = u x (π, y) =, for < y < π. Find

More information

MA 201: Partial Differential Equations Lecture - 12

MA 201: Partial Differential Equations Lecture - 12 Two dimensionl Lplce Eqution MA 201: Prtil Differentil Equtions Lecture - 12 The Lplce Eqution (the cnonicl elliptic eqution) Two dimensionl Lplce Eqution Two dimensionl Lplce Eqution 2 u = u xx + u yy

More information

Lecture6. Partial Differential Equations

Lecture6. Partial Differential Equations EP219 ecture notes - prepared by- Assoc. Prof. Dr. Eser OĞAR 2012-Spring ecture6. Partial Differential Equations 6.1 Review of Differential Equation We have studied the theoretical aspects of the solution

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

G: Uniform Convergence of Fourier Series

G: Uniform Convergence of Fourier Series G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) u t = Du xx 0 < x < l, t > 0 u(0, t) = 0 = u(l, t) t > 0 u(x, 0) = f(x) 0 < x < l () we developed

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

Sturm-Liouville Theory

Sturm-Liouville Theory More on Ryan C. Trinity University Partial Differential Equations April 19, 2012 Recall: A Sturm-Liouville (S-L) problem consists of A Sturm-Liouville equation on an interval: (p(x)y ) + (q(x) + λr(x))y

More information

THE METHOD OF SEPARATION OF VARIABLES

THE METHOD OF SEPARATION OF VARIABLES THE METHOD OF SEPARATION OF VARIABES To solve the BVPs that we have encountered so far, we will use separation of variables on the homogeneous part of the BVP. This separation of variables leads to problems

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

21 Laplace s Equation and Harmonic Functions

21 Laplace s Equation and Harmonic Functions 2 Laplace s Equation and Harmonic Functions 2. Introductory Remarks on the Laplacian operator Given a domain Ω R d, then 2 u = div(grad u) = in Ω () is Laplace s equation defined in Ω. If d = 2, in cartesian

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx. Problem set 3: Solutions Math 27B, Winter 216 1. Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue

More information

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2.

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2. 04 Section 10. y (π) = c = 0, and thus λ = 0 is an eigenvalue, with y 0 (x) = 1 as the eigenfunction. For λ > 0 we again have y(x) = c 1 sin λ x + c cos λ x, so y (0) = λ c 1 = 0 and y () = -c λ sin λ

More information

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1.1 Separable Partial Differential Equations 1. Classical PDEs and Boundary-Value Problems 1.3 Heat Equation 1.4 Wave Equation 1.5 Laplace s Equation

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

The Wave Equation on a Disk

The Wave Equation on a Disk R. C. Trinity University Partial Differential Equations April 3, 214 The vibrating circular membrane Goal: Model the motion of an elastic membrane stretched over a circular frame of radius a. Set-up: Center

More information

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation 1. Partial differential equations Definitions Examples A partial differential equation PDE is an equation giving a relation between a function of two or more variables u and its partial derivatives. The

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Spring Exam 3 Review Solutions Exercise. We utilize the general solution to the Dirichlet problem in rectangle given in the textbook on page 68. In the notation used there

More information

MA Chapter 10 practice

MA Chapter 10 practice MA 33 Chapter 1 practice NAME INSTRUCTOR 1. Instructor s names: Chen. Course number: MA33. 3. TEST/QUIZ NUMBER is: 1 if this sheet is yellow if this sheet is blue 3 if this sheet is white 4. Sign the scantron

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

Homework 6 Math 309 Spring 2016

Homework 6 Math 309 Spring 2016 Homework 6 Math 309 Spring 2016 Due May 18th Name: Solution: KEY: Do not distribute! Directions: No late homework will be accepted. The homework can be turned in during class or in the math lounge in Pedelford

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

PHYSICS 116C Homework 4 Solutions

PHYSICS 116C Homework 4 Solutions PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the Sturm-Liouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of

More information

Partial Differential Equations for Engineering Math 312, Fall 2012

Partial Differential Equations for Engineering Math 312, Fall 2012 Partial Differential Equations for Engineering Math 312, Fall 2012 Jens Lorenz July 17, 2012 Contents Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 1 Second Order ODEs with Constant

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 Lecture Notes 8 - PDEs Page 8.01 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

Math 316/202: Solutions to Assignment 7

Math 316/202: Solutions to Assignment 7 Math 316/22: Solutions to Assignment 7 1.8.6(a) Using separation of variables, we write u(r, θ) = R(r)Θ(θ), where Θ() = Θ(π) =. The Laplace equation in polar coordinates (equation 19) becomes R Θ + 1 r

More information

In what follows, we examine the two-dimensional wave equation, since it leads to some interesting and quite visualizable solutions.

In what follows, we examine the two-dimensional wave equation, since it leads to some interesting and quite visualizable solutions. ecture 22 igher-dimensional PDEs Relevant section of text: Chapter 7 We now examine some PDEs in higher dimensions, i.e., R 2 and R 3. In general, the heat and wave equations in higher dimensions are given

More information

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

MATH-UA 263 Partial Differential Equations Recitation Summary

MATH-UA 263 Partial Differential Equations Recitation Summary MATH-UA 263 Partial Differential Equations Recitation Summary Yuanxun (Bill) Bao Office Hour: Wednesday 2-4pm, WWH 1003 Email: yxb201@nyu.edu 1 February 2, 2018 Topics: verifying solution to a PDE, dispersion

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

d Wave Equation. Rectangular membrane.

d Wave Equation. Rectangular membrane. 1 ecture1 1.1 2-d Wave Equation. Rectangular membrane. The first problem is for the wave equation on a rectangular domain. You can interpret this as a problem for determining the displacement of a flexible

More information

University of Toronto at Scarborough Department of Computer and Mathematical Sciences, Mathematics MAT C46S 2013/14.

University of Toronto at Scarborough Department of Computer and Mathematical Sciences, Mathematics MAT C46S 2013/14. University of Toronto at Scarborough Department of Computer and Mathematical Sciences, Mathematics MAT C46S 213/14 Problem Set #4 Due date: Thursday, March 2, 214 at the beginning of class Part A: 1. 1.

More information

Homework for Math , Fall 2016

Homework for Math , Fall 2016 Homework for Math 5440 1, Fall 2016 A. Treibergs, Instructor November 22, 2016 Our text is by Walter A. Strauss, Introduction to Partial Differential Equations 2nd ed., Wiley, 2007. Please read the relevant

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

c2 2 x2. (1) t = c2 2 u, (2) 2 = 2 x x 2, (3)

c2 2 x2. (1) t = c2 2 u, (2) 2 = 2 x x 2, (3) ecture 13 The wave equation - final comments Sections 4.2-4.6 of text by Haberman u(x,t), In the previous lecture, we studied the so-called wave equation in one-dimension, i.e., for a function It was derived

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

Final Examination Linear Partial Differential Equations. Matthew J. Hancock. Feb. 3, 2006

Final Examination Linear Partial Differential Equations. Matthew J. Hancock. Feb. 3, 2006 Final Examination 8.303 Linear Partial ifferential Equations Matthew J. Hancock Feb. 3, 006 Total points: 00 Rules [requires student signature!]. I will use only pencils, pens, erasers, and straight edges

More information

MATH 124B Solution Key HW 03

MATH 124B Solution Key HW 03 6.1 LAPLACE S EQUATION MATH 124B Solution Key HW 03 6.1 LAPLACE S EQUATION 4. Solve u x x + u y y + u zz = 0 in the spherical shell 0 < a < r < b with the boundary conditions u = A on r = a and u = B on

More information

Connection to Laplacian in spherical coordinates (Chapter 13)

Connection to Laplacian in spherical coordinates (Chapter 13) Connection to Laplacian in spherical coordinates (Chapter 13) We might often encounter the Laplace equation and spherical coordinates might be the most convenient 2 u(r, θ, φ) = 0 We already saw in Chapter

More information

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots, Chapter 8 Elliptic PDEs In this chapter we study elliptical PDEs. That is, PDEs of the form 2 u = lots, where lots means lower-order terms (u x, u y,..., u, f). Here are some ways to think about the physical

More information

Lecture 24. Scott Pauls 5/21/07

Lecture 24. Scott Pauls 5/21/07 Lecture 24 Department of Mathematics Dartmouth College 5/21/07 Material from last class The heat equation α 2 u xx = u t with conditions u(x, 0) = f (x), u(0, t) = u(l, t) = 0. 1. Separate variables to

More information

1 Wave Equation on Finite Interval

1 Wave Equation on Finite Interval 1 Wave Equation on Finite Interval 1.1 Wave Equation Dirichlet Boundary Conditions u tt (x, t) = c u xx (x, t), < x < l, t > (1.1) u(, t) =, u(l, t) = u(x, ) = f(x) u t (x, ) = g(x) First we present the

More information

Separation of Variables

Separation of Variables Separation of Variables A typical starting point to study differential equations is to guess solutions of a certain form. Since we will deal with linear PDEs, the superposition principle will allow us

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Math 592 Spring Applying the identity sin(u) + sin(v) = 2 sin ( ) ( sin(f 1 2πt + ϕ) + sin(f 2 2πt + µ) = f1 + f 2 2 sin 2.

Math 592 Spring Applying the identity sin(u) + sin(v) = 2 sin ( ) ( sin(f 1 2πt + ϕ) + sin(f 2 2πt + µ) = f1 + f 2 2 sin 2. Math 59 Spring 015 Homework Drew Armstrong 1. Beats Again. Show that the phenomenon of beats is independent of phase shifts. [Hint: Consider the superposition sin(f 1 πt + ϕ) + sin(f πt + µ).] Applying

More information

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 )

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous

More information

(The) Three Linear Partial Differential Equations

(The) Three Linear Partial Differential Equations (The) Three Linear Partial Differential Equations 1 Introduction A partial differential equation (PDE) is an equation of a function of 2 or more variables, involving 2 or more partial derivatives in different

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

FOURIER SERIES PART III: APPLICATIONS

FOURIER SERIES PART III: APPLICATIONS FOURIER SERIES PART III: APPLICATIONS We extend the construction of Fourier series to functions with arbitrary eriods, then we associate to functions defined on an interval [, L] Fourier sine and Fourier

More information

The Laplacian in Polar Coordinates

The Laplacian in Polar Coordinates The Laplacian in Polar Coordinates R. C. Trinity University Partial Differential Equations March 17, 15 To solve boundary value problems on circular regions, it is convenient to switch from rectangular

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as Chapte 1 Elliptic Equations 1.1 Intoduction The mathematical modeling of steady state o equilibium phenomena geneally esult in to elliptic equations. The best example is the steady diffusion of heat in

More information

Branch: Name of the Student: Unit I (Fourier Series) Fourier Series in the interval (0,2 l) Engineering Mathematics Material SUBJECT NAME

Branch: Name of the Student: Unit I (Fourier Series) Fourier Series in the interval (0,2 l) Engineering Mathematics Material SUBJECT NAME 13 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE UPDATED ON : Transforms and Partial Differential Equation : MA11 : University Questions :SKMA13 : May June 13 Name of the Student: Branch: Unit

More information

Classification of partial differential equations and their solution characteristics

Classification of partial differential equations and their solution characteristics 9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.

More information

MA22S2 Lecture Notes on Fourier Series and Partial Differential Equations.

MA22S2 Lecture Notes on Fourier Series and Partial Differential Equations. MAS Lecture Notes on Fourier Series and Partial Differential Equations Joe Ó hógáin E-mail: johog@maths.tcd.ie Main Text: Kreyszig; Advanced Engineering Mathematics Other Texts: Nagle and Saff, Zill and

More information

u tt = a 2 u xx u tt = a 2 (u xx + u yy )

u tt = a 2 u xx u tt = a 2 (u xx + u yy ) 10.7 The wave equation 10.7 The wave equation O. Costin: 10.7 1 This equation describes the propagation of waves through a medium: in one dimension, such as a vibrating string u tt = a 2 u xx 1 This equation

More information

1 Partial derivatives and Chain rule

1 Partial derivatives and Chain rule Math 62 Partial derivatives and Chain rule Question : Let u be a solution to the PDE t u(x, t) + 2 xu 2 (x, t) ν xx u(x, t) =, x (, + ), t >. (a) Let ψ(x, t) = x tu(ξ, t)dξ + 2 u2 (x, t) ν x u(x, t). Compute

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Mathematical Methods: Fourier Series. Fourier Series: The Basics

Mathematical Methods: Fourier Series. Fourier Series: The Basics 1 Mathematical Methods: Fourier Series Fourier Series: The Basics Fourier series are a method of representing periodic functions. It is a very useful and powerful tool in many situations. It is sufficiently

More information

FINAL EXAM, MATH 353 SUMMER I 2015

FINAL EXAM, MATH 353 SUMMER I 2015 FINAL EXAM, MATH 353 SUMMER I 25 9:am-2:pm, Thursday, June 25 I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the Duke Community

More information

Applications of the Maximum Principle

Applications of the Maximum Principle Jim Lambers MAT 606 Spring Semester 2015-16 Lecture 26 Notes These notes correspond to Sections 7.4-7.6 in the text. Applications of the Maximum Principle The maximum principle for Laplace s equation is

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

ISE I Brief Lecture Notes

ISE I Brief Lecture Notes ISE I Brief Lecture Notes 1 Partial Differentiation 1.1 Definitions Let f(x, y) be a function of two variables. The partial derivative f/ x is the function obtained by differentiating f with respect to

More information

MATH 124B: HOMEWORK 2

MATH 124B: HOMEWORK 2 MATH 24B: HOMEWORK 2 Suggested due date: August 5th, 26 () Consider the geometric series ( ) n x 2n. (a) Does it converge pointwise in the interval < x

More information

Physics 6303 Lecture 8 September 25, 2017

Physics 6303 Lecture 8 September 25, 2017 Physics 6303 Lecture 8 September 25, 2017 LAST TIME: Finished tensors, vectors, and matrices At the beginning of the course, I wrote several partial differential equations (PDEs) that are used in many

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

Instructor s Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri

Instructor s Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri Instructor s Solutions Manual PARTIA DIFFERENTIA EQUATIONS with FOURIER SERIES and BOUNDARY VAUE PROBEMS Second Edition NAKHÉ H. ASMAR University of Missouri Contents Preface Errata v vi A Preview of Applications

More information

Solutions to Laplace s Equations

Solutions to Laplace s Equations Solutions to Laplace s Equations Lecture 14: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We have seen that in the region of space where there are no sources of charge,

More information

Physics 6303 Lecture 9 September 17, ct' 2. ct' ct'

Physics 6303 Lecture 9 September 17, ct' 2. ct' ct' Physics 6303 Lecture 9 September 17, 018 LAST TIME: Finished tensors, vectors, 4-vectors, and 4-tensors One last point is worth mentioning although it is not commonly in use. It does, however, build on

More information

Introduction to Sturm-Liouville Theory

Introduction to Sturm-Liouville Theory Introduction to R. C. Trinity University Partial Differential Equations April 10, 2014 Sturm-Liouville problems Definition: A (second order) Sturm-Liouville (S-L) problem consists of A Sturm-Liouville

More information

Chapter 2 Boundary and Initial Data

Chapter 2 Boundary and Initial Data Chapter 2 Boundary and Initial Data Abstract This chapter introduces the notions of boundary and initial value problems. Some operator notation is developed in order to represent boundary and initial value

More information

Module 7: The Laplace Equation

Module 7: The Laplace Equation Module 7: The Laplace Equation In this module, we shall study one of the most important partial differential equations in physics known as the Laplace equation 2 u = 0 in Ω R n, (1) where 2 u := n i=1

More information

Eigenvalue Problem. 1 The First (Dirichlet) Eigenvalue Problem

Eigenvalue Problem. 1 The First (Dirichlet) Eigenvalue Problem Eigenvalue Problem A. Salih Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram July 06 The method of separation variables for solving the heat equation

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Students Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri

Students Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri Students Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS with FOURIER SERIES and BOUNDARY VALUE PROBLEMS Second Edition NAKHLÉ H. ASMAR University of Missouri Contents Preface Errata v vi A Preview of

More information

BOUNDARY PROBLEMS IN HIGHER DIMENSIONS. kt = X X = λ, and the series solutions have the form (for λ n 0):

BOUNDARY PROBLEMS IN HIGHER DIMENSIONS. kt = X X = λ, and the series solutions have the form (for λ n 0): BOUNDARY PROBLEMS IN HIGHER DIMENSIONS Time-space separation To solve the wave and diffusion equations u tt = c u or u t = k u in a bounded domain D with one of the three classical BCs (Dirichlet, Neumann,

More information

Math 260: Solving the heat equation

Math 260: Solving the heat equation Math 260: Solving the heat equation D. DeTurck University of Pennsylvania April 25, 2013 D. DeTurck Math 260 001 2013A: Solving the heat equation 1 / 1 1D heat equation with Dirichlet boundary conditions

More information

Solving First Order PDEs

Solving First Order PDEs Solving Ryan C. Trinity University Partial Differential Equations Lecture 2 Solving the transport equation Goal: Determine every function u(x, t) that solves u t +v u x = 0, where v is a fixed constant.

More information