Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Size: px
Start display at page:

Download "Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx."

Transcription

1 Problem set 3: Solutions Math 27B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue λ is strictly positive. Solution. Multiplying the ODE by u and integrating the result over [, 1], we get that uu dx = λ u 2 dx. Integrating by parts and using the boundary conditions, we have and the result follows. uu dx = [uu ] 1 + (u ) 2 dx = (u ) 2 dx, The expression for λ shows that λ. Moreover, if λ =, then (u ) 2 dx = so u = (assuming that u is continuous) and therefore u = constant. The boundary conditions then imply that u =, so we must have λ >. To explain the previous calculation in more general terms, we can write the positive, self-adjoint operator A = d 2 /dx 2 as A = D D where the skew-adjoint operator D = d/dx with Dirichlet boundary conditions has L 2 -adjoint D = d/dx. If Au = λu, then λ = u, Au u, u, u, Au = u, D Du = Du, Du, and λ = only if Du =.

2 2. Heat flows in a rod of length L with a heat source (a > ) or sink (a < ) whose density au is proportional to the temperature u. Suppose that u(x, t) satisfies the IBVP u t = Du xx + au < x < L, t >, u(, t) =, u(l, t) =, u(x, ) = f(x). (a) Nondimensionalize the problem, and show that the IBVP can be written in nondimensional form as u t = u xx + αu < x < 1, t >, u(, t) =, u(1, t) = t >, u(x, ) = f(x) < x < 1, where α is a suitable nondimensional parameter. Give a physical interpretation of α. (b) Solve the IBVP in (a) by the method of separation of variables. (c) How does your solution behave as t? For what values of α does u(x, t) as t? What happens for larger values of α? Give a physical explanation of this behavior in terms of the thermal energy. Solution. (a) Let Θ be a typical value of the initial data f(x), and define x = x L, t = Dt L 2, u(x, t) = Θū( x, t). Then x = 1 L x, t = D L 2 t. After changing variables, we get the nondimensionalized problem with a nondimensionalized initial condition and source-parameter ū( x, ) = f(l x) Θ, α = al2 D.

3 In the absence of diffusion, a typical time-scale for the source term (u t = au) to lead to exponential growth or decay by a factor of e is T s = 1/ a. A typical time scale for heat to diffuse the length of the rod is T d = L 2 /D, so α = T d /T s measures the relative speed of diffusion and growth or decay due to the source ( α 1 means that diffusion dominates and α 1 means that the source term dominates). (b) Looking for separated solutions of the PDE, we find that u(x, t) = F (x)g(t) G G = F F + α. Defining a separation constant λ by F /F = λ (other definitions would lead to the same final result), we get that The solution for G is G = (α λ)g, G(t) = G e (α λ)t. F = λf. Imposing the boundary conditions on F, we get the eigenvalue problem F = λf, F () =, F (1) = whose solutions (up to a constant factor in F ) are λ = n 2 π 2, F (x) = sin(nπx) n = 1, 2, 3,... Superposing the separated solutions, we get that u(x, t) = b n e (α n2 π 2 )t sin(nπx). n=1 The initial condition is satisfied if f(x) = b n sin(nπx), n=1 which gives by orthogonality that b n = 2 f(x) sin(nπx) dx

4 (c) The solution decays to zero as t if α < π 2 and is unbounded if α > π 2 (provided that b 1 ). If α = π 2, then the solution approaches a steady state u(x, t) b 1 sin(πx). Suppose for definiteness that u > inside the rod. If α < π 2, then heat energy diffuses out of the ends of the rod at a faster rate than its generation by the source inside the rod, and the temperature decays to zero. If α > π 2, then the source generates heat faster than it can escape and the temperature increases. If α = π 2 (and b 1 > ), then (for large times) the loss of heat through the ends of the rod balances the generation of heat inside.

5 3. Solve the following eigenvalue problem for the linear operator d 2 /dx 2 with Neumann BCs: u = λu < x < 1, u () =, u (1) =. (a) Find the eigenvalues λ = λ n, where n =, 1, 2, 3,..., and the corresponding eigenfunctions u n (x). (b) Show that the eigenfunctions can be normalized so that { 1 1 if m = n u m (x)u n (x) dx = if m n (c) Does your argument in Problem 1 that λ work in this case? Solution. (a) Since the problem is self-adjoint, all eigenvalues are real. If λ = k 2 <, then the general solution of the ODE is u(x) = c 1 cosh kx + c 2 sinh kx. The boundary condition u () = implies that c 2 = and then the boundary condition u (1) = implies that kc 1 sinh k =, so c 1 = and u =, meaning that any λ < is not an eigenvalue. If λ =, then u(x) = c 1 + c 2 x. The boundary condition u () = implies that c 2 =, and then the boundary condition u (1) = is satisfied for any c 1, so λ = is an eigenvalue with eigenfunction u = 1. If λ = k 2 >, then the general solution of the ODE is u(x) = c 1 cos kx + c 2 sin kx. The boundary condition u () = implies that c 2 = and then the boundary condition u (1) = implies that kc 1 sin k =, so c 1 = unless k = nπ for some n N, and λ n = n 2 π 2 is an eigenvalue with eigenfunction u n (x) = cos(nπx).

6 (b) From the addition formula for cosines, we have cos(mπx) cos(nπx) dx = 1 [cos(m + n)πx + cos(m n)πx]. 2 If m n, then cos(mπx) cos(nπx) dx = 1 [ sin(m + n)πx + 2 (m + n)π and if m = n, then cos 2 (nπx) dx = { 1 if n =, 1/2 if n 1. ] 1 sin(m n)πx =, (m n)π It follows that an orthonormal set of eigenfunctions is given by u (x) = 1, u n (x) = 2 cos(nπx) n 1. (c) The argument is the same up to the conclusion that u = if λ =. In this case, however, a nonzero constant function u = 1 satisfies the Neumann boundary conditions, so λ = is an eigenvalue.

7 4. (a) Solve the following IBVP by the method of separation of variables u t = u xx < x < 1, t >, u x (, t) =, u x (1, t) = t >, u(x, ) = f(x) < x < 1. (b) How does your solution behave as t? (c) Show directly from the IBVP in (a) that u(x, t) dx = f(x) dx for all t. Is this result consistent with your answer in (b)? Give a physical explanation of the long-time behavior of u(x, t). Solution. (a) If u(x, t) = F (x)g(t) is a separated solution of the PDE, then where λ is a separation constant. F F = G G = λ, It follows that G(t) = G e λt and F satisfies the eigenvalue problem F = λf, F () =, F (1) =, whose eigenvalues and eigenfunctions are found in the previous question. The separated solutions are therefore u(x, t) = e n2 π 2t cos(nπx), n =, 1, 2, 3,... Superposing the separated solutions, we find that the general solution of the PDE and the BCs is u(x, t) = a + a n e n2 π 2t cos(nπx). n=1 The IC is satisfied if we choose the a n such that f(x) = a + a n cos(nπx), n=1

8 and orthogonality of the eigenfunctions implies that a = f(x) dx, a n = 2 f(x) cos(nπx) dx for n 1. (b) As t, the temperature u(x, t) approaches a constant a. (c) Integrating the PDE over x 1 and using the boundary conditions, we get that d dt u dx = u t dx = u xx dx = [u x ] x=1 x= =, so u(x, t) dx is independent of time and is equal to its initial value a = f dx, which is consistent with the solution obtained by separation of variables. As t, diffusion evens out any temperature variations, so the temperature approaches a constant, uniform state. The ends (and sides) of the rod are insulated, with zero heat flux u x, so no heat energy can escape, and the final constant value of the temperature is the one with the same energy as the initial state (equal to the average value of the initial data f).

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x).

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x). Problem set 4: Solutions Math 27B, Winter216 1. The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u, u 1 : u t = u xx < x < 1, t > u(, t) = u, u(1, t) =

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

G: Uniform Convergence of Fourier Series

G: Uniform Convergence of Fourier Series G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) u t = Du xx 0 < x < l, t > 0 u(0, t) = 0 = u(l, t) t > 0 u(x, 0) = f(x) 0 < x < l () we developed

More information

Midterm 2: Sample solutions Math 118A, Fall 2013

Midterm 2: Sample solutions Math 118A, Fall 2013 Midterm 2: Sample solutions Math 118A, Fall 213 1. Find all separated solutions u(r,t = F(rG(t of the radially symmetric heat equation u t = k ( r u. r r r Solve for G(t explicitly. Write down an ODE for

More information

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Analysis III (BAUG Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Question 1 et a 0,..., a n be constants. Consider the function. Show that a 0 = 1 0 φ(xdx. φ(x = a 0 + Since the integral

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Transforming Nonhomogeneous BCs Into Homogeneous Ones

Transforming Nonhomogeneous BCs Into Homogeneous Ones Chapter 10 Transforming Nonhomogeneous s Into Homogeneous Ones 10.1 Goal In the previous chapter, we looked at separation of variables. We saw that this method applies if both the boundary conditions and

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

Eigenvalue Problem. 1 The First (Dirichlet) Eigenvalue Problem

Eigenvalue Problem. 1 The First (Dirichlet) Eigenvalue Problem Eigenvalue Problem A. Salih Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram July 06 The method of separation variables for solving the heat equation

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior Boundary conditions In a domain Ω one has to add boundary conditions to the heat (or diffusion) equation: 1. u(x, t) = φ for x Ω. Temperature given at the boundary. Also density given at the boundary.

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

MA Chapter 10 practice

MA Chapter 10 practice MA 33 Chapter 1 practice NAME INSTRUCTOR 1. Instructor s names: Chen. Course number: MA33. 3. TEST/QUIZ NUMBER is: 1 if this sheet is yellow if this sheet is blue 3 if this sheet is white 4. Sign the scantron

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

The One-Dimensional Heat Equation

The One-Dimensional Heat Equation The One-Dimensional Heat Equation R. C. Trinity University Partial Differential Equations February 24, 2015 Introduction The heat equation Goal: Model heat (thermal energy) flow in a one-dimensional object

More information

Mathematical Methods: Fourier Series. Fourier Series: The Basics

Mathematical Methods: Fourier Series. Fourier Series: The Basics 1 Mathematical Methods: Fourier Series Fourier Series: The Basics Fourier series are a method of representing periodic functions. It is a very useful and powerful tool in many situations. It is sufficiently

More information

Lecture 24. Scott Pauls 5/21/07

Lecture 24. Scott Pauls 5/21/07 Lecture 24 Department of Mathematics Dartmouth College 5/21/07 Material from last class The heat equation α 2 u xx = u t with conditions u(x, 0) = f (x), u(0, t) = u(l, t) = 0. 1. Separate variables to

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

# Points Score Total 100

# Points Score Total 100 Name: PennID: Math 241 Make-Up Final Exam January 19, 2016 Instructions: Turn off and put away your cell phone. Please write your Name and PennID on the top of this page. Please sign and date the pledge

More information

MATH-UA 263 Partial Differential Equations Recitation Summary

MATH-UA 263 Partial Differential Equations Recitation Summary MATH-UA 263 Partial Differential Equations Recitation Summary Yuanxun (Bill) Bao Office Hour: Wednesday 2-4pm, WWH 1003 Email: yxb201@nyu.edu 1 February 2, 2018 Topics: verifying solution to a PDE, dispersion

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Spring Exam 3 Review Solutions Exercise. We utilize the general solution to the Dirichlet problem in rectangle given in the textbook on page 68. In the notation used there

More information

Transforming Nonhomogeneous BCs Into Homogeneous Ones

Transforming Nonhomogeneous BCs Into Homogeneous Ones Chapter 8 Transforming Nonhomogeneous s Into Homogeneous Ones 8.1 Goal In this chapter we look at more challenging example of problems which can be solved by separation of variables. A restriction of the

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation Lecture 12 Lecture 12 MA 201, PDE (2016) 1 / 24 Formal Solution of

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation 1. Partial differential equations Definitions Examples A partial differential equation PDE is an equation giving a relation between a function of two or more variables u and its partial derivatives. The

More information

MA 201: Partial Differential Equations Lecture - 11

MA 201: Partial Differential Equations Lecture - 11 MA 201: Partia Differentia Equations Lecture - 11 Heat Equation Heat conduction in a thin rod The IBVP under consideration consists of: The governing equation: u t = αu xx, (1) where α is the therma diffusivity.

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Chapter 1 Solving Nonhomogeneous PDEs (Eigenfunction Expansions) 1.1 Goal We know how to solve diffusion problems for which both the PDE and the s are homogeneous using the separation of variables method.

More information

Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Chapter 12 Solving Nonhomogeneous PDEs (Eigenfunction Expansions) 12.1 Goal We know how to solve diffusion problems for which both the PDE and the s are homogeneous using the separation of variables method.

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

Solutions to Exercises 8.1

Solutions to Exercises 8.1 Section 8. Partial Differential Equations in Physics and Engineering 67 Solutions to Exercises 8.. u xx +u xy u is a second order, linear, and homogeneous partial differential equation. u x (,y) is linear

More information

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in 86 Problem Set - Solutions Due Thursday, 29 November 27 at 4 pm in 2-6 Problem : (5=5+5+5) Take any matrix A of the form A = B H CB, where B has full column rank and C is Hermitian and positive-definite

More information

1 Separation of Variables

1 Separation of Variables Jim ambers ENERGY 281 Spring Quarter 27-8 ecture 2 Notes 1 Separation of Variables In the previous lecture, we learned how to derive a PDE that describes fluid flow. Now, we will learn a number of analytical

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 6 Saarland University 17. November 2014 c Daria Apushkinskaya (UdS) PDE and BVP lecture 6 17. November 2014 1 / 40 Purpose of Lesson To show

More information

(The) Three Linear Partial Differential Equations

(The) Three Linear Partial Differential Equations (The) Three Linear Partial Differential Equations 1 Introduction A partial differential equation (PDE) is an equation of a function of 2 or more variables, involving 2 or more partial derivatives in different

More information

Partial differential equations (ACM30220)

Partial differential equations (ACM30220) (ACM3. A pot on a stove has a handle of length that can be modelled as a rod with diffusion constant D. The equation for the temperature in the rod is u t Du xx < x

More information

Preparation for the Final

Preparation for the Final Preparation for the Final Basic Set of Problems that you should be able to do: - all problems on your tests (- 3 and their samples) - ex tra practice problems in this documents. The final will be a mix

More information

Homework 6 Math 309 Spring 2016

Homework 6 Math 309 Spring 2016 Homework 6 Math 309 Spring 2016 Due May 18th Name: Solution: KEY: Do not distribute! Directions: No late homework will be accepted. The homework can be turned in during class or in the math lounge in Pedelford

More information

The One Dimensional Heat Equation

The One Dimensional Heat Equation The One Dimensional Heat Equation Adam Abrahamsen and David Richards May 22, 2002 Abstract In this document we will study the flow of heat in one dimension through a small thin rod. We will use the derivation

More information

The 1-D Heat Equation

The 1-D Heat Equation The 1-D Heat Equation 18.303 Linear Partial Differential Equations Matthew J. Hancock Fall 004 1 The 1-D Heat Equation 1.1 Physical derivation Reference: Haberman 1.1-1.3 [Sept. 8, 004] In a metal rod

More information

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators PDE-SEP-HEAT-1 Partial Differential Equations Separation of Variables 1 Partial Differential Equations and Operators et C = C(R 2 ) be the collection of infinitely differentiable functions from the plane

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

CHAPTER 10 NOTES DAVID SEAL

CHAPTER 10 NOTES DAVID SEAL CHAPTER 1 NOTES DAVID SEA 1. Two Point Boundary Value Problems All of the problems listed in 14 2 ask you to find eigenfunctions for the problem (1 y + λy = with some prescribed data on the boundary. To

More information

The 1-D Heat Equation

The 1-D Heat Equation The 1-D Heat Equation 18.303 Linear Partial Differential Equations Matthew J. Hancock Fall 005 1 The 1-D Heat Equation 1.1 Physical derivation Reference: Haberman 1.1-1.3 [Sept. 7, 005] In a metal rod

More information

Section 12.6: Non-homogeneous Problems

Section 12.6: Non-homogeneous Problems Section 12.6: Non-homogeneous Problems 1 Introduction Up to this point all the problems we have considered are we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

A Guided Tour of the Wave Equation

A Guided Tour of the Wave Equation A Guided Tour of the Wave Equation Background: In order to solve this problem we need to review some facts about ordinary differential equations: Some Common ODEs and their solutions: f (x) = 0 f(x) =

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

The Heat Equation with partial differential equations

The Heat Equation with partial differential equations Applications of Differential Equations 1/100 The Heat Equation with partial differential equations David Richards and Adam Abrahamsen Introduction The purpose of our presentation is to derive the heat

More information

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 )

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

2.4 Eigenvalue problems

2.4 Eigenvalue problems 2.4 Eigenvalue problems Associated with the boundary problem (2.1) (Poisson eq.), we call λ an eigenvalue if Lu = λu (2.36) for a nonzero function u C 2 0 ((0, 1)). Recall Lu = u. Then u is called an eigenfunction.

More information

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations Numerical Analysis of Differential Equations 215 6 Numerical Solution of Parabolic Equations 6 Numerical Solution of Parabolic Equations TU Bergakademie Freiberg, SS 2012 Numerical Analysis of Differential

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs MATH 4354 Fall 2005 December 5, 2005 1 Duhamel s Principle

More information

Introduction to PDEs and Numerical Methods: Exam 1

Introduction to PDEs and Numerical Methods: Exam 1 Prof Dr Thomas Sonar, Institute of Analysis Winter Semester 2003/4 17122003 Introduction to PDEs and Numerical Methods: Exam 1 To obtain full points explain your solutions thoroughly and self-consistently

More information

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0.

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0. MATH 64: FINAL EXAM olutions Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j ( t π). olution: We assume a > b >. A = 1 π (xy yx )dt = 3ab π

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

Math 311, Partial Differential Equations, Winter 2015, Midterm

Math 311, Partial Differential Equations, Winter 2015, Midterm Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There

More information

Heat Equation, Wave Equation, Properties, External Forcing

Heat Equation, Wave Equation, Properties, External Forcing MATH348-Advanced Engineering Mathematics Homework Solutions: PDE Part II Heat Equation, Wave Equation, Properties, External Forcing Text: Chapter 1.3-1.5 ecture Notes : 14 and 15 ecture Slides: 6 Quote

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation.

In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation. Eigen Function Expansion and Applications. In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation. a/ The theory. b/ Example: Solving the Euler equation in two ways.

More information

Chapter 18. Remarks on partial differential equations

Chapter 18. Remarks on partial differential equations Chapter 8. Remarks on partial differential equations If we try to analyze heat flow or vibration in a continuous system such as a building or an airplane, we arrive at a kind of infinite system of ordinary

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions # (Section.4: The following functions are defined on an interval of length. Sketch the even and odd etensions of each function over the interval [, ]. (a f( =, f ( Even etension of

More information

Lecture notes 1 for Applied Partial Differential Equations 2 (MATH20402)

Lecture notes 1 for Applied Partial Differential Equations 2 (MATH20402) Lecture notes 1 for Applied Partial Differential Equations 2 (MATH242) Lecturer: Dr Valeriy Slastikov c University of Bristol 217 This material is copyright of the University unless explicitly stated otherwise.

More information

THE METHOD OF SEPARATION OF VARIABLES

THE METHOD OF SEPARATION OF VARIABLES THE METHOD OF SEPARATION OF VARIABES To solve the BVPs that we have encountered so far, we will use separation of variables on the homogeneous part of the BVP. This separation of variables leads to problems

More information

Separation of Variables

Separation of Variables Separation of Variables A typical starting point to study differential equations is to guess solutions of a certain form. Since we will deal with linear PDEs, the superposition principle will allow us

More information

21 Laplace s Equation and Harmonic Functions

21 Laplace s Equation and Harmonic Functions 2 Laplace s Equation and Harmonic Functions 2. Introductory Remarks on the Laplacian operator Given a domain Ω R d, then 2 u = div(grad u) = in Ω () is Laplace s equation defined in Ω. If d = 2, in cartesian

More information

1 Wave Equation on Finite Interval

1 Wave Equation on Finite Interval 1 Wave Equation on Finite Interval 1.1 Wave Equation Dirichlet Boundary Conditions u tt (x, t) = c u xx (x, t), < x < l, t > (1.1) u(, t) =, u(l, t) = u(x, ) = f(x) u t (x, ) = g(x) First we present the

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

Class Meeting # 2: The Diffusion (aka Heat) Equation

Class Meeting # 2: The Diffusion (aka Heat) Equation MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 2: The Diffusion (aka Heat) Equation The heat equation for a function u(, x (.0.). Introduction

More information

Diffusion - The Heat Equation

Diffusion - The Heat Equation Chapter 6 Diffusion - The Heat Equation 6.1 Goal Understand how to model a simple diffusion process and apply it to derive the heat equation in one dimension. We begin with the fundamental conservation

More information

Introduction and preliminaries

Introduction and preliminaries Chapter Introduction and preliminaries Partial differential equations What is a partial differential equation? ODEs Ordinary Differential Equations) have one variable x). PDEs Partial Differential Equations)

More information

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation:

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: Chapter 7 Heat Equation Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: u t = ku x x, x, t > (7.1) Here k is a constant

More information

The lecture of 1/23/2013: WHY STURM-LIOUVILLE?

The lecture of 1/23/2013: WHY STURM-LIOUVILLE? The lecture of 1/23/2013: WHY STURM-LIOUVILLE? 1 Separation of variables There are several equations of importance in mathematical physics that have lots of simple solutions. To be a bit more specific,

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section: MATH 2 Final Examination December 6, 204 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 0 points. In order to obtain full credit for partial credit problems, all work must

More information

MATH 126 FINAL EXAM. Name:

MATH 126 FINAL EXAM. Name: MATH 126 FINAL EXAM Name: Exam policies: Closed book, closed notes, no external resources, individual work. Please write your name on the exam and on each page you detach. Unless stated otherwise, you

More information

1 Partial derivatives and Chain rule

1 Partial derivatives and Chain rule Math 62 Partial derivatives and Chain rule Question : Let u be a solution to the PDE t u(x, t) + 2 xu 2 (x, t) ν xx u(x, t) =, x (, + ), t >. (a) Let ψ(x, t) = x tu(ξ, t)dξ + 2 u2 (x, t) ν x u(x, t). Compute

More information

Math 5587 Lecture 2. Jeff Calder. August 31, Initial/boundary conditions and well-posedness

Math 5587 Lecture 2. Jeff Calder. August 31, Initial/boundary conditions and well-posedness Math 5587 Lecture 2 Jeff Calder August 31, 2016 1 Initial/boundary conditions and well-posedness 1.1 ODE vs PDE Recall that the general solutions of ODEs involve a number of arbitrary constants. Example

More information

Inverse Problems. Lab 19

Inverse Problems. Lab 19 Lab 19 Inverse Problems An important concept in mathematics is the idea of a well posed problem. The concept initially came from Jacques Hadamard. A mathematical problem is well posed if 1. a solution

More information